1
|
Newman NH, Farber I, Lunenfeld E, Zeadna A, Vardi IH, Assi Z. Orchiopexy: one procedure, two diagnoses - different male infertility outcomes. Asian J Androl 2024; 26:472-478. [PMID: 38639716 PMCID: PMC11449407 DOI: 10.4103/aja202410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/30/2024] [Indexed: 04/20/2024] Open
Abstract
ABSTRACT Infertility, affecting one in six couples, is often related to the male partner's congenital and/or environmental conditions or complications postsurgery. This retrospective study examines the link between orchiopexy for undescended testicles (UDT) and testicular torsion (TT) in childhood and adult fertility as assessed through sperm analysis. The study involved the analysis of semen samples from 7743 patients collected at Soroka University Medical Center (Beer Sheva, Israel) between January 2009 and December 2017. Patients were classified into two groups based on sperm concentration: those with concentrations below 5 × 10 6 sperm per ml (AS group) and those above (MN group). Medical records and surgical histories were reviewed, categorizing orchiopexies by surgical approach. Among 140 individuals who had undergone pediatric surgery, 83 (59.3%) were placed in the MN group and 57 (40.7%) in the AS group. A higher likelihood of being in the MN group was observed in Jewish compared to Arab patients (75.9% vs 24.1%, P = 0.006). In cases of childhood UDT, 45 (78.9%) patients exhibited sperm concentrations below 5 × 10 6 sperm per ml ( P < 0.001), and 66 (76.7%) had undergone unilateral and 18 (20.9%) bilateral orchiopexy. Bilateral orchiopexy was significantly associated with lower sperm concentration, total motility, and progressive motility than unilateral cases ( P = 0.014, P = 0.001, and P = 0.031, respectively). Multivariate analysis identified UDT as a weak risk factor for low sperm concentration (odds ratio [OR]: 2.712, P = 0.078), with bilateral UDT further increasing this risk (OR: 6.314, P = 0.012). Jewish ethnicity and TT diagnosis were associated with a reduced risk of sperm concentrations below 5 × 10 6 sperm per ml. The findings indicate that initial diagnosis, surgical approach, and ethnicity markedly influence male fertility outcomes following pediatric orchiopexy.
Collapse
Affiliation(s)
- Nitza Heiman Newman
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Pediatric Surgery, Soroka University Medical Center, Beer Sheva 84101, Israel
| | - Idan Farber
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Eitan Lunenfeld
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Atif Zeadna
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
- IVF Unit, Diviation of Obstetrics and Gynecology, Soroka University Medical Center, Beer Sheva 84010, Israel
| | - Iris Har Vardi
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
- IVF Unit, Diviation of Obstetrics and Gynecology, Soroka University Medical Center, Beer Sheva 84010, Israel
| | - Zaki Assi
- Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Pediatric Surgery, Soroka University Medical Center, Beer Sheva 84101, Israel
| |
Collapse
|
2
|
AbuMadighem A, Cohen O, Huleihel M. Elucidating the Transcriptional States of Spermatogenesis-Joint Analysis of Germline and Supporting Cell, Mice and Human, Normal and Perturbed, Bulk and Single-Cell RNA-Seq. Biomolecules 2024; 14:840. [PMID: 39062554 PMCID: PMC11274546 DOI: 10.3390/biom14070840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
In studying the molecular underpinning of spermatogenesis, we expect to understand the fundamental biological processes better and potentially identify genes that may lead to novel diagnostic and therapeutic strategies toward precision medicine in male infertility. In this review, we emphasized our perspective that the path forward necessitates integrative studies that rely on complementary approaches and types of data. To comprehensively analyze spermatogenesis, this review proposes four axes of integration. First, spanning the analysis of spermatogenesis in the healthy state alongside pathologies. Second, the experimental analysis of model systems (in which we can deploy treatments and perturbations) alongside human data. Third, the phenotype is measured alongside its underlying molecular profiles using known markers augmented with unbiased profiles. Finally, the testicular cells are studied as ecosystems, analyzing the germ cells alongside the states observed in the supporting somatic cells. Recently, the study of spermatogenesis has been advancing using single-cell RNA sequencing, where scientists have uncovered the unique stages of germ cell development in mice, revealing new regulators of spermatogenesis and previously unknown cell subtypes in the testis. An in-depth analysis of meiotic and postmeiotic stages led to the discovery of marker genes for spermatogonia, Sertoli and Leydig cells and further elucidated all the other germline and somatic cells in the testis microenvironment in normal and pathogenic conditions. The outcome of an integrative analysis of spermatogenesis using advanced molecular profiling technologies such as scRNA-seq has already propelled our biological understanding, with additional studies expected to have clinical implications for the study of male fertility. By uncovering new genes and pathways involved in abnormal spermatogenesis, we may gain insights into subfertility or sterility.
Collapse
Affiliation(s)
- Ali AbuMadighem
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Ofir Cohen
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
| | - Mahmoud Huleihel
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel;
- The Center of Advanced Research and Education in Reproduction (CARER), Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| |
Collapse
|
3
|
Gershoni M, Braun T, Hauser R, Barda S, Lehavi O, Malcov M, Frumkin T, Kalma Y, Pietrokovski S, Arama E, Kleiman SE. A pathogenic variant in the uncharacterized RNF212B gene results in severe aneuploidy male infertility and repeated IVF failure. HGG ADVANCES 2023; 4:100189. [PMID: 37124137 PMCID: PMC10133878 DOI: 10.1016/j.xhgg.2023.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Quantitative and qualitative spermatogenic impairments are major causes of men's infertility. Although in vitro fertilization (IVF) is effective, some couples persistently fail to conceive. To identify causal variants in patients with severe male infertility factor and repeated IVF failures, we sequenced the exome of two consanguineous family members who underwent several failed IVF cycles and were diagnosed with low sperm count and motility. We identified a rare homozygous nonsense mutation in a previously uncharacterized gene, RNF212B, as the causative variant. Recurrence was identified in another unrelated, infertile patient who also faced repeated failed IVF treatments. scRNA-seq demonstrated meiosis-specific expression of RNF212B. Sequence analysis located a protein domain known to be associated with aneuploidy, which can explain multiple IVF failures. Accordingly, FISH analysis revealed a high aneuploidy rate in the patients' sperm cells and their IVF embryos. Finally, inactivation of the Drosophila orthologs significantly reduced male fertility. Given that members of the evolutionary conserved RNF212 gene family are involved in meiotic recombination and crossover maturation, our findings indicate a critical role of RNF212B in meiosis, genome stability, and in human fertility. Since recombination is completely absent in Drosophila males, our findings may indicate an additional unrelated role for the RNF212-like paralogs in spermatogenesis.
Collapse
Affiliation(s)
- Moran Gershoni
- ARO-The Volcani Center Institute of Animal Science, Bet Dagan, Israel
- Corresponding author
| | - Tslil Braun
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Hauser
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shimi Barda
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Lehavi
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mira Malcov
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tsvia Frumkin
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yael Kalma
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Corresponding author
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Corresponding author
| | - Sandra E. Kleiman
- Racine IVF Unit and Male Fertility Clinic and Sperm Bank, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, affiliated with the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Corresponding author
| |
Collapse
|
4
|
Ribeiro J, Crossan GP. GCNA is a histone binding protein required for spermatogonial stem cell maintenance. Nucleic Acids Res 2023; 51:4791-4813. [PMID: 36919611 PMCID: PMC10250205 DOI: 10.1093/nar/gkad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/01/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Recycling and de-novo deposition of histones during DNA replication is a critical challenge faced by eukaryotic cells and is coordinated by histone chaperones. Spermatogenesis is highly regulated sophisticated process necessitating not only histone modification but loading of testis specific histone variants. Here, we show that Germ Cell Nuclear Acidic protein (GCNA), a germ cell specific protein in adult mice, can bind histones and purified GCNA exhibits histone chaperone activity. GCNA associates with the DNA replication machinery and supports progression through S-phase in murine undifferentiated spermatogonia (USGs). Whilst GCNA is dispensable for embryonic germ cell development, it is required for the maintenance of the USG pool and for long-term production of sperm. Our work describes the role of a germ cell specific histone chaperone in USGs maintenance in mice. These findings provide a mechanistic basis for the male infertility observed in patients carrying GCNA mutations.
Collapse
|
5
|
Riera-Escamilla A, Vockel M, Nagirnaja L, Xavier MJ, Carbonell A, Moreno-Mendoza D, Pybus M, Farnetani G, Rosta V, Cioppi F, Friedrich C, Oud MS, van der Heijden GW, Soave A, Diemer T, Ars E, Sánchez-Curbelo J, Kliesch S, O’Bryan MK, Ruiz-Castañe E, Azorín F, Veltman JA, Aston KI, Conrad DF, Tüttelmann F, Krausz C. Large-scale analyses of the X chromosome in 2,354 infertile men discover recurrently affected genes associated with spermatogenic failure. Am J Hum Genet 2022; 109:1458-1471. [PMID: 35809576 PMCID: PMC9388793 DOI: 10.1016/j.ajhg.2022.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Although the evolutionary history of the X chromosome indicates its specialization in male fitness, its role in spermatogenesis has largely been unexplored. Currently only three X chromosome genes are considered of moderate-definitive diagnostic value. We aimed to provide a comprehensive analysis of all X chromosome-linked protein-coding genes in 2,354 azoospermic/cryptozoospermic men from four independent cohorts. Genomic data were analyzed and compared with data in normozoospermic control individuals and gnomAD. While updating the clinical significance of known genes, we propose 21 recurrently mutated genes strongly associated with and 34 moderately associated with azoospermia/cryptozoospermia not previously linked to male infertility (novel). The most frequently affected prioritized gene, RBBP7, was found mutated in ten men across all cohorts, and our functional studies in Drosophila support its role in germ stem cell maintenance. Collectively, our study represents a significant step towards the definition of the missing genetic etiology in idiopathic severe spermatogenic failure and significantly reduces the knowledge gap of X-linked genetic causes of azoospermia/cryptozoospermia contributing to the development of future diagnostic gene panels.
Collapse
Affiliation(s)
- Antoni Riera-Escamilla
- Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau, Barcelona, 08025 Catalonia, Spain
| | - Matthias Vockel
- Institute of Human Genetics, University of Münster, Vesaliusweg 12-14, 48149 Münster, Germany
| | - Liina Nagirnaja
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Miguel J. Xavier
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Albert Carbonell
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, Barcelona, 08028 Catalonia, Spain,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Baldiri Reixac, 10, Barcelona, 08028 Catalonia, Spain
| | - Daniel Moreno-Mendoza
- Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau, Barcelona, 08025 Catalonia, Spain,Department of Urology, Hospital del Oriente de Asturias, Arriondas, 33540 Asturias, Spain
| | - Marc Pybus
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autònoma de Barcelona, Barcelona, 08025 Catalonia, Spain
| | - Ginevra Farnetani
- Department of Biomedical, Experimental and Clinical Sciences Mario Serio, University of Florence, Florence 50139, Italy
| | - Viktoria Rosta
- Department of Biomedical, Experimental and Clinical Sciences Mario Serio, University of Florence, Florence 50139, Italy
| | - Francesca Cioppi
- Department of Biomedical, Experimental and Clinical Sciences Mario Serio, University of Florence, Florence 50139, Italy
| | - Corinna Friedrich
- Institute of Reproductive Genetics, University of Münster, Vesaliusweg 12-14, 48149 Münster, Germany
| | - Manon S. Oud
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen 6525, the Netherlands
| | | | - Armin Soave
- Department of Urology, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Thorsten Diemer
- Clinic for Urology, Paediatric Urology and Andrology, Justus Liebig University, Gießen 35392, Germany
| | - Elisabet Ars
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autònoma de Barcelona, Barcelona, 08025 Catalonia, Spain
| | - Josvany Sánchez-Curbelo
- Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau, Barcelona, 08025 Catalonia, Spain
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, Department of Clinical and Surgical Andrology, University Hospital Münster, Münster 48149, Germany
| | - Moira K. O’Bryan
- The School of BioScience that the Bio21 Institute, The Faculty of Science, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Eduard Ruiz-Castañe
- Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau, Barcelona, 08025 Catalonia, Spain
| | | | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, CSIC, Baldiri Reixac, 4, Barcelona, 08028 Catalonia, Spain,Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute for Science and Technology, Baldiri Reixac, 10, Barcelona, 08028 Catalonia, Spain
| | - Joris A. Veltman
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Kenneth I. Aston
- Andrology and IVF Laboratories, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Donald F. Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA,Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Vesaliusweg 12-14, 48149 Münster, Germany
| | - Csilla Krausz
- Department of Biomedical, Experimental and Clinical Sciences Mario Serio, University of Florence, Florence 50139, Italy,Corresponding author
| |
Collapse
|
6
|
Raz R, Roth Z, Gershoni M. ExAgBov: A public database of annotated variations from hundreds of bovine whole-exome sequencing samples. Sci Data 2022; 9:469. [PMID: 35918364 PMCID: PMC9345876 DOI: 10.1038/s41597-022-01597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Large reference datasets of annotated genetic variations from genome-scale sequencing are essential for interpreting identified variants, their functional impact, and their possible contribution to diseases and traits. However, to date, no such database of annotated variation from broad cattle populations is publicly available. To overcome this gap and advance bovine NGS-driven variant discovery and interpretation, we obtained and analyzed raw data deposited in the SRA public repository. Short reads from 262 whole-exome sequencing samples of Bos Taurus were mapped to the Bos Taurus ARS-UCD1.2 reference genome. The GATK best practice workflow was applied for variant calling. Comprehensive annotation of all recorded variants was done using the Ensembl Variant Effect Predictor (VEP). An in-depth analysis of the population structure revealed the breeds comprising the database. The Exomes Aggregate of Bovine- ExAgBov is a comprehensively annotated dataset of more than 20 million short variants, of which ~2% are located within open reading frames, splice regions, and UTRs, and more than 60,000 variants are predicted to be deleterious.
Collapse
Affiliation(s)
- Rotem Raz
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 7505101, Israel
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University, Rehovot, 76100, Israel
| | - Zvi Roth
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 7505101, Israel
| | - Moran Gershoni
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
7
|
Gershoni M, Shirak A, Raz R, Seroussi E. Comparing BeadChip and WGS Genotyping: Non-Technical Failed Calling Is Attributable to Additional Variation within the Probe Target Sequence. Genes (Basel) 2022; 13:genes13030485. [PMID: 35328039 PMCID: PMC8948885 DOI: 10.3390/genes13030485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 01/11/2023] Open
Abstract
Microarray-based genomic selection is a central tool to increase the genetic gain of economically significant traits in dairy cattle. Yet, the effectivity of this tool is slightly limited, as estimates based on genotype data only partially explain the observed heritability. In the analysis of the genomes of 17 Israeli Holstein bulls, we compared genotyping accuracy between whole-genome sequencing (WGS) and microarray-based techniques. Using the standard GATK pipeline, the short-variant discovery within sequence reads mapped to the reference genome (ARS-UCD1.2) was compared to the genotypes from Illumina BovineSNP50 BeadChip and to an alternative method, which computationally mimics the hybridization procedure by mapping reads to 50 bp spanning the BeadChip source sequences. The number of mismatches between the BeadChip and WGS genotypes was low (0.2%). However, 17,197 (40% of the informative SNPs) had extra variation within 50 bp of the targeted SNP site, which might interfere with hybridization-based genotyping. Consequently, with respect to genotyping errors, BeadChip varied significantly and systematically from WGS genotyping, introducing null allele-like effects and Mendelian errors (<0.5%), whereas the GATK algorithm of local de novo assembly of haplotypes successfully resolved the genotypes in the extra-variable regions. These findings suggest that the microarray design should avoid polymorphic genomic regions that are prone to extra variation and that WGS data may be used to resolve erroneous genotyping, which may partially explain missing heritability.
Collapse
|
8
|
Kherraf ZE, Cazin C, Bouker A, Fourati Ben Mustapha S, Hennebicq S, Septier A, Coutton C, Raymond L, Nouchy M, Thierry-Mieg N, Zouari R, Arnoult C, Ray PF. Whole-exome sequencing improves the diagnosis and care of men with non-obstructive azoospermia. Am J Hum Genet 2022; 109:508-517. [PMID: 35172124 DOI: 10.1016/j.ajhg.2022.01.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Non-obstructive azoospermia (NOA) is a severe and frequent cause of male infertility, often treated by testicular sperm extraction followed by intracytoplasmic sperm injection. The aim of this study is to improve the genetic diagnosis of NOA, by identifying new genes involved in human NOA and to better assess the chances of successful sperm extraction according to the individual's genotype. Exome sequencing was performed on 96 NOA-affected individuals negative for routine genetic tests. Bioinformatics analysis was limited to a panel of 151 genes selected as known causal or candidate genes for NOA. Only highly deleterious homozygous or hemizygous variants were retained as candidates. A likely causal defect was identified in 16 genes in a total of 22 individuals (23%). Six genes had not been described in man (DDX25, HENMT1, MCMDC2, MSH5, REC8, TDRKH) and 10 were previously reported (C14orf39, DMC1, FANCM, GCNA, HFM1, MCM8, MEIOB, PDHA2, TDRD9, TERB1). Seven individuals had defects in genes from piwi or DNA repair pathways, three in genes involved in post-meiotic maturation, and 12 in meiotic processes. Interestingly, all individuals with defects in meiotic genes had an unsuccessful sperm retrieval, indicating that genetic diagnosis prior to TESE could help identify individuals with low or null chances of successful sperm retrieval and thus avoid unsuccessful surgeries.
Collapse
Affiliation(s)
- Zine-Eddine Kherraf
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000 Grenoble, France; CHU Grenoble Alpes, UM GI-DPI, Grenoble 38000, France
| | - Caroline Cazin
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000 Grenoble, France; CHU Grenoble Alpes, UM GI-DPI, Grenoble 38000, France; Laboratoire Eurofins Biomnis, Département de Génétique Moléculaire, 69 007 Lyon, France
| | - Amine Bouker
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, 1003 Tunis, Tunisia
| | | | - Sylviane Hennebicq
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000 Grenoble, France; CHU Grenoble Alpes, UM laboratoire d'aide à la procréation-CECOS, 38 000 Grenoble, France
| | - Amandine Septier
- Univ. Grenoble Alpes, CNRS, UMR5525, TIMC, 38000 Grenoble, France
| | - Charles Coutton
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000 Grenoble, France; CHU Grenoble Alpes, UM de Génétique Chromosomique, 38000 Grenoble, France
| | - Laure Raymond
- Laboratoire Eurofins Biomnis, Département de Génétique Moléculaire, 69 007 Lyon, France
| | - Marc Nouchy
- Laboratoire Eurofins Biomnis, Département de Génétique Moléculaire, 69 007 Lyon, France
| | | | - Raoudha Zouari
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, 1003 Tunis, Tunisia
| | - Christophe Arnoult
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000 Grenoble, France
| | - Pierre F Ray
- Univ. Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000 Grenoble, France; CHU Grenoble Alpes, UM GI-DPI, Grenoble 38000, France.
| |
Collapse
|
9
|
Kiyozumi D, Ikawa M. Proteolysis in Reproduction: Lessons From Gene-Modified Organism Studies. Front Endocrinol (Lausanne) 2022; 13:876370. [PMID: 35600599 PMCID: PMC9114714 DOI: 10.3389/fendo.2022.876370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022] Open
Abstract
The physiological roles of proteolysis are not limited to degrading unnecessary proteins. Proteolysis plays pivotal roles in various biological processes through cleaving peptide bonds to activate and inactivate proteins including enzymes, transcription factors, and receptors. As a wide range of cellular processes is regulated by proteolysis, abnormalities or dysregulation of such proteolytic processes therefore often cause diseases. Recent genetic studies have clarified the inclusion of proteases and protease inhibitors in various reproductive processes such as development of gonads, generation and activation of gametes, and physical interaction between gametes in various species including yeast, animals, and plants. Such studies not only clarify proteolysis-related factors but the biological processes regulated by proteolysis for successful reproduction. Here the physiological roles of proteases and proteolysis in reproduction will be reviewed based on findings using gene-modified organisms.
Collapse
Affiliation(s)
- Daiji Kiyozumi
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
10
|
McNeill A. Genomics elucidates both common and rare disease aetiology. Eur J Hum Genet 2021; 29:1725-1726. [PMID: 34848842 DOI: 10.1038/s41431-021-01001-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Alisdair McNeill
- Department of Neuroscience, The University of Sheffield, Sheffield, UK. .,Sheffield Clinical Genetics Department, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK.
| |
Collapse
|