1
|
Tauchmannová K, Pecinová A, Houštěk J, Mráček T. Variability of Clinical Phenotypes Caused by Isolated Defects of Mitochondrial ATP Synthase. Physiol Res 2024; 73:S243-S278. [PMID: 39016153 PMCID: PMC11412354 DOI: 10.33549/physiolres.935407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/28/2024] [Indexed: 08/09/2024] Open
Abstract
Disorders of ATP synthase, the key enzyme in mitochondrial energy supply, belong to the most severe metabolic diseases, manifesting as early-onset mitochondrial encephalo-cardiomyopathies. Since ATP synthase subunits are encoded by both mitochondrial and nuclear DNA, pathogenic variants can be found in either genome. In addition, the biogenesis of ATP synthase requires several assembly factors, some of which are also hotspots for pathogenic variants. While variants of MT-ATP6 and TMEM70 represent the most common cases of mitochondrial and nuclear DNA mutations respectively, the advent of next-generation sequencing has revealed new pathogenic variants in a number of structural genes and TMEM70, sometimes with truly peculiar genetics. Here we present a systematic review of the reported cases and discuss biochemical mechanisms, through which they are affecting ATP synthase. We explore how the knowledge of pathophysiology can improve our understanding of enzyme biogenesis and function. Keywords: Mitochondrial diseases o ATP synthase o Nuclear DNA o Mitochondrial DNA o TMEM70.
Collapse
Affiliation(s)
- K Tauchmannová
- Laboratory of Bioenergetics, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | |
Collapse
|
2
|
Luo T, Pan J, Zhu Y, Wang X, Li K, Zhao G, Li B, Hu Z, Xia K, Li J. Association between de novo variants of nuclear-encoded mitochondrial-related genes and undiagnosed developmental disorder and autism. QJM 2024; 117:269-276. [PMID: 37930872 PMCID: PMC11014680 DOI: 10.1093/qjmed/hcad249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Evidence suggests that mitochondrial abnormalities increase the risk of two neurodevelopmental disorders: undiagnosed developmental disorder (UDD) and autism spectrum disorder (ASD). However, which nuclear-encoded mitochondrial-related genes (NEMGs) were associated with UDD-ASD is unclear. AIM To explore the association between de novo variants (DNVs) of NEMGs and UDD-ASD. DESIGN Comprehensive analysis based on DNVs of NEMGs identified in patients (31 058 UDD probands and 10 318 ASD probands) and 4262 controls. METHODS By curating NEMGs and cataloging publicly published DNVs in NEMGs, we compared the frequency of DNVs in cases and controls. We also applied a TADA-denovo model to highlight disease-associated NEMGs and characterized them based on gene intolerance, functional networks and expression patterns. RESULTS Compared with levels in 4262 controls, an excess of protein-truncating variants and deleterious missense variants in 1421 cataloged NEMGs from 41 376 patients (31 058 UDD and 10 318 ASD probands) was observed. Overall, 3.23% of de novo deleterious missense variants and 3.20% of de novo protein-truncating variants contributed to 1.1% and 0.39% of UDD-ASD cases, respectively. We prioritized 130 disease-associated NEMGs and showed distinct expression patterns in the developing human brain. Disease-associated NEMGs expression was enriched in both excitatory and inhibitory neuronal lineages from the developing human cortex. CONCLUSIONS Rare genetic alterations of disease-associated NEMGs may play a role in UDD-ASD development and lay the groundwork for a better understanding of the biology of UDD-ASD.
Collapse
Affiliation(s)
- T Luo
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - J Pan
- Department of Birth Health and Genetics, The Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning 530022, China
| | - Y Zhu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - X Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - K Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - G Zhao
- 4National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008,China
- Bioinformatics Center, Furong Laboratory & Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - B Li
- 4National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008,China
- Bioinformatics Center, Furong Laboratory & Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Z Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - K Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
- MOE Key Lab of Rare Pediatric Diseases & School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan 410008, China
| | - J Li
- 4National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008,China
- Bioinformatics Center, Furong Laboratory & Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
3
|
Zeviani M. A de novo mutation in mitochondrial ATPsynthase subunit α causes a life threatening disease in neonates which heals in infancy. Eur J Hum Genet 2021; 29:1593-1594. [PMID: 34531511 DOI: 10.1038/s41431-021-00965-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Massimo Zeviani
- University of Padova Department of Neurosciences Veneto Institute of Molecular Medicine Via Orus 2, Padova, Italy.
| |
Collapse
|