1
|
Katoh I, Tsukinoki K, Hata RI, Kurata SI. ΔNp63 silencing, DNA methylation shifts, and epithelial-mesenchymal transition resulted from TAp63 genome editing in squamous cell carcinoma. Neoplasia 2023; 45:100938. [PMID: 37778252 PMCID: PMC10544079 DOI: 10.1016/j.neo.2023.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
TP63 (p63) is strongly expressed in lower-grade carcinomas of the head and neck, skin, breast, and urothelium to maintain a well-differentiated phenotype. TP63 has two transcription start sites at exons 1 and 3' that produce TAp63 and ΔNp63 isoforms, respectively. The major protein, ΔNp63α, epigenetically activates genes essential for epidermal/craniofacial differentiation, including ΔNp63 itself. To examine the specific role of weakly expressed TAp63, we disrupted exon 1 using CRISPR-Cas9 homology-directed repair in a head and neck squamous cell carcinoma (SCC) line. Surprisingly, TAp63 knockout cells having either monoallelic GFP cassette insertion paired with a frameshift deletion allele or biallelic GFP cassette insertion exhibited ΔNp63 silencing. Loss of keratinocyte-specific gene expression, switching of intermediate filament genes from KRT(s) to VIM, and suppression of cell-cell and cell-matrix adhesion components indicated the core events of epithelial-mesenchymal transition. Many of the positively and negatively affected genes, including ΔNp63, displayed local DNA methylation changes. Furthermore, ΔNp63 expression was partially rescued by transfection of the TAp63 knockout cells with TAp63α and application of DNA methyltransferase inhibitor zebularine. These results suggest that TAp63, a minor part of the TP63 gene, may be involved in the auto-activation mechanism of ΔNp63 by which the keratinocyte-specific epigenome is maintained in SCC.
Collapse
Affiliation(s)
- Iyoko Katoh
- Faculty of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan.
| | - Keiichi Tsukinoki
- Department of Environmental Pathology, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Ryu-Ichiro Hata
- Faculty of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Shun-Ichi Kurata
- Faculty of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| |
Collapse
|
2
|
Gozar H, Bara Z, Dicu E, Derzsi Z. Current perspectives in hypospadias research: A scoping review of articles published in 2021 (Review). Exp Ther Med 2023; 25:211. [PMID: 37090085 PMCID: PMC10119991 DOI: 10.3892/etm.2023.11910] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/09/2023] [Indexed: 04/25/2023] Open
Abstract
Hundreds of papers are written about hypospadias every year referring to all aspects of the pathology, being one of the most common congenital malformations. The present study conducted a scoping review of articles published in 2021 to present the main issues and summarize current perspectives and achievements in the field. It searched for the keyword 'hypospadias' in the three most popular databases (PubMed, Scopus and Web of Science). After the analysis of the publications, they were categorized into different domains. The present review was performed respecting the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA ScR) guidelines. A total of 284 articles were included. These were published in 142 different journals. The most accessed was the Journal of Paediatric Urology with 54 articles. The main identified domains were related to surgical techniques, postoperative care, complications, anesthesia, anatomical factors, genetics, environmental factors, endocrinology, associated malformations, questionnaires and recommendations, management, biological materials, animal models, retrospective studies of centers, social media, bibliometrics, small gestational age, neoplasm, or fertility. Promising modifications of existing surgical techniques were presented with improved outcomes for both the proximal and distal types of hypospadias. Relevant anatomical and etiological, and also genetic factors were clarified. Aspects of the peri- and postoperative management referring to the antibiotherapy, analgesia, dressing techniques, and the future use of novel bioengineering agents to prevent, reduce or treat the occurring complications were discussed.
Collapse
Affiliation(s)
- Horea Gozar
- Clinic of Pediatric Surgery and Orthopedics, Târgu Mureș, County Emergency Clinical Hospital, Târgu Mureș 540136, Romania
- Department of Pediatric Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș 540142, Romania
| | - Zsolt Bara
- Clinic of Pediatric Surgery and Orthopedics, Târgu Mureș, County Emergency Clinical Hospital, Târgu Mureș 540136, Romania
| | - Emilia Dicu
- Clinic of Pediatric Surgery and Orthopedics, Târgu Mureș, County Emergency Clinical Hospital, Târgu Mureș 540136, Romania
| | - Zoltán Derzsi
- Clinic of Pediatric Surgery and Orthopedics, Târgu Mureș, County Emergency Clinical Hospital, Târgu Mureș 540136, Romania
- Department of Pediatric Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș 540142, Romania
| |
Collapse
|
3
|
Tanaka K, Matsumaru D, Suzuki K, Yamada G, Miyagawa S. The role of p63 in embryonic external genitalia outgrowth in mice. Dev Growth Differ 2023; 65:132-140. [PMID: 36680528 PMCID: PMC11520970 DOI: 10.1111/dgd.12840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
Embryonic external genitalia (genital tubercle [GT]) protrude from the cloaca and outgrow as cloacal development progresses. Individual gene functions and knockout phenotypes in GT development have been extensively analyzed; however, the interactions between these genes are not fully understood. In this study, we investigated the role of p63, focusing on its interaction with the Shh-Wnt/Ctnnb1-Fgf8 pathway, a signaling network that is known to play a role in GT outgrowth. p63 was expressed in the epithelial tissues of the GT at E11.5, and the distal tip of the GT predominantly expressed the ΔNp63α isoform. The GTs in p63 knockout embryos had normal Shh expression, but CTNNB1 protein and Fgf8 gene expression in the distal urethral epithelium was decreased or lost. Constitutive expression of CTNNB1 in p63-null embryos restored Fgf8 expression, accompanied by small bud structure development; however, such bud structures could not be maintained by E13.5, at which point mutant GTs exhibited severe abnormalities showing a split shape with a hemorrhagic cloaca. Therefore, p63 is a key component of the signaling pathway that triggers Fgf8 expression in the distal urethral epithelium and contributes to GT outgrowth by ensuring the structural integrity of the cloacal epithelia. Altogether, we propose that p63 plays an essential role in the signaling network for the development of external genitalia.
Collapse
Affiliation(s)
- Kosei Tanaka
- Department of Biological Science and Technology, Faculty of Advances EngineeringTokyo University of ScienceKatsushikaJapan
| | - Daisuke Matsumaru
- Laboratory of Hygienic Chemistry and Molecular ToxicologyGifu Pharmaceutical UniversityGifuJapan
| | - Kentaro Suzuki
- Faculty of Life and Environmental SciencesUniversity of YamanashiYamanashiJapan
| | - Gen Yamada
- Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
| | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advances EngineeringTokyo University of ScienceKatsushikaJapan
- Division of Biological Environment Innovation, Research Institute for Science and TechnologyTokyo University of ScienceKatsushikaJapan
| |
Collapse
|
4
|
Tucker EJ, Gutfreund N, Belaud-Rotureau MA, Gilot D, Brun T, Kline BL, Domin-Bernhard M, Théard C, Touraine P, Robevska G, van den Bergen J, Ayers KL, Sinclair AH, Dötsch V, Jaillard S. Dominant TP63 missense variants lead to constitutive activation and premature ovarian insufficiency. Hum Mutat 2022; 43:1443-1453. [PMID: 35801529 PMCID: PMC9542062 DOI: 10.1002/humu.24432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022]
Abstract
Premature ovarian insufficiency (POI) is a leading form of female infertility, characterised by menstrual disturbance and elevated follicle‐stimulating hormone before age 40. It is highly heterogeneous with variants in over 80 genes potentially causative, but the majority of cases having no known cause. One gene implicated in POI pathology is TP63. TP63 encodes multiple p63 isoforms, one of which has been shown to have a role in the surveillance of genetic quality in oocytes. TP63 C‐terminal truncation variants and N‐terminal duplication have been described in association with POI, however, functional validation has been lacking. Here we identify three novel TP63 missense variants in women with nonsyndromic POI, including one in the N‐terminal activation domain, one in the C‐terminal inhibition domain, and one affecting a unique and poorly understood p63 isoform, TA*p63. Via blue‐native page and luciferase reporter assays we demonstrate that two of these variants disrupt p63 dimerization, leading to constitutively active p63 tetramer that significantly increases the transcription of downstream targets. This is the first evidence that TP63 missense variants can cause isolated POI and provides mechanistic insight that TP63 variants cause POI due to constitutive p63 activation and accelerated oocyte loss in the absence of DNA damage.
Collapse
Affiliation(s)
- Elena J Tucker
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Niklas Gutfreund
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Marc-Antoine Belaud-Rotureau
- CHU Rennes, Service de Biologie de la Reproduction-CECOS, F-35033, Rennes, France.,Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.,CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - David Gilot
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France.,INSERM U1242, COSS, Université Rennes 1, Rennes, 35042, France
| | - Tiffany Brun
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France.,CHU Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine, F-35033, Rennes, France
| | - Brianna L Kline
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Mathilde Domin-Bernhard
- CHU Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine, F-35033, Rennes, France
| | - Camille Théard
- CHU Rennes, Service de Génétique Clinique, CLAD Ouest, F-35033, Rennes, France
| | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, AP-HP, Sorbonne University Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance et du Développement, Centre des Pathologies Gynécologiques Rares, Paris, France
| | - Gorjana Robevska
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Jocelyn van den Bergen
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Katie L Ayers
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew H Sinclair
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, 60438, Frankfurt, Germany
| | - Sylvie Jaillard
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France.,CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| |
Collapse
|
5
|
Osterburg C, Dötsch V. Structural diversity of p63 and p73 isoforms. Cell Death Differ 2022; 29:921-937. [PMID: 35314772 PMCID: PMC9091270 DOI: 10.1038/s41418-022-00975-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/25/2023] Open
Abstract
Abstract
The p53 protein family is the most studied protein family of all. Sequence analysis and structure determination have revealed a high similarity of crucial domains between p53, p63 and p73. Functional studies, however, have shown a wide variety of different tasks in tumor suppression, quality control and development. Here we review the structure and organization of the individual domains of p63 and p73, the interaction of these domains in the context of full-length proteins and discuss the evolutionary origin of this protein family.
Facts
Distinct physiological roles/functions are performed by specific isoforms.
The non-divided transactivation domain of p63 has a constitutively high activity while the transactivation domains of p53/p73 are divided into two subdomains that are regulated by phosphorylation.
Mdm2 binds to all three family members but ubiquitinates only p53.
TAp63α forms an autoinhibited dimeric state while all other vertebrate p53 family isoforms are constitutively tetrameric.
The oligomerization domain of p63 and p73 contain an additional helix that is necessary for stabilizing the tetrameric states. During evolution this helix got lost independently in different phylogenetic branches, while the DNA binding domain became destabilized and the transactivation domain split into two subdomains.
Open questions
Is the autoinhibitory mechanism of mammalian TAp63α conserved in p53 proteins of invertebrates that have the same function of genomic quality control in germ cells?
What is the physiological function of the p63/p73 SAM domains?
Do the short isoforms of p63 and p73 have physiological functions?
What are the roles of the N-terminal elongated TAp63 isoforms, TA* and GTA?
Collapse
|