1
|
Bönnemann CG, Krishnamoorthy KS, Johnston JJ, Lee MM, Fowler DJ, Biesecker LG, Holmes LB. Clinical and molecular heterogeneity of syndromic hypothalamic hamartoma. Am J Med Genet A 2023; 191:2337-2343. [PMID: 37435845 PMCID: PMC10524239 DOI: 10.1002/ajmg.a.63306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 07/13/2023]
Abstract
Two children are presented who have a distinct syndrome of multiple buccolingual frenula, a stiff and short fifth finger with small nails, a hypothalamic hamartoma, mild to moderate neurological impairment, and mild endocrinological symptoms. No variant assessed to be pathogenic or likely pathogenic was detected in the GLI3 gene in either child. This syndrome appears to be distinct from the inherited Pallister-Hall syndrome associated with GLI3 variants, which is characterized by hypothalamic hamartoma, mesoaxial polydactyly, and other anomalies. In the individuals described here, manifestations outside of the central nervous system were milder and the mesoaxial polydactyly, which is common in individuals with Pallister-Hall syndrome, was absent. Instead, these children had multiple buccolingual frenula together with the unusual appearance of the fifth digit. It remains unclear whether these two individuals represent a separate nosologic entity or if they represent a milder manifestation of one of the more severe syndromes associated with a hypothalamic hamartoma.
Collapse
Affiliation(s)
- Carsten G Bönnemann
- Pediatric Neurology, The Neurology Service, Massachusetts General Hospital, Boston, Massachusetts, United States
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
- Sidney Kimmel Medical College, Philadelphia, Pennsylvania, United States
| | - Kalpathy S Krishnamoorthy
- Pediatric Neurology, The Neurology Service, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Jennifer J Johnston
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Mary M Lee
- Pediatric Endocrinology, Mass General for Children, Boston, Massachusetts, United States
- Nemours Children's Health, DV, Wilmington, Delaware, United States
| | - Darren J Fowler
- Medical Genetics and Metabolism Unit, Mass General for Children, Boston, Massachusetts, United States
| | - Leslie G Biesecker
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Lewis B Holmes
- Medical Genetics and Metabolism Unit, Mass General for Children, Boston, Massachusetts, United States
| |
Collapse
|
2
|
Green TE, Fujita A, Ghaderi N, Heinzen EL, Matsumoto N, Klein KM, Berkovic SF, Hildebrand MS. Brain mosaicism of hedgehog signalling and other cilia genes in hypothalamic hamartoma. Neurobiol Dis 2023; 185:106261. [PMID: 37579995 DOI: 10.1016/j.nbd.2023.106261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023] Open
Abstract
Hypothalamic hamartoma (HH) is a rare benign developmental brain lesion commonly associated with a well characterized epilepsy phenotype. Most individuals with HH are non-syndromic without additional developmental anomalies nor a family history of disease. Nonetheless, HH is a feature of Pallister-Hall (PHS) and Oro-Facial-Digital Type VI (OFD VI) syndromes, both characterized by additional developmental anomalies. Initial genetic of analysis HH began with syndromic HH, where germline inherited or de novo variants in GLI3, encoding a central transcription factor in the sonic hedgehog (Shh) signalling pathway, were identified in most individuals with PHS. Following these discoveries in syndromic HH, the hypothesis that post-zygotic mosaicism in related genes may underly non-syndromic HH was tested. We discuss the identified mosaic variants within individuals with non-syndromic HH, review the analytical methodologies and diagnostic yields, and explore understanding of the functional role of the implicated genes with respect to Shh signalling, and cilia development and function. We also outline future challenges in studying non-syndromic HH and suggest potential novel strategies to interrogate brain mosaicism in HH.
Collapse
Affiliation(s)
- Timothy E Green
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Navid Ghaderi
- Departments of Clinical Neurosciences, Medical Genetics and Community Health Sciences, Hotchkiss Brain Institute & Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Erin L Heinzen
- Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Karl Martin Klein
- Departments of Clinical Neurosciences, Medical Genetics and Community Health Sciences, Hotchkiss Brain Institute & Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Epilepsy Center Frankfurt Rhine-Main and Department of Neurology, Goethe University and University Hospital Frankfurt, Frankfurt am Main, Germany; LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia.
| |
Collapse
|
3
|
Nott E, Behl KE, Brambilla I, Green TE, Lucente M, Vavassori R, Watson A, Dalla Bernardina B, Hildebrand MS. Rare. The importance of research, analysis, reporting and education in 'solving' the genetic epilepsies: A perspective from the European patient advocacy group for EpiCARE. Eur J Med Genet 2023; 66:104680. [PMID: 36623768 DOI: 10.1016/j.ejmg.2022.104680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/14/2022] [Accepted: 12/11/2022] [Indexed: 01/09/2023]
Affiliation(s)
- E Nott
- European Patient Advocacy Group (ePAG) EpiCARE, France; Hope for Hypothalamic Hamartomas and Hope for Hypothalamic Hamartomas-UK, UK.
| | - K E Behl
- Alternating Hemiplegia of Childhood UK (AHCUK) and Alternating Hemiplegia of Childhood Federation of Europe (AHCFE), UK
| | - I Brambilla
- European Patient Advocacy Group (ePAG) EpiCARE, France; Dravet Italia Onlus; Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - T E Green
- Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, 3052, Australia
| | - M Lucente
- European Patient Advocacy Group (ePAG) EpiCARE, France; Associazione Italiana GLUT1 Onlus, Italy
| | - R Vavassori
- European Patient Advocacy Group (ePAG) EpiCARE, France; International Alternating Hemiplegia of Childhood Research Consortium (IAHCRC), USA; Alternating Hemiplegia of Childhood 18+ (AHC18+ e.V.) Association, Germany
| | - A Watson
- European Patient Advocacy Group (ePAG) EpiCARE, France; Ring20 Research and Support UK, UK
| | - B Dalla Bernardina
- Dravet Italia Onlus; Research Center for Pediatric Epilepsies Verona, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Italy
| | - M S Hildebrand
- Hope for Hypothalamic Hamartomas and Hope for Hypothalamic Hamartomas-UK, UK; Epilepsy Research Centre, Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria, 3084, Australia; Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria, 3052, Australia
| |
Collapse
|
4
|
Fan L, Jin P, Qian Y, Shen G, Shen X, Dong M. Case Report: Prenatal Diagnosis of Postaxial Polydactyly With Bi-Allelic Variants in Smoothened (SMO). Front Genet 2022; 13:887082. [PMID: 35812756 PMCID: PMC9257524 DOI: 10.3389/fgene.2022.887082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/13/2022] [Indexed: 12/02/2022] Open
Abstract
Postaxial polydactyly is a common congenital malformation which involves complex genetic factors. This retrospective study analyzed the cytogenetic and molecular results of a Chinese fetus diagnosed with postaxial polydactyly of all four limbs. Fetal karyotyping and chromosomal microarray analysis (CMA) did not find any abnormality while trio whole-exome sequencing (trio-WES) identified bi-allelic variants in smoothened (SMO) and (NM_005631.5: c.1219C > G, NP_005622.1: p. Pro407Ala, and NM_005631.5: c.1619C > T, NP_005622.1: p. Ala540Val). Sanger sequencing validated these variants. The mutations are highly conserved across multiple species. In-depth bioinformatics analysis and familial co-segregation implied the compound heterozygous variants as the likely cause of postaxial polydactyly in this fetus. Our findings provided the basis for genetic counseling and will contribute to a better understanding of the complex genetic mechanism that underlies postaxial polydactyly.
Collapse
Affiliation(s)
- Lihong Fan
- Center of Prenatal Diagnosis, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
| | - Pengzhen Jin
- Women’s Hospital, School of Medicine Zhejiang University, Hangzhou, China
| | - Yeqing Qian
- Women’s Hospital, School of Medicine Zhejiang University, Hangzhou, China
| | - Guosong Shen
- Center of Prenatal Diagnosis, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
| | - Xueping Shen
- Center of Prenatal Diagnosis, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
| | - Minyue Dong
- Women’s Hospital, School of Medicine Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
- *Correspondence: Minyue Dong,
| |
Collapse
|
5
|
Good genotype-phenotype relationships in rare disease are hard to find. Eur J Hum Genet 2022; 30:251. [PMID: 35260823 PMCID: PMC8904513 DOI: 10.1038/s41431-022-01062-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|