Di W, Li X, Yang Q. Polysaccharide of Lactobacillus casei SB27 reduced colon cancer cell prognosis through mitochondrial damage by upregulation of HINT2.
Asia Pac J Clin Oncol 2023;
19:e248-e257. [PMID:
36271660 DOI:
10.1111/ajco.13876]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 09/25/2022] [Indexed: 12/01/2022]
Abstract
AIMS
Colorectal cancer (CRC) is one of the most common malignant tumors worldwide. This study aimed to explore the effects of Polysaccharide of Lactobacillus casei SB27 in colon cancer and its possible mechanisms.
METHODS
Colon cancer was induced by giving dextran sulfate sodium and Azoxymethane. Uman Colon Cancer Cell Line (HCT)-116 cells were used to vitro model in this experiment.
RESULTS
Polysaccharide of L. casei SB27 reduced colon cancer in azoxymethane-dextran sulfate sodium (AOM+DSS)-induced mice. Polysaccharide of L. casei SB27 reduced colon cancer prognosis in vitro model. Polysaccharide of L. casei SB27 reduced short chain fatty acids by Bacillus coli. Polysaccharide of L. casei promoted mitochondrial damage by Calcium ion entry. Polysaccharide of L. casei induced histidine nucleotide binding protein 2/mitochondrial calcium uniporter (HINT2/MCU) signaling pathway. Immunocoprecipitation (IP) showed that HINT2 protein interlinked MCU protein. Polysaccharide of L. casei suppressed HINT2 ubiquitination. The regulation of HINT2 affected the effects of L. casei polysaccharide on colon cancer prognosis and mitochondrial damage by Calcium ion entry in vitro model.
CONCLUSION
In conclusion, the present report demonstrated that polysaccharide of L. casei SB27 reduced colon cancer cell prognosis through mitochondrial damage by upregulation of HINT2. Polysaccharide of L. casei SB27 might be used for colon cancer treatment and could be helpful for personalized treatment.
Collapse