1
|
Gong X, Hertle RW. Infantile Nystagmus Syndrome-Associated Inherited Retinal Diseases: Perspectives from Gene Therapy Clinical Trials. Life (Basel) 2024; 14:1356. [PMID: 39598155 PMCID: PMC11595273 DOI: 10.3390/life14111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Inherited retinal diseases (IRDs) are a clinically and genetically diverse group of progressive degenerative disorders that can result in severe visual impairment or complete blindness. Despite their predominantly monogenic inheritance patterns, the genetic complexity of over 300 identified disease-causing genes presents a significant challenge in correlating clinical phenotypes with genotypes. Achieving a molecular diagnosis is crucial for providing patients with definitive diagnostic clarity and facilitating access to emerging gene-based therapies and ongoing clinical trials. Recent advances in next-generation sequencing technologies have markedly enhanced our ability to identify genes and genetic defects leading to IRDs, thereby propelling the development of gene-based therapies. The clinical success of voretigene neparvovec (Luxturna), the first approved retinal gene therapy for RPE65-associated Leber congenital amaurosis (LCA), has spurred considerable research and development in gene-based therapies, highlighting the importance of reviewing the current status of gene therapy for IRDs, particularly those utilizing adeno-associated virus (AAV)-based therapies. As novel disease-causing mutations continue to be discovered and more targeted gene therapies are developed, integrating these treatment opportunities into the standard care for IRD patients becomes increasingly critical. This review provides an update on the diverse phenotypic-genotypic landscape of IRDs, with a specific focus on recent advances in the understanding of IRDs in children with infantile nystagmus syndrome (INS). We highlight the complexities of the genotypic-phenotypic landscape of INS-associated IRDs, including conditions such as achromatopsia, LCA, congenital stationary night blindness, and subtypes of retinitis pigmentosa. Additionally, we provide an updated overview of AAV-based gene therapies for these diseases and discuss the potential of gene-based therapies for underlying IRDs that lead to INS, offering a valuable resource for pediatric patients potentially eligible for ongoing clinical trials.
Collapse
Affiliation(s)
- Xiaoming Gong
- Department of Ophthalmology, Akron Children’s Hospital, Akron, OH 44308, USA;
- Vision Center of Excellence, Rebecca D. Considine Research Institute, Akron Children’s Hospital, Akron, OH 44308, USA
| | - Richard W. Hertle
- Department of Ophthalmology, Akron Children’s Hospital, Akron, OH 44308, USA;
- Vision Center of Excellence, Rebecca D. Considine Research Institute, Akron Children’s Hospital, Akron, OH 44308, USA
| |
Collapse
|
2
|
Lee BJH, Sun CZY, Ong CJT, Jain K, Tan TE, Chan CM, Mathur RS, Tang RWC, Bylstra Y, Kam SPR, Lim WK, Fenner BJ. Utility of multimodal imaging in the clinical diagnosis of inherited retinal degenerations. Taiwan J Ophthalmol 2024; 14:486-496. [PMID: 39803408 PMCID: PMC11717338 DOI: 10.4103/tjo.tjo-d-24-00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/25/2024] [Indexed: 01/16/2025] Open
Abstract
Inherited retinal degeneration (IRD) is a heterogeneous group of genetic disorders of variable onset and severity, with vision loss being a common endpoint in most cases. More than 50 distinct IRD phenotypes and over 280 causative genes have been described. Establishing a clinical phenotype for patients with IRD is particularly challenging due to clinical variability even among patients with similar genotypes. Clinical phenotyping provides a foundation for understanding disease progression and informing subsequent genetic investigations. Establishing a clear clinical phenotype for IRD cases is required to corroborate the data obtained from exome and genome sequencing, which often yields numerous variants in genes associated with IRD. In the current work, we review the use of contemporary retinal imaging modalities, including ultra-widefield and autofluorescence imaging, optical coherence tomography, and multispectral imaging, in the diagnosis of IRD.
Collapse
Affiliation(s)
- Brian J. H. Lee
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore
| | - Christopher Z. Y. Sun
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore
- Ophthalmology and Visual Sciences Clinical Academic Program, Duke-NUS Graduate Medical School, Singapore
| | - Charles J. T. Ong
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore
- Ophthalmology and Visual Sciences Clinical Academic Program, Duke-NUS Graduate Medical School, Singapore
| | | | - Tien-En Tan
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore
- Ophthalmology and Visual Sciences Clinical Academic Program, Duke-NUS Graduate Medical School, Singapore
| | - Choi Mun Chan
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore
- Ophthalmology and Visual Sciences Clinical Academic Program, Duke-NUS Graduate Medical School, Singapore
| | - Ranjana S. Mathur
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore
- Ophthalmology and Visual Sciences Clinical Academic Program, Duke-NUS Graduate Medical School, Singapore
| | - Rachael W. C. Tang
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore
| | - Yasmin Bylstra
- SingHealth-Duke-NUS Genomic Medicine Centre, Institute of Precision Medicine, Singapore
| | - Sylvia P. R. Kam
- Department of Paediatrics, KK Women’s and Children’s Hospital, Singapore
| | - Weng Khong Lim
- SingHealth-Duke-NUS Genomic Medicine Centre, Institute of Precision Medicine, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Beau J. Fenner
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore
- Ophthalmology and Visual Sciences Clinical Academic Program, Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
3
|
Abu Elasal M, Mousa S, Salameh M, Blumenfeld A, Khateb S, Banin E, Sharon D. Genetic Analysis of 252 Index Cases with Inherited Retinal Diseases Using a Panel of 351 Retinal Genes. Genes (Basel) 2024; 15:926. [PMID: 39062705 PMCID: PMC11276581 DOI: 10.3390/genes15070926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Inherited retinal diseases (IRDs) are extremely heterogeneous with at least 350 causative genes, complicating the process of genetic diagnosis. We analyzed samples of 252 index cases with IRDs using the Blueprint Genetics panel for "Retinal Dystrophy" that includes 351 genes. The cause of disease could be identified in 55% of cases. A clear difference was obtained between newly recruited cases (74% solved) and cases that were previously analyzed by panels or whole exome sequencing (26% solved). As for the mode of inheritance, 75% of solved cases were autosomal recessive (AR), 10% were X-linked, 8% were autosomal dominant, and 7% were mitochondrial. Interestingly, in 12% of solved cases, structural variants (SVs) were identified as the cause of disease. The most commonly identified genes were ABCA4, EYS and USH2A, and the most common mutations were MAK-c.1297_1298ins353 and FAM161A-c.1355_1356del. In line with our previous IRD carrier analysis, we identified heterozygous AR mutations that were not the cause of disease in 36% of cases. The studied IRD panel was found to be efficient in gene identification. Some variants were misinterpreted by the pipeline, and therefore, multiple analysis tools are recommended to obtain a more accurate annotation of potential disease-causing variants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dror Sharon
- Division of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (M.A.E.); (S.M.); (M.S.); (A.B.); (S.K.)
| |
Collapse
|