1
|
Rocca MS, Pannella M, Bayraktar E, Marino S, Bortolozzi M, Di Nisio A, Foresta C, Ferlin A. Extragonadal function of follicle-stimulating hormone: Evidence for a role in endothelial physiology and dysfunction. Mol Cell Endocrinol 2024; 594:112378. [PMID: 39332467 DOI: 10.1016/j.mce.2024.112378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
AIMS Follicle-stimulating hormone (FSH) plays a fundamental role in reproduction stimulating ovarian folliculogenesis, Sertoli cells function and spermatogenesis. However, the recent identification of FSH receptor (FSHR) also in extra-gonadal tissues has suggested that FSH activity may not be limited only to fertility regulation, with conflicting results on the possible role of FSH in endothelial cells. The aim of this study was to investigate FSH role on endothelial function in Human Umbilical Vein Endothelial Cells (HUVECs). RESULTS Endothelial Nitric oxide synthase (eNOS) expression, eNOS phosphorylation and Nitric Oxide (NO) production resulted increased after the stimulation of HUVEC with recombinant human FSH (rhFSH) at 3.6x103 ng/ml, with increasing Calcium release from intracellular stores. Furthermore, IP3 production increased after rhFSH stimulation despite PTX treatment and NFAT1 was observed prevalently in nucleus. We observed a statistical difference between untreated cells and cells stimulated with 0.36x103 ng/ml and between cells stimulated with 0.36x103 ng/ml and cells stimulated with 1.8x103 ng/ml at 4 and 8 h by Wound healing assay, respectively. Furthermore, a higher cellular permeability was observed in stimulated cells, with atypical VE-cadherin distribution, as well as filamentous actin. CONCLUSIONS Our findings suggest that FSH at high concentrations elicits a signalling that could compromise the endothelial membrane. Indeed, VE-cadherin anomalies may severely affect the endothelial barrier, resulting in an increased membrane permeability. Although NO is an important vasodilatation factor, probably an excessive production could impact on endothelial functionality, partially explaining the increased risk of cardiovascular diseases in menopausal women and men with hypogonadism.
Collapse
Affiliation(s)
- Maria Santa Rocca
- University Hospital of Padua, Unit of Andrology and Reproductive Medicine, Padua, Italy
| | | | - Erva Bayraktar
- University of Padua, Department of Physics and Astronomy "G. Galilei", Padua, Italy; Veneto Institute of Molecular Medicine (VIMM), Via Orus 2, 35129, Padua, Italy
| | - Saralea Marino
- University of Padua, Department of Physics and Astronomy "G. Galilei", Padua, Italy; Veneto Institute of Molecular Medicine (VIMM), Via Orus 2, 35129, Padua, Italy
| | - Mario Bortolozzi
- University of Padua, Department of Physics and Astronomy "G. Galilei", Padua, Italy; Veneto Institute of Molecular Medicine (VIMM), Via Orus 2, 35129, Padua, Italy
| | - Andrea Di Nisio
- University of Padua, Department of Medicine, Padua, Italy; Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Centro Direzionale Isola F2, Naples, Italy
| | - Carlo Foresta
- University of Padua, Department of Medicine, Padua, Italy
| | - Alberto Ferlin
- University Hospital of Padua, Unit of Andrology and Reproductive Medicine, Padua, Italy; University of Padua, Department of Medicine, Padua, Italy.
| |
Collapse
|
2
|
Liu Z, Chen Y, Huang M, Du Y, Xu G, Liu Z, Zhang M, Presicce GA, Xing X, Du F. Effects of hormone sources on developmental competence of oocytes by ovum pickup in Japanese black cattle. Anim Reprod Sci 2024; 267:107533. [PMID: 38879972 DOI: 10.1016/j.anireprosci.2024.107533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
Japanese Black (Wagyu) cattle donors were primed with different protocols and sources of follicle-stimulating hormone (FSH) for successive ovum pickup (OPU) and embryo development after in vitro fertilization (IVF). Following OPU, retrieved cumulus oocyte complexes (COCs) were subjected to IVF, and resulting blastocysts were transferred into recipients to evaluate implantation capability. Experiment 1: The best blastocyst development (45.3 %) and embryo yields (5.0/donor/OPU) were found with oocytes retrieved from donors treated with FSH (STIMUFOL®, Belgium) at a dosage of 150 IU per donor, compared to two others commercial FSH sources. Experiment 2: There were no differences in embryo development or yield with STIMUFOL FSH (total FSH 150 IU/donor) at a priming duration of either 60-h (Regime 1, six FSH injections) or 36-h (Regime 2, four FSH injections). Experiment 3: Compacted COCs required 22-26-h maturation in vitro (IVM) before IVF for optimal blastocyst development (36.1-41.1 %); however, short (18-h) and prolonged (30-h) IVM duration resulted in lower embryonic development. In contrast, expanded COCs resulted in inferior blastocyst development compared to compacted COCs. Immunofluorescence microscopy revealed that the ratio of 89.8 % cumulus compacted COCs were at the germinal vesicle (pachytene) phase while 98.9 % cumulus expanded COCs went through spontaneous meiosis from meiotic metaphase I, anaphase I, telophase I to metaphase II upon OPU retrieval (P<0.05). Pregnancy rates were not different among three FSH sources or different FSH treatments as long as embryos reached the blastocyst stage. Our study found that different sources of FSH used for Wagyu donor priming prior to OPU resulted in differential embryo development potentials, but those embryos that reached out to blastocysts had a competent implantation ability.
Collapse
Affiliation(s)
- Zhihui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Yanling Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Mengjia Huang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Yinyan Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Guangyong Xu
- Qingdao Longmingniu Embryo Biotechnologies Co. LTD, Qingdao, Shandong 266400, PR China
| | - Zhentian Liu
- Qingdao Longmingniu Embryo Biotechnologies Co. LTD, Qingdao, Shandong 266400, PR China
| | - Meijie Zhang
- Qingdao Longmingniu Embryo Biotechnologies Co. LTD, Qingdao, Shandong 266400, PR China
| | | | - Xuesong Xing
- Qingdao Longmingniu Embryo Biotechnologies Co. LTD, Qingdao, Shandong 266400, PR China.
| | - Fuliang Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Cannarella R, Mancuso F, Barone N, Arato I, Lilli C, Bellucci C, Musmeci M, Luca G, La Vignera S, Condorelli RA, Calogero AE. Effects of Follicle-Stimulating Hormone on Human Sperm Motility In Vitro. Int J Mol Sci 2023; 24:ijms24076536. [PMID: 37047508 PMCID: PMC10095528 DOI: 10.3390/ijms24076536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
To evaluate whether the follicle-stimulating hormone (FSH) receptor (FSHR) is expressed in human spermatozoa and the effects of FSH incubation on sperm function. Twenty-four Caucasian men were recruited. Thirteen patients had asthenozoospermia, and the remaining 11 had normal sperm parameters (controls). After confirming FSHR expression, spermatozoa from patients and controls were incubated with increasing concentrations of human purified FSH (hpFSH) to reassess FSHR expression and localization and to evaluate progressive and total sperm motility, the mitochondrial membrane potential, and protein kinase B (AKT) 473 and 308 phosphorylation. FSHR is expressed in the post-acrosomal segment, neck, midpiece, and tail of human spermatozoa. Its localization does not differ between patients and controls. Incubation with hpFSH at a concentration of 30 mIU/mL appeared to increase FSHR expression mainly in patients. Incubation of human spermatozoa with hpFSH overall resulted in an overall deterioration of both progressive and total motility in patients and controls and worse mitochondrial function only in controls. Finally, incubation with FSH increased AKT473/tubulin phosphorylation to a greater extent than AKT308. FSHR is expressed in the post-acrosomal region, neck, midpiece, and tail of human spermatozoa. Contrary to a previous study, we report a negative effect of FSH on sperm motility and mitochondrial function. FSH also activates the AKT473 signaling pathway.
Collapse
|
4
|
Liu X, Qin X, Qin H, Jia C, Yuan Y, Sun T, Chen B, Chen C, Zhang H. Characterization of the heterogeneity of endothelial cells in bleomycin-induced lung fibrosis using single-cell RNA sequencing. Angiogenesis 2021; 24:809-821. [PMID: 34028626 PMCID: PMC8487874 DOI: 10.1007/s10456-021-09795-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022]
Abstract
The loss of normal alveolar capillary and deregulated angiogenesis occurs simultaneously in idiopathic pulmonary fibrosis (IPF); however the contributions of specific endothelial subpopulations in the development of pulmonary fibrosis are poorly understood. Herein, we perform single-cell RNA sequencing to characterize the heterogeneity of endothelial cells (ECs) in bleomycin (BLM)-induced lung fibrosis in rats. One subpopulation, characterized by the expression of Nos3 and Cav1, is mostly distributed in non-fibrotic lungs and also highly expresses genes related to the “response to mechanical stimulus” and “lung/heart morphogenesis” processes. Another subpopulation of ECs expanded in BLM-treated lungs, characterized by Cxcl12, is observed to be closely related to the pro-fibrotic process in the transcriptome data, such as “regulation of angiogenesis,” “collagen binding,” and “chemokine activity,” and spatially localized to BLM-induced neovascularization. Using CellPhoneDB software, we generated a complex cell–cell interaction network, which predicts the potential roles of EC subpopulations in recruiting monocytes, inducing the proliferation of fibroblasts and promoting the production and remolding of the extracellular matrix (ECM). Taken together, our data demonstrate the high degree of heterogeneity of ECs in fibrotic lung and it is proposed that the interaction between ECs, macrophages, and stromal cells contributes to pathologic IPF.
Collapse
Affiliation(s)
- Xiucheng Liu
- Thoracic Surgery Laboratory, the First College of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.,Department of Thoracic Surgery, Affifiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China.,Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Xichun Qin
- Department of Thoracic Surgery, Affifiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Hao Qin
- Department of Thoracic Surgery, Affifiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Caili Jia
- Department of Thoracic Surgery, Affifiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Yanliang Yuan
- Department of Thoracic Surgery, Affifiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Teng Sun
- Department of Thoracic Surgery, Affifiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China
| | - Bi Chen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.,Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Hao Zhang
- Thoracic Surgery Laboratory, the First College of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China. .,Department of Thoracic Surgery, Affifiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, Jiangsu, China.
| |
Collapse
|