1
|
Li Y, Dai Y, Xu J, Zhang J. Transcriptomic analysis of keratoconus in Han Chinese patients: Insights into differential gene expression and ethnic-specific patterns. Exp Eye Res 2024; 248:110118. [PMID: 39395559 DOI: 10.1016/j.exer.2024.110118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Keratoconus (KC) is a progressive corneal ectatic disorder with a high prevalence among Asians. This study aimed to explore the differential gene expression patterns in Han Chinese patients with KC, focusing on mRNAs and long noncoding RNAs (lncRNAs), to provide insights into the pathogenesis of the disease. Corneal tissues from KC patients and healthy controls were collected, and RNA sequencing was performed to profile mRNA and lncRNA expression. A total of 1973 differentially expressed mRNAs (DEGs) and 386 differentially expressed lncRNAs (DELs) were identified in KC-affected corneas. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed significant enrichment in pathways related to ECM modulation, PI3K-Akt pathway and calcium signaling pathway. Furthermore, protein-protein interaction (PPI) network highlighted hub genes involved in ECM remodeling and inflammatory responses. Co-expression analysis of lncRNAs and mRNAs further prioritized 13 DELs linked to these hub genes. RT-qPCR validation confirmed the differential expression of select candidates. A meta-analysis integrating seven datasets from diverse ethnic backgrounds was performed and it suggested ethnic-specific differences in gene expression patterns. This study sheds new light on the molecular mechanisms underlying KC in the Han Chinese population, pinpointing potential therapeutic targets. It also emphasizes the critical role of ethnic-specific gene expression patterns in KC research, highlighting a need for tailored approaches in disease management and treatment.
Collapse
Affiliation(s)
- Yue Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yiqin Dai
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jianjiang Xu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.
| | - Jing Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.
| |
Collapse
|
2
|
Chuang TD, Ton N, Rysling S, Boos D, Khorram O. The Effect of Race/Ethnicity and MED12 Mutation on the Expression of Long Non-Coding RNAs in Uterine Leiomyoma and Myometrium. Int J Mol Sci 2024; 25:1307. [PMID: 38279317 PMCID: PMC10816284 DOI: 10.3390/ijms25021307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
The objective of this study was to elucidate the expression of long non-coding RNA (lncRNA) in leiomyomas (Lyo) and paired myometrium (Myo) and explore the impact of race and MED12 mutation. Fold change analysis (Lyo/paired Myo) indicated the expression of 63 lncRNAs was significantly altered in the mutated group but not in the non-mutated Lyo. Additionally, 65 lncRNAs exhibited an over 1.5-fold change in the Black but not the White group. Fifteen differentially expressed lncRNAs identified with next-generation sequencing underwent qRT-PCR confirmation. Compared with Myo, the expression of TPTEP1, PART1, RPS10P7, MSC-AS1, SNHG12, CA3-AS1, LINC00337, LINC00536, LINC01436, LINC01449, LINC02433, and LINC02624 was significantly higher, while the expression of ZEB2-AS1, LINC00957, and LINC01186 was significantly lower. Comparison of normal Myo with diseased Myo showed significant differences in the expression of several lncRNAs. Analysis based on race and Lyo MED12 mutation status indicated a significantly higher expression of RPS10P7, SNHG12, LINC01449, LINC02433, and LINC02624 in Lyo from Black patients. The expression of TPTEP1, PART1, RPS10P7, MSC-AS1, LINC00337, LINC00536, LINC01436, LINC01449, LINC02433, and LINC02624 was higher, while LINC01186 was significantly lower in the MED12-mutated group. These results indicate that Lyo are characterized by aberrant lncRNA expression, which is further impacted by race and Lyo MED12 mutation status.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.B.)
| | - Nhu Ton
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.B.)
| | - Shawn Rysling
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.B.)
| | - Drake Boos
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.B.)
| | - Omid Khorram
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.B.)
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, CA 90024, USA
| |
Collapse
|
3
|
Mostaghimi T, Bahadoran E, Bakht M, Taheri S, Sadeghi H, Babaei A. Role of lncRNAs in Helicobacter pylori and Epstein-Barr virus associated gastric cancers. Life Sci 2024; 336:122316. [PMID: 38035995 DOI: 10.1016/j.lfs.2023.122316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Helicobacter pylori infection is a risk factor for the development of gastric cancer (GC), and the role of co-infection with viruses, such as Epstein-Barr virus, in carcinogenesis cannot be ignored. Furthermore, it is now known that genetic factors such as long non-coding RNAs (lncRNAs) are involved in many diseases, including GC. On the other side, they can also be used as therapeutic goals. Modified lncRNAs can cause aberrant expression of genes encoding proximal proteins, which are essential for the development of carcinoma. In this review, we present the most recent studies on lncRNAs in GC, concentrating on their roles in H. pylori and EBV infections, and discuss some of the molecular mechanisms of these GC-related pathogens. There was also a discussion of the research gaps and future perspectives.
Collapse
Affiliation(s)
- Talieh Mostaghimi
- Department of Medical Microbiology and Biotechnology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Ensiyeh Bahadoran
- School of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Mehdi Bakht
- Medical Microbiology Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Shiva Taheri
- Medical Microbiology Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Hamid Sadeghi
- Medical Microbiology Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Abouzar Babaei
- Medical Microbiology Research Center, Qazvin University of Medical Science, Qazvin, Iran.
| |
Collapse
|
4
|
Matsuoka T, Yashiro M. Molecular Insight into Gastric Cancer Invasion-Current Status and Future Directions. Cancers (Basel) 2023; 16:54. [PMID: 38201481 PMCID: PMC10778111 DOI: 10.3390/cancers16010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. There has been no efficient therapy for stage IV GC patients due to this disease's heterogeneity and dissemination ability. Despite the rapid advancement of molecular targeted therapies, such as HER2 and immune checkpoint inhibitors, survival of GC patients is still unsatisfactory because the understanding of the mechanism of GC progression is still incomplete. Invasion is the most important feature of GC metastasis, which causes poor mortality in patients. Recently, genomic research has critically deepened our knowledge of which gene products are dysregulated in invasive GC. Furthermore, the study of the interaction of GC cells with the tumor microenvironment has emerged as a principal subject in driving invasion and metastasis. These results are expected to provide a profound knowledge of how biological molecules are implicated in GC development. This review summarizes the advances in our current understanding of the molecular mechanism of GC invasion. We also highlight the future directions of the invasion therapeutics of GC. Compared to conventional therapy using protease or molecular inhibitors alone, multi-therapy targeting invasion plasticity may seem to be an assuring direction for the progression of novel strategies.
Collapse
Affiliation(s)
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 5458585, Japan;
| |
Collapse
|
5
|
Zhu Y, Huang C, Zhang C, Zhou Y, Zhao E, Zhang Y, Pan X, Huang H, Liao W, Wang X. LncRNA MIR200CHG inhibits EMT in gastric cancer by stabilizing miR-200c from target-directed miRNA degradation. Nat Commun 2023; 14:8141. [PMID: 38065939 PMCID: PMC10709323 DOI: 10.1038/s41467-023-43974-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Gastric cancer (GC) is a heterogeneous disease, threatening millions of lives worldwide, yet the functional roles of long non-coding RNAs (lncRNAs) in different GC subtypes remain poorly characterized. Microsatellite stable (MSS)/epithelial-mesenchymal transition (EMT) GC is the most aggressive subtype associated with a poor prognosis. Here, we apply integrated network analysis to uncover lncRNA heterogeneity between GC subtypes, and identify MIR200CHG as a master regulator mediating EMT specifically in MSS/EMT GC. The expression of MIR200CHG is silenced in MSS/EMT GC by promoter hypermethylation, associated with poor prognosis. MIR200CHG reverses the mesenchymal identity of GC cells in vitro and inhibits metastasis in vivo. Mechanistically, MIR200CHG not only facilitates the biogenesis of its intronic miRNAs miR-200c and miR-141, but also protects miR-200c from target-directed miRNA degradation (TDMD) through direct binding to miR-200c. Our studies reveal a landscape of a subtype-specific lncRNA regulatory network, providing clinically relevant biological insights towards MSS/EMT GC.
Collapse
Grants
- 2020N368 Shenzhen Science and Technology Innovation Commission
- C4024-22GF Research Grants Council, University Grants Committee (RGC, UGC)
- 14104223 Research Grants Council, University Grants Committee (RGC, UGC)
- 11103619 Research Grants Council, University Grants Committee (RGC, UGC)
- 14111522 Research Grants Council, University Grants Committee (RGC, UGC)
- R4017-18 Research Grants Council, University Grants Committee (RGC, UGC)
- 82173289 National Natural Science Foundation of China (National Science Foundation of China)
- 81872401 National Natural Science Foundation of China (National Science Foundation of China)
- Guangdong Basic and Applied Basic Research Foundation (Project No.2019B030302012), a startup grant (Project No. 4937084), direct grant (2021.077), Faculty Postdoctoral Fellowship Scheme 2021/22 (Project No. FPFS/2122/32), Shenzhen Bay Scholars Program.
- Guangdong Basic and Applied Basic Research Foundation (2021A1515010425)
Collapse
Affiliation(s)
- Yixiao Zhu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
- National Clinical Research Centre for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chengmei Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Chao Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yi Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Enen Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yaxin Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xingyan Pan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Huilin Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Wenting Liao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Xin Wang
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| |
Collapse
|
6
|
Hussen BM, Abdullah SR, Rasul MF, Jawhar ZH, Faraj GSH, Kiani A, Taheri M. MiRNA-93: a novel signature in human disorders and drug resistance. Cell Commun Signal 2023; 21:79. [PMID: 37076893 PMCID: PMC10114484 DOI: 10.1186/s12964-023-01106-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/18/2023] [Indexed: 04/21/2023] Open
Abstract
miRNA-93 is a member of the miR-106b-25 family and is encoded by a gene on chromosome 7q22.1. They play a role in the etiology of various diseases, including cancer, Parkinson's disease, hepatic injury, osteoarthritis, acute myocardial infarction, atherosclerosis, rheumatoid arthritis, and chronic kidney disease. Different studies have found that this miRNA has opposing roles in the context of cancer. Recently, miRNA-93 has been downregulated in breast cancer, gastric cancer, colorectal cancer, pancreatic cancer, bladder cancer, cervical cancer, and renal cancer. However, miRNA-93 is up-regulated in a wide variety of malignancies, such as lung, colorectal, glioma, prostate, osteosarcoma, and hepatocellular carcinoma. The aim of the current review is to provide an overview of miRNA-93's function in cancer disorder progression and non-cancer disorders, with a focus on dysregulated signaling pathways. We also give an overview of this miRNA's function as a biomarker of prognosis in cancer and emphasize how it contributes to drug resistance based on in vivo, in vitro, and human studies. Video Abstract.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Zanko Hassan Jawhar
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Arda Kiani
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Shen J, Yang Z, Wu X, Yao G, Hou M. Baicalein facilitates gastric cancer cell apoptosis by triggering endoplasmic reticulum stress via repression of the PI3K/AKT pathway. APPLIED BIOLOGICAL CHEMISTRY 2023; 66:10. [PMID: 36815904 PMCID: PMC9924871 DOI: 10.1186/s13765-022-00759-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
OBJECTIVE Gastric cancer (GC) remains a prevailing threat to life. Baicalein exhibits anti-cancer properties. This study estimated the mechanism of baicalein in GC cell apoptosis by mediating endoplasmic reticulum stress (ERS) through the PI3K/AKT pathway. METHODS After treatment with different concentrations of baicalein, GC cell (HGC-27 and AGS) viability was detected by MTT assay. AGS cells more sensitive to baicalein treatment were selected as study subjects. The IC50 of baicalein on AGS cells was determined. Colony formation, cell cycle, and apoptosis were detected using crystal violet staining and flow cytometry. Levels of ERS-related and BTG3/PI3K/AKT pathway-related proteins were determined by Western blot. Intracellular Ca2+ level was measured using Fluo-3 AM fluorescence working solution. GC mouse models were established by subcutaneously injecting AGS cells into the right rib and were intragastrically administrated with baicalein. Tumor volume and weight were recorded. Expression of Ki67 in tumor tissues and positive expression of apoptotic cells were detected by immunohistochemistry and TUNEL staining. RESULTS Baicalein inhibited cell proliferation and induced G0/G1 arrest and apoptosis by regulating the cell cycle, and triggered ERS in GC cells. Baicalein impeded the PI3K/AKT pathway by activating BTG3, thereby triggering ERS and inducing apoptosis. BTG3 inhibition reversed baicalein-induced apoptosis and ERS. Baicalein regulated GC cells in a concentration-dependent manner. Moreover, in xenograft mice, baicalein prevented tumor growth, decreased Ki67-positive cells, activated BTG3, and inhibited the PI3K/AKT pathway, thus activating ERS and increasing apoptotic cells. CONCLUSION Baicalein facilitates GC cell apoptosis by triggering ERS via repression of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Junjie Shen
- Nanjing University of Chinese Medicine, Nanjing, 210029 Jiangsu province China
- Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050 Inner Mongolia China
| | - Zhiwen Yang
- Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050 Inner Mongolia China
| | - Xinlin Wu
- Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050 Inner Mongolia China
| | - Guodong Yao
- Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050 Inner Mongolia China
| | - Mingxing Hou
- Nanjing University of Chinese Medicine, Nanjing, 210029 Jiangsu province China
- Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050 Inner Mongolia China
- The Affiliated Hospital of Inner Mongolia Medical University, No. 1, Datong North Street, Huimin District, 010050 Hohhot, Inner Mongolia China
| |
Collapse
|
8
|
Mou T, Liang J, Vu TN, Tian M, Gao Y. A Comprehensive Landscape of Imaging Feature-Associated RNA Expression Profiles in Human Breast Tissue. SENSORS (BASEL, SWITZERLAND) 2023; 23:1432. [PMID: 36772473 PMCID: PMC9921444 DOI: 10.3390/s23031432] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The expression abundance of transcripts in nondiseased breast tissue varies among individuals. The association study of genotypes and imaging phenotypes may help us to understand this individual variation. Since existing reports mainly focus on tumors or lesion areas, the heterogeneity of pathological image features and their correlations with RNA expression profiles for nondiseased tissue are not clear. The aim of this study is to discover the association between the nucleus features and the transcriptome-wide RNAs. We analyzed both microscopic histology images and RNA-sequencing data of 456 breast tissues from the Genotype-Tissue Expression (GTEx) project and constructed an automatic computational framework. We classified all samples into four clusters based on their nucleus morphological features and discovered feature-specific gene sets. The biological pathway analysis was performed on each gene set. The proposed framework evaluates the morphological characteristics of the cell nucleus quantitatively and identifies the associated genes. We found image features that capture population variation in breast tissue associated with RNA expressions, suggesting that the variation in expression pattern affects population variation in the morphological traits of breast tissue. This study provides a comprehensive transcriptome-wide view of imaging-feature-specific RNA expression for healthy breast tissue. Such a framework could also be used for understanding the connection between RNA expression and morphology in other tissues and organs. Pathway analysis indicated that the gene sets we identified were involved in specific biological processes, such as immune processes.
Collapse
Affiliation(s)
- Tian Mou
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518000, China
| | - Jianwen Liang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518000, China
| | - Trung Nghia Vu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE 17177 Stockholm, Sweden
| | - Mu Tian
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518000, China
| | - Yi Gao
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
9
|
Fernandes JCR, Gonçalves ANA, Floeter-Winter LM, Nakaya HI, Muxel SM. Comparative transcriptomic analysis of long noncoding RNAs in Leishmania-infected human macrophages. Front Genet 2023; 13:1051568. [PMID: 36685903 PMCID: PMC9845402 DOI: 10.3389/fgene.2022.1051568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/25/2022] [Indexed: 01/05/2023] Open
Abstract
It is well established that infection with Leishmania alters the host cell's transcriptome. Since mammalian cells have multiple mechanisms to control gene expression, different molecules, such as noncoding RNAs, can be involved in this process. MicroRNAs have been extensively studied upon Leishmania infection, but whether long noncoding RNAs (lncRNAs) are also altered in macrophages is still unexplored. We performed RNA-seq from THP-1-derived macrophages infected with Leishmania amazonensis (La), L. braziliensis (Lb), and L. infantum (Li), investigating a previously unappreciated fraction of macrophage transcriptome. We found that more than 24% of the total annotated transcripts and 30% of differentially expressed (DE) RNAs in Leishmania-infected macrophage correspond to lncRNAs. LncRNAs and protein coding RNAs with altered expression are similar among macrophages infected with the Leishmania species. Still, some species-specific alterations could occur due to distinct pathophysiology in which Li infection led to a more significant number of exclusively DE RNAs. The most represented classes among DE lncRNAs were intergenic and antisense lncRNAs. We also found enrichment for immune response-related pathways in the DE protein coding RNAs, as well as putative targets of the lncRNAs. We performed a coexpression analysis to explore potential cis regulation of coding and antisense noncoding transcripts. We identified that antisense lncRNAs are similarly regulated as its neighbor protein coding genes, such as the BAALC/BAALC-AS1, BAALC/BAALC-AS2, HIF1A/HIF1A-AS1, HIF1A/HIF1A-AS3 and IRF1/IRF1-AS1 pairs, which can occur as a species-specific modulation. These findings are a novelty in the field because, to date, no study has focused on analyzing lncRNAs in Leishmania-infected macrophage. Our results suggest that lncRNAs may account for a novel mechanism by which Leishmania can control macrophage function. Further research must validate putative lncRNA targets and provide additional prospects in lncRNA function during Leishmania infection.
Collapse
Affiliation(s)
- Juliane C. R. Fernandes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil,Instituto de Medicina Tropical da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Lucile M. Floeter-Winter
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | - Sandra M. Muxel
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil,*Correspondence: Sandra M. Muxel,
| |
Collapse
|
10
|
Maruyama SR, Fuzo CA, Oliveira AER, Rogerio LA, Takamiya NT, Pessenda G, de Melo EV, da Silva AM, Jesus AR, Carregaro V, Nakaya HI, Almeida RP, da Silva JS. Insight Into the Long Noncoding RNA and mRNA Coexpression Profile in the Human Blood Transcriptome Upon Leishmania infantum Infection. Front Immunol 2022; 13:784463. [PMID: 35370994 PMCID: PMC8965071 DOI: 10.3389/fimmu.2022.784463] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
Visceral leishmaniasis (VL) is a vector-borne infectious disease that can be potentially fatal if left untreated. In Brazil, it is caused by Leishmania infantum parasites. Blood transcriptomics allows us to assess the molecular mechanisms involved in the immunopathological processes of several clinical conditions, namely, parasitic diseases. Here, we performed mRNA sequencing of peripheral blood from patients with visceral leishmaniasis during the active phase of the disease and six months after successful treatment, when the patients were considered clinically cured. To strengthen the study, the RNA-seq data analysis included two other non-diseased groups composed of healthy uninfected volunteers and asymptomatic individuals. We identified thousands of differentially expressed genes between VL patients and non-diseased groups. Overall, pathway analysis corroborated the importance of signaling involving interferons, chemokines, Toll-like receptors and the neutrophil response. Cellular deconvolution of gene expression profiles was able to discriminate cellular subtypes, highlighting the contribution of plasma cells and NK cells in the course of the disease. Beyond the biological processes involved in the immunopathology of VL revealed by the expression of protein coding genes (PCGs), we observed a significant participation of long noncoding RNAs (lncRNAs) in our blood transcriptome dataset. Genome-wide analysis of lncRNAs expression in VL has never been performed. lncRNAs have been considered key regulators of disease progression, mainly in cancers; however, their pattern regulation may also help to understand the complexity and heterogeneity of host immune responses elicited by L. infantum infections in humans. Among our findings, we identified lncRNAs such as IL21-AS1, MIR4435-2HG and LINC01501 and coexpressed lncRNA/mRNA pairs such as CA3-AS1/CA1, GASAL1/IFNG and LINC01127/IL1R1-IL1R2. Thus, for the first time, we present an integrated analysis of PCGs and lncRNAs by exploring the lncRNA–mRNA coexpression profile of VL to provide insights into the regulatory gene network involved in the development of this inflammatory and infectious disease.
Collapse
Affiliation(s)
- Sandra Regina Maruyama
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Alessandro Fuzo
- Department of Clinical Analyses, Toxicology and Food Sciences, Ribeirão Preto School of Pharmaceutics Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - Antonio Edson R Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luana Aparecida Rogerio
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos, São Carlos, Brazil
| | - Nayore Tamie Takamiya
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos, São Carlos, Brazil
| | - Gabriela Pessenda
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Enaldo Vieira de Melo
- Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - Angela Maria da Silva
- Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - Amélia Ribeiro Jesus
- Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - Vanessa Carregaro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Roque Pacheco Almeida
- Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - João Santana da Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Fiocruz-Bi-Institutional Translational Medicine Platform, Ribeirão Preto, Brazil
| |
Collapse
|
11
|
Liu B, Xiang W, Liu J, Tang J, Wang J, Liu B, Long Z, Wang L, Yin G, Liu J. The regulatory role of antisense lncRNAs in cancer. Cancer Cell Int 2021; 21:459. [PMID: 34461912 PMCID: PMC8404292 DOI: 10.1186/s12935-021-02168-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
Antisense long non-coding RNAs (antisense lncRNAs), transcribed from the opposite strand of genes with either protein coding or non-coding function, were reported recently to play a crucial role in the process of tumor onset and development. Functionally, antisense lncRNAs either promote or suppress cancer cell proliferation, migration, invasion, and chemoradiosensitivity. Mechanistically, they exert their regulatory functions through epigenetic, transcriptional, post-transcriptional, and translational modulations. Simultaneously, because of nucleotide sequence complementarity, antisense lncRNAs have a special role on its corresponding sense gene. We highlight the functions and molecular mechanisms of antisense lncRNAs in cancer tumorigenesis and progression. We also discuss the potential of antisense lncRNAs to become cancer diagnostic biomarkers and targets for tumor treatment.
Collapse
Affiliation(s)
- Biao Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Wei Xiang
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jiahao Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jin Tang
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jinrong Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Bin Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Zhi Long
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Guangming Yin
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jianye Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|