1
|
Chung Liang L, Sulaiman N, Yazid MD. A Decade of Progress in Gene Targeted Therapeutic Strategies in Duchenne Muscular Dystrophy: A Systematic Review. Front Bioeng Biotechnol 2022; 10:833833. [PMID: 35402409 PMCID: PMC8984139 DOI: 10.3389/fbioe.2022.833833] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
As one of the most severe forms of muscle dystrophy, Duchenne muscular dystrophy (DMD) results in progressive muscle wasting, ultimately resulting in premature death due to cardiomyopathy. In the many years of research, the solution to DMD remains palliative. Although numerous studies including clinical trials have provided promising results, approved drugs, even, the therapeutic window is still minimal with many shortcomings to be addressed. Logically, to combat DMD that arose from a single genetic mutation with gene therapy made sense. However, gene-based strategies as a treatment option are no stranger to drawbacks and limitations such as the size of the dystrophin gene and possibilities of vectors to elicit immune responses. In this systematic review, we aim to provide a comprehensive compilation on gene-based therapeutic strategies and critically evaluate the approaches relative to its efficacy and feasibility while addressing their current limitations. With the keywords “DMD AND Gene OR Genetic AND Therapy OR Treatment,” we reviewed papers published in Science Direct, PubMed, and ProQuest over the past decade (2012–2021).
Collapse
Affiliation(s)
- Lam Chung Liang
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Nadiah Sulaiman
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Kubinski S, Claus P. Protein Network Analysis Reveals a Functional Connectivity of Dysregulated Processes in ALS and SMA. Neurosci Insights 2022; 17:26331055221087740. [PMID: 35372839 PMCID: PMC8966079 DOI: 10.1177/26331055221087740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 02/28/2022] [Indexed: 01/09/2023] Open
Abstract
Spinal Muscular Atrophy (SMA) and Amyotrophic Lateral Sclerosis (ALS) are neurodegenerative diseases which are characterized by the loss of motoneurons within the central nervous system. SMA is a monogenic disease caused by reduced levels of the Survival of motoneuron protein, whereas ALS is a multi-genic disease with over 50 identified disease-causing genes and involvement of environmental risk factors. Although these diseases have different causes, they partially share identical phenotypes and pathomechanisms. To analyze and identify functional connections and to get a global overview of altered pathways in both diseases, protein network analyses are commonly used. Here, we used an in silico tool to test for functional associations between proteins that are involved in actin cytoskeleton dynamics, fatty acid metabolism, skeletal muscle metabolism, stress granule dynamics as well as SMA or ALS risk factors, respectively. In network biology, interactions are represented by edges which connect proteins (nodes). Our approach showed that only a few edges are necessary to present a complex protein network of different biological processes. Moreover, Superoxide dismutase 1, which is mutated in ALS, and the actin-binding protein profilin1 play a central role in the connectivity of the aforementioned pathways. Our network indicates functional links between altered processes that are described in either ALS or SMA. These links may not have been considered in the past but represent putative targets to restore altered processes and reveal overlapping pathomechanisms in both diseases.
Collapse
Affiliation(s)
- Sabrina Kubinski
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Peter Claus
- Center for Systems Neuroscience (ZSN), Hannover, Germany
- SMATHERIA gGmbH – Non-Profit Biomedical Research Institute, Hannover, Germany
| |
Collapse
|
3
|
Massopust R, Juros D, Shapiro D, Lopes M, Haldar SM, Taetzsch T, Valdez G. KLF15 overexpression in myocytes fails to ameliorate ALS-related pathology or extend the lifespan of SOD1G93A mice. Neurobiol Dis 2022; 162:105583. [PMID: 34902552 PMCID: PMC8750438 DOI: 10.1016/j.nbd.2021.105583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/19/2021] [Accepted: 12/10/2021] [Indexed: 01/22/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a currently incurable disease that causes progressive motor neuron loss, paralysis and death. Skeletal muscle pathology occurs early during the course of ALS. It is characterized by impaired mitochondrial biogenesis, metabolic dysfunction and deterioration of the neuromuscular junction (NMJ), the synapse through which motor neurons communicate with muscles. Therefore, a better understanding of the molecules that underlie this pathology may lead to therapies that slow motor neuron loss and delay ALS progression. Kruppel Like Factor 15 (KLF15) has been identified as a transcription factor that activates alternative metabolic pathways and NMJ maintenance factors, including Fibroblast Growth Factor Binding Protein 1 (FGFBP1), in skeletal myocytes. In this capacity, KLF15 has been shown to play a protective role in Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA), however its role in ALS has not been evaluated. Here, we examined whether muscle-specific KLF15 overexpression promotes the health of skeletal muscles and NMJs in the SOD1G93A ALS mouse model. We show that muscle-specific KLF15 overexpression did not elicit a significant beneficial effect on skeletal muscle atrophy, NMJ health, motor function, or survival in SOD1G93A ALS mice. Our findings suggest that, unlike in mouse models of DMD and SMA, KLF15 overexpression has a minimal impact on ALS disease progression in SOD1G93A mice.
Collapse
Affiliation(s)
- Ryan Massopust
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Devin Juros
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Dillon Shapiro
- Molecular Biology, Cell Biology, & Biochemistry Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Mikayla Lopes
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Saptarsi M. Haldar
- Gladstone Institutes, San Francisco, California, USA,Department of Medicine, Cardiology Division, UCSF School of Medicine, San Francisco, California, USA,Current address: Amgen Research, South San Francisco, California, USA
| | - Thomas Taetzsch
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Gregorio Valdez
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA,Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, Rhode Island, USA,Department of Neurology, Warren Alpert Medical School of Brown University, Providence, United States
| |
Collapse
|
4
|
Chilcott EM, Muiruri EW, Hirst TC, Yáñez-Muñoz RJ. Systematic review and meta-analysis determining the benefits of in vivo genetic therapy in spinal muscular atrophy rodent models. Gene Ther 2022; 29:498-512. [PMID: 34611322 PMCID: PMC9482879 DOI: 10.1038/s41434-021-00292-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/30/2021] [Accepted: 09/12/2021] [Indexed: 01/31/2023]
Abstract
Spinal muscular atrophy (SMA) is a severe childhood neuromuscular disease for which two genetic therapies, Nusinersen (Spinraza, an antisense oligonucleotide), and AVXS-101 (Zolgensma, an adeno-associated viral vector of serotype 9 AAV9), have recently been approved. We investigated the pre-clinical development of SMA genetic therapies in rodent models and whether this can predict clinical efficacy. We have performed a systematic review of relevant publications and extracted median survival and details of experimental design. A random effects meta-analysis was used to estimate and compare efficacy. We stratified by experimental design (type of genetic therapy, mouse model, route and time of administration) and sought any evidence of publication bias. 51 publications were identified containing 155 individual comparisons, comprising 2573 animals in total. Genetic therapies prolonged survival in SMA mouse models by 3.23-fold (95% CI 2.75-3.79) compared to controls. Study design characteristics accounted for significant heterogeneity between studies and greatly affected observed median survival ratios. Some evidence of publication bias was found. These data are consistent with the extended average lifespan of Spinraza- and Zolgensma-treated children in the clinic. Together, these results support that SMA has been particularly amenable to genetic therapy approaches and highlight SMA as a trailblazer for therapeutic development.
Collapse
Affiliation(s)
- Ellie M. Chilcott
- grid.4970.a0000 0001 2188 881XAGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, TW20 0EX London, UK ,Present Address: Institute for Women’s Health, UCL, 86-96 Chenies Mews, London, WC1E 6HX UK
| | - Evalyne W. Muiruri
- grid.4970.a0000 0001 2188 881XAGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, TW20 0EX London, UK
| | - Theodore C. Hirst
- grid.416232.00000 0004 0399 1866Department of Neurosurgery, Royal Victoria Hospital, Belfast, BT12 6BA UK
| | - Rafael J. Yáñez-Muñoz
- grid.4970.a0000 0001 2188 881XAGCTlab.org, Centre of Gene and Cell Therapy, Centre for Biomedical Sciences, Department of Biological Sciences, School of Life Sciences and Environment, Royal Holloway University of London, TW20 0EX London, UK
| |
Collapse
|
5
|
Chaytow H, Faller KM, Huang YT, Gillingwater TH. Spinal muscular atrophy: From approved therapies to future therapeutic targets for personalized medicine. Cell Rep Med 2021; 2:100346. [PMID: 34337562 PMCID: PMC8324491 DOI: 10.1016/j.xcrm.2021.100346] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spinal muscular atrophy (SMA) is a devastating childhood motor neuron disease that, in the most severe cases and when left untreated, leads to death within the first two years of life. Recent therapeutic advances have given hope to families and patients by compensating for the deficiency in survival motor neuron (SMN) protein via gene therapy or other genetic manipulation. However, it is now apparent that none of these therapies will cure SMA alone. In this review, we discuss the three currently licensed therapies for SMA, briefly highlighting their respective advantages and disadvantages, before considering alternative approaches to increasing SMN protein levels. We then explore recent preclinical research that is identifying and targeting dysregulated pathways secondary to, or independent of, SMN deficiency that may provide adjunctive opportunities for SMA. These additional therapies are likely to be key for the development of treatments that are effective across the lifespan of SMA patients.
Collapse
Affiliation(s)
- Helena Chaytow
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Kiterie M.E. Faller
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, UK
| | - Yu-Ting Huang
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Thomas H. Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|