1
|
Fortunatus RM, Balog S, Sousa F, Vanhecke D, Rothen-Rutishauser B, Taladriz-Blanco P, Petri-Fink A. Taylor dispersion analysis and release studies of β-carotene-loaded PLGA nanoparticles and liposomes in simulated gastrointestinal fluids. RSC Adv 2025; 15:1095-1104. [PMID: 39807192 PMCID: PMC11727072 DOI: 10.1039/d4ra08138b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
β-Carotene (βC), a natural carotenoid, is the most important and effective vitamin A precursor, known also for its antioxidant properties. However, its poor water solubility, chemical instability, and low bioavailability limit its effectiveness as an orally delivered functional nutrient. Nanoparticle encapsulation improves βC's bioaccessibility by enhancing its stability and solubility. This study compares two formulations, i.e. βC-loaded poly(lactic-co-glycolic acid) (PLGA) NPs and liposomes before and after exposure to simulated gastrointestinal fluids using various methods such as Taylor dispersion analysis (TDA), cryo-transmission electron microscopy, dynamic light scattering (DLS), and nanoparticle tracking analysis (NTA). TDA, a microfluidic technique, proved more effective than DLS and NTA in determining nanoparticle size in simulated gastrointestinal fluids. This highlights TDA's potential for assessing nanoparticle colloidal stability in simulated gastro-intestinal fluids, crucial for evaluating encapsulated bioactives' bioavailability. High-performance liquid chromatography (HPLC) revealed that PLGA nanoparticles incorporate and preserve βC more effectively during long-term storage compared to liposomes. Adding ascorbic acid significantly reduced degradation in simulated gastrointestinal fluids. Release studies showed that liposomes released 52% of βC after 36 hours, while PLGA nanoparticles released only 9% over 168 hours. These results provide valuable insights for selecting an appropriate βC nanocarrier for oral delivery based on desired release rates.
Collapse
Affiliation(s)
- Roman M Fortunatus
- Adolphe Merkle Institute, University of Fribourg 1700 Fribourg Switzerland
| | - Sandor Balog
- Adolphe Merkle Institute, University of Fribourg 1700 Fribourg Switzerland
| | - Flávia Sousa
- Adolphe Merkle Institute, University of Fribourg 1700 Fribourg Switzerland
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen 9713 AV Groningen The Netherlands
| | - Dimitri Vanhecke
- Adolphe Merkle Institute, University of Fribourg 1700 Fribourg Switzerland
| | | | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg 1700 Fribourg Switzerland
- Department of Chemistry, University of Fribourg 1700 Fribourg Switzerland
| |
Collapse
|
2
|
Wang R, Zhang Y, Zhong H, Zang J, Wang W, Cheng H, Chen Y, Ouyang D. Understanding the self-assembly and molecular structure of mRNA lipid nanoparticles at real size: Insights from the ultra-large-scale simulation. Int J Pharm 2024; 670:125114. [PMID: 39743161 DOI: 10.1016/j.ijpharm.2024.125114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/08/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025]
Abstract
Messenger RNA (mRNA) encapsulated in lipid nanoparticles (LNPs) represents a cutting-edge delivery technology that played a pivotal role during the COVID-19 pandemic and in advancing vaccine development. However, molecular structure of mRNA-LNPs at real size remains poorly understood, with conflicting results from various experimental studies. In this study, we aim to explore the assembly process and structural characteristics of mRNA-LNPs at realistic sizes using coarse-grained molecular dynamic simulations. The largest system, representing a real-sized LNPs (∼ 80 nm), reaches up to ∼6 million beads, around 30 million atoms. Moreover, the impacts of different mRNA loading levels and pH changes on the structure of mRNA-LNPs are also examined. Under acidic pH, ionizable lipid (dilinoleylmethyl-4-dimethylaminobutyrate, MC3), helper lipid (cholesterol, CHOL, distearoylphosphatidyl choline, DSPC), and mRNA rapidly self-assemble into spherical-like LNPs within 50 ns, with a diameter of 51.2 nm (2 mRNA) and 75.8 nm (4 mRNA). Inside the LNPs, a continuous lipid phase is observed alongside an aqueous phase, forming a bicontinuous structure. CHOL and DSPC form lipid rafts distributed within the shell or core layer of the LNPs, enhancing rigidity and stability. Notably, mRNA aggregation within the LNPs occurs independently of the lipid environment, and different mRNA payloads significantly influence the lipid composition between the core and shell. At neutral pH, lipid clustering slightly reduces the retention capacity of LNPs for mRNA. Our findings highlight the presence of a bicontinuous structure and lipid rafts in self-assembled LNPs, which critically influence LNPs rigidity, fluidity, and mRNA delivery efficiency. This structural insight provides a foundation for the rational design of LNPs to optimize mRNA delivery in future applications.
Collapse
Affiliation(s)
- Ruifeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yunsen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Hao Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Jieying Zang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Wei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - He Cheng
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Yongming Chen
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China; State Key Laboratory of Antiviral Drugs, Henan University, Zhengzhou, 450046, China
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China; Faculty of Health Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|
3
|
Meinhard S, Erdmann F, Lucas H, Krabbes M, Krüger S, Wölk C, Mäder K. T14diLys/DOPE Liposomes: An Innovative Option for siRNA-Based Gene Knockdown? Pharmaceutics 2024; 17:25. [PMID: 39861674 PMCID: PMC11769127 DOI: 10.3390/pharmaceutics17010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Bringing small interfering RNA (siRNA) into the cell cytosol to achieve specific gene silencing is an attractive but also very challenging option for improved therapies. The first step for successful siRNA delivery is the complexation with a permanent cationic or ionizable compound. This protects the negatively charged siRNA and enables transfection through the cell membrane. The current study explores the performance of the innovative, ionizable lipid 2-Tetradecylhexadecanoic acid-(2-bis{[2-(2,6-diamino-1-oxohexyl)amino]ethyl}aminoethyl)-amide (T14diLys), in combination with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), for siRNA delivery and the impact of the production method (sonication vs. extrusion) on the particle properties. METHODS Liposomes were produced either with sonication or extrusion and characterized. The extruded liposomes were combined with siRNA at different N/P ratios and investigated in terms of size zeta potential, encapsulation efficiency, lipoplex stability against RNase A, and knockdown efficiency using enhanced green fluorescent protein (eGFP)-marked colon adenocarcinoma cells. RESULTS The liposomes prepared by extrusion were smaller and had a narrower size distribution than the sonicated ones. The combination of siRNA and liposomes at a nitrogen-to-phosphate (N/P) ratio of 5 had optimal particle properties, high encapsulation efficiency, and lipoplex stability. Gene knockdown tests confirmed this assumption. CONCLUSIONS Liposomes produced with extrusion were more reproducible and provided enhanced particle properties. The physicochemical characterization and in vitro experiments showed that an N/P ratio of 5 was the most promising ratio for siRNA delivery.
Collapse
Affiliation(s)
- Sophie Meinhard
- Department of Pharmaceutical Technology, Faculty of Natural Sciences I, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany; (S.M.); (H.L.)
| | - Frank Erdmann
- Department of Pharmaceutical Pharmacology and Toxicology, Faculty of Natural Sciences I, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany;
- Research Center for Drug Therapy Halle, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany
| | - Henrike Lucas
- Department of Pharmaceutical Technology, Faculty of Natural Sciences I, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany; (S.M.); (H.L.)
- Research Center for Drug Therapy Halle, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany
| | - Maria Krabbes
- Pharmaceutical Technology, Medical Faculty, University of Leipzig, Eilenburger Strasse 15A, 04317 Leipzig, Germany; (M.K.); (C.W.)
| | - Stephanie Krüger
- Biocenter, Microscopy Unit, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle/Saale, Germany;
| | - Christian Wölk
- Pharmaceutical Technology, Medical Faculty, University of Leipzig, Eilenburger Strasse 15A, 04317 Leipzig, Germany; (M.K.); (C.W.)
| | - Karsten Mäder
- Department of Pharmaceutical Technology, Faculty of Natural Sciences I, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany; (S.M.); (H.L.)
- Research Center for Drug Therapy Halle, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle/Saale, Germany
| |
Collapse
|
4
|
Parvin N, Joo SW, Mandal TK. Enhancing Vaccine Efficacy and Stability: A Review of the Utilization of Nanoparticles in mRNA Vaccines. Biomolecules 2024; 14:1036. [PMID: 39199422 PMCID: PMC11353004 DOI: 10.3390/biom14081036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
The development of vaccines has entered a new era with the advent of nanotechnology, particularly through the utilization of nanoparticles. This review focuses on the role of nanoparticles in enhancing the efficacy and stability of mRNA vaccines. Nanoparticles, owing to their unique properties such as high surface area, tunable size, and their ability to be functionalized, have emerged as powerful tools in vaccine development. Specifically, lipid nanoparticles (LNPs) have revolutionized the delivery of mRNA vaccines by protecting the fragile mRNA molecules and facilitating their efficient uptake by cells. This review discusses the various types of nanoparticles employed in mRNA vaccine formulations, including lipid-based, polymer-based, and inorganic nanoparticles, highlighting their advantages and limitations. Moreover, it explores the mechanisms by which nanoparticles improve immune responses, such as enhanced antigen presentation and the prolonged release of mRNA. This review also addresses the challenges and future directions in nanoparticle-based vaccine development, emphasizing the need for further research to optimize formulations for broader applications. By providing an in-depth analysis of the current advancements in and potential of nanoparticles in mRNA vaccines, this review aims to shed light on their critical role in combating infectious diseases and improving public health outcomes.
Collapse
Affiliation(s)
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Tapas Kumar Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
5
|
D’Atri V, Lardeux H, Goyon A, Imiołek M, Fekete S, Lauber M, Zhang K, Guillarme D. Optimizing Messenger RNA Analysis Using Ultra-Wide Pore Size Exclusion Chromatography Columns. Int J Mol Sci 2024; 25:6254. [PMID: 38892442 PMCID: PMC11172508 DOI: 10.3390/ijms25116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Biopharmaceutical products, in particular messenger ribonucleic acid (mRNA), have the potential to dramatically improve the quality of life for patients suffering from respiratory and infectious diseases, rare genetic disorders, and cancer. However, the quality and safety of such products are particularly critical for patients and require close scrutiny. Key product-related impurities, such as fragments and aggregates, among others, can significantly reduce the efficacy of mRNA therapies. In the present work, the possibilities offered by size exclusion chromatography (SEC) for the characterization of mRNA samples were explored using state-of-the-art ultra-wide pore columns with average pore diameters of 1000 and 2500 Å. Our investigation shows that a column with 1000 Å pores proved to be optimal for the analysis of mRNA products, whatever the size between 500 and 5000 nucleotides (nt). We also studied the influence of mobile phase composition and found that the addition of 10 mM magnesium chloride (MgCl2) can be beneficial in improving the resolution and recovery of large size variants for some mRNA samples. We demonstrate that caution should be exercised when increasing column length or decreasing the flow rate. While these adjustments slightly improve resolution, they also lead to an apparent increase in the amount of low-molecular-weight species (LMWS) and monomer peak tailing, which can be attributed to the prolonged residence time inside the column. Finally, our optimal SEC method has been successfully applied to a wide range of mRNA products, ranging from 1000 to 4500 nt in length, as well as mRNA from different suppliers and stressed/unstressed samples.
Collapse
Affiliation(s)
- Valentina D’Atri
- School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland; (V.D.); (H.L.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Honorine Lardeux
- School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland; (V.D.); (H.L.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
| | - Alexandre Goyon
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA; (A.G.); (K.Z.)
| | - Mateusz Imiołek
- Waters Corporation, 1211 Geneva, Switzerland; (M.I.); (S.F.)
| | - Szabolcs Fekete
- Waters Corporation, 1211 Geneva, Switzerland; (M.I.); (S.F.)
| | | | - Kelly Zhang
- Synthetic Molecule Analytical Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA; (A.G.); (K.Z.)
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland; (V.D.); (H.L.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
| |
Collapse
|
6
|
De Vos J, Morreel K, Alvarez P, Vanluchene H, Vankeirsbilck R, Sandra P, Sandra K. Evaluation of size-exclusion chromatography, multi-angle light scattering detection and mass photometry for the characterization of mRNA. J Chromatogr A 2024; 1719:464756. [PMID: 38402695 DOI: 10.1016/j.chroma.2024.464756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
The recent approval of messenger ribonucleic acid (mRNA) as vaccine to combat the COVID-19 pandemic has been a scientific turning point. Today, the applicability of mRNA is being demonstrated beyond infectious diseases, for example in cancer immunotherapy, protein replacement therapy and gene editing. mRNA is produced by in vitro transcription (IVT) from a linear DNA template and modified at the 3' and 5' ends to improve translational efficiency and stability. Co-existing impurities such as RNA fragments and double-stranded RNA (dsRNA), amongst others, can drastically impact mRNA quality and efficacy. In this study, size-exclusion chromatography (SEC) is evaluated for the characterization of IVT-mRNA. The effect of mobile phase composition (ionic strength and organic modifier), pH, column temperature and pore size (300 Å, 1000 Å, and 2000 Å) on the separation performance and structural integrity of IVT-mRNA varying in size is described. Non-replicating, self-amplifying (saRNA), temperature degraded, and ribonuclease (RNase) digested mRNA, the latter to characterize the 3' poly(A) tail, were included in the study. Beyond ultraviolet (UV) detection, refractive index (RI) and multi-angle light scattering (MALS) detection were implemented to accurately determine molecular weight (MW) of mRNA. Finally, mass photometry is introduced as a complementary methodology to study mRNA under native conditions.
Collapse
Affiliation(s)
- Jelle De Vos
- RIC group, President Kennedypark 6, 8500 Kortrijk, Belgium
| | - Kris Morreel
- RIC group, President Kennedypark 6, 8500 Kortrijk, Belgium
| | - Piotr Alvarez
- RIC group, President Kennedypark 6, 8500 Kortrijk, Belgium
| | | | | | - Pat Sandra
- RIC group, President Kennedypark 6, 8500 Kortrijk, Belgium
| | - Koen Sandra
- RIC group, President Kennedypark 6, 8500 Kortrijk, Belgium.
| |
Collapse
|