1
|
Budama-Kilinc Y, Gok B, Cetin Aluc C, Kecel-Gunduz S. In vitro and in silico evaluation of the design of nano-phyto-drug candidate for oral use against Staphylococcus aureus. PeerJ 2023; 11:e15523. [PMID: 37309371 PMCID: PMC10257901 DOI: 10.7717/peerj.15523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 05/17/2023] [Indexed: 06/14/2023] Open
Abstract
Onopordum acanthium is a medicinal plant with many important properties, such as antibacterial, anticancer, and anti-hypotensive properties. Although various studies reported the biological activities of O. acanthium, there is no study on its nano-phyto-drug formulation. The aim of this study is to develop a candidate nano-drug based on phytotherapeutic constituents and evaluate its efficiency in vitro and in silico. In this context, poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) of O. acanthium extract (OAE) were synthesized and characterized. It was determined that the average particle size of OAE-PLGA-NPs was 214.9 ± 6.77 nm, and the zeta potential was -8.03 ± 0.85 mV, and PdI value was 0.064 ± 0.013. The encapsulation efficiency of OAE-PLGA-NPs was calculated as 91%, and the loading capacity as 75.83%. The in vitro drug release study showed that OAE was released from the PLGA NPs with 99.39% over the 6 days. Furthermore, the mutagenic and cytotoxic activity of free OAE and OAE-PLGA-NPs were evaluated by the Ames test and MTT test, respectively. Although 0.75 and 0.37 mg/mL free OAE concentrations caused both frameshift mutation and base pair substitution (p < 0.05), the administered OAE-PLGA NP concentrations were not mutagenic. It was determined with the MTT analysis that the doses of 0.75 and 1.5 mg/mL of free OAE had a cytotoxic effect on the L929 fibroblast cell line (p < 0.05), and OAE-PLGA-NPs had no cytotoxic effect. Moreover, the interaction between the OAE and S. aureus was also investigated using the molecular docking analysis method. The molecular docking and molecular dynamics (MD) results were implemented to elucidate the S. aureus MurE inhibition potential of OAE. It was shown that quercetin in the OAE content interacted significantly with the substantial residues in the catalytic pocket of the S. aureus MurE enzyme, and quercetin performed four hydrogen bond interactions corresponding to a low binding energy of -6.77 kcal/mol with catalytic pocket binding residues, which are crucial for the inhibition mechanism of S. aureus MurE. Finally, the bacterial inhibition values of free OAE and OAE-PLGA NPs were determined against S. aureus using a microdilution method. The antibacterial results showed that the inhibition value of the OAE-PLGA NPs was 69%. In conclusion, from the in vitro and in silico results of the nano-sized OAE-PLGA NP formulation produced in this study, it was evaluated that the formulation may be recommended as a safe and effective nano-phyto-drug candidate against S. aureus.
Collapse
Affiliation(s)
- Yasemin Budama-Kilinc
- Bioengineering Department, Yildiz Technical University, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| | - Bahar Gok
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul, Turkey
| | - Cigdem Cetin Aluc
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul, Turkey
- Abdi Ibrahim Production Facilities, Abdi Ibrahim Pharmaceuticals, Istanbul, Turkey
| | | |
Collapse
|
2
|
Jorde I, Schreiber J, Stegemann-Koniszewski S. The Role of Staphylococcus aureus and Its Toxins in the Pathogenesis of Allergic Asthma. Int J Mol Sci 2022; 24:ijms24010654. [PMID: 36614093 PMCID: PMC9820472 DOI: 10.3390/ijms24010654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
Bronchial asthma is one of the most common chronic diseases worldwide and affects more than 300 million patients. Allergic asthma affects the majority of asthmatic children as well as approximately 50% of adult asthmatics. It is characterized by a Th2-mediated immune response against aeroallergens. Many aspects of the overall pathophysiology are known, while the underlying mechanisms and predisposing factors remain largely elusive today. Over the last decade, respiratory colonization with Staphylococcus aureus (S. aureus), a Gram-positive facultative bacterial pathogen, came into focus as a risk factor for the development of atopic respiratory diseases. More than 30% of the world’s population is constantly colonized with S. aureus in their nasopharynx. This colonization is mostly asymptomatic, but in immunocompromised patients, it can lead to serious complications including pneumonia, sepsis, or even death. S. aureus is known for its ability to produce a wide range of proteins including toxins, serine-protease-like proteins, and protein A. In this review, we provide an overview of the current knowledge about the pathophysiology of allergic asthma and to what extent it can be affected by different toxins produced by S. aureus. Intensifying this knowledge might lead to new preventive strategies for atopic respiratory diseases.
Collapse
|
3
|
Bekampytė J, Savukaitytė A, Bartnykaitė A, Ugenskienė R, Žilienė E, Inčiūra A, Juozaitytė E. TIRAP Rs8177376, Rs611953, Rs3802814, and Rs8177374 Polymorphisms and Their Association with Cervical Cancer Phenotype and Prognosis. Genes (Basel) 2022; 13:genes13081365. [PMID: 36011276 PMCID: PMC9407394 DOI: 10.3390/genes13081365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Cervical cancer is one of the most common cancers in women worldwide, which is typically caused by human papillomavirus (HPV). Usually, the toll-like receptor (TLR) signaling pathways eliminate the virus from the organism, but in some cases, persistent infection may develop. Unfortunately, the mechanism of immune tolerance is still unclear. Therefore, this study aimed to analyze TIRAP rs8177376, rs611953, rs3802814, and rs8177374 polymorphisms and to identify their impact on cervical cancer phenotype and prognosis. This study included 172 cervical cancer patients. Genotyping was performed using the PCR-RFLP assay. Univariate and multivariate logistic regression and Cox′s regression models were applied for statistical analysis. The results revealed that older age at the time of diagnosis was statistically linked with the rs8177376 T allele (OR = 2.901, 95% Cl 1.750–4.808, p = 0.000) and the rs611953 G allele (OR = 3.258, 95% Cl 1.917–5.536, p = 0.000). Moreover, the T allele of rs8177376 (OR = 0.424, 95% Cl 0.220–0.816, p = 0.010) was found to be statistically associated with the lower tumor grade. Thus, TIRAP polymorphisms might be employed in the future as potential biomarkers for determining the phenotype and prognosis of cervical cancer.
Collapse
Affiliation(s)
- Justina Bekampytė
- Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (J.B.); (A.B.); (R.U.)
| | - Aistė Savukaitytė
- Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (J.B.); (A.B.); (R.U.)
- Correspondence: ; Tel.: +370-3-778-7317
| | - Agnė Bartnykaitė
- Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (J.B.); (A.B.); (R.U.)
| | - Rasa Ugenskienė
- Oncology Research Laboratory, Oncology Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (J.B.); (A.B.); (R.U.)
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Eglė Žilienė
- Oncology Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (E.Ž.); (A.I.); (E.J.)
| | - Arturas Inčiūra
- Oncology Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (E.Ž.); (A.I.); (E.J.)
| | - Elona Juozaitytė
- Oncology Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (E.Ž.); (A.I.); (E.J.)
| |
Collapse
|
4
|
Wong Fok Lung T, Chan LC, Prince A, Yeaman MR, Archer NK, Aman MJ, Proctor RA. Staphylococcus aureus adaptive evolution: Recent insights on how immune evasion, immunometabolic subversion and host genetics impact vaccine development. Front Cell Infect Microbiol 2022; 12:1060810. [PMID: 36636720 PMCID: PMC9831658 DOI: 10.3389/fcimb.2022.1060810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/16/2022] [Indexed: 12/28/2022] Open
Abstract
Despite meritorious attempts, a S. aureus vaccine that prevents infection or mitigates severity has not yet achieved efficacy endpoints in prospective, randomized clinical trials. This experience underscores the complexity of host-S. aureus interactions, which appear to be greater than many other bacterial pathogens against which successful vaccines have been developed. It is increasingly evident that S. aureus employs strategic countermeasures to evade or exploit human immune responses. From entering host cells to persist in stealthy intracellular reservoirs, to sensing the environmental milieu and leveraging bacterial or host metabolic products to reprogram host immune responses, S. aureus poses considerable challenges for the development of effective vaccines. The fact that this pathogen causes distinct types of infections and can undergo transient genetic, transcriptional or metabolic adaptations in vivo that do not occur in vitro compounds challenges in vaccine development. Notably, the metabolic versatility of both bacterial and host immune cells as they compete for available substrates within specific tissues inevitably impacts the variable repertoire of gene products that may or may not be vaccine antigens. In this respect, S. aureus has chameleon phenotypes that have alluded vaccine strategies thus far. Nonetheless, a number of recent studies have also revealed important new insights into pathogenesis vulnerabilities of S. aureus. A more detailed understanding of host protective immune defenses versus S. aureus adaptive immune evasion mechanisms may offer breakthroughs in the development of effective vaccines, but at present this goal remains a very high bar. Coupled with the recent advances in human genetics and epigenetics, newer vaccine technologies may enable such a goal. If so, future vaccines that protect against or mitigate the severity of S. aureus infections are likely to emerge at the intersection of precision and personalized medicine. For now, the development of S. aureus vaccines or alternative therapies that reduce mortality and morbidity must continue to be pursued.
Collapse
Affiliation(s)
| | - Liana C Chan
- Department of Medicine, David Geffen School of Medicine at University of California Loss Angeles (UCLA), Los Angeles, CA, United States.,Divisions of Molecular Medicine and Infectious Diseases, Harbor-University of California Loss Angeles (UCLA) Medical Center, Torrance, CA, United States.,Lundquist Institute for Biomedical Innovation at Harbor-University of California Loss Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Alice Prince
- Department of Pediatrics, Columbia University, New York, NY, United States
| | - Michael R Yeaman
- Department of Medicine, David Geffen School of Medicine at University of California Loss Angeles (UCLA), Los Angeles, CA, United States.,Divisions of Molecular Medicine and Infectious Diseases, Harbor-University of California Loss Angeles (UCLA) Medical Center, Torrance, CA, United States.,Lundquist Institute for Biomedical Innovation at Harbor-University of California Loss Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - M Javad Aman
- Integrated BioTherapeutics, Rockville, MD, United States
| | - Richard A Proctor
- Department of Medicine and Medical Microbiology/Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
5
|
Rosier F, Brisebarre A, Dupuis C, Baaklini S, Puthier D, Brun C, Pradel LC, Rihet P, Payen D. Genetic Predisposition to the Mortality in Septic Shock Patients: From GWAS to the Identification of a Regulatory Variant Modulating the Activity of a CISH Enhancer. Int J Mol Sci 2021; 22:ijms22115852. [PMID: 34072601 PMCID: PMC8198806 DOI: 10.3390/ijms22115852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
The high mortality rate in septic shock patients is likely due to environmental and genetic factors, which influence the host response to infection. Two genome-wide association studies (GWAS) on 832 septic shock patients were performed. We used integrative bioinformatic approaches to annotate and prioritize the sepsis-associated single nucleotide polymorphisms (SNPs). An association of 139 SNPs with death based on a false discovery rate of 5% was detected. The most significant SNPs were within the CISH gene involved in cytokine regulation. Among the 139 SNPs associated with death and the 1311 SNPs in strong linkage disequilibrium with them, we investigated 1439 SNPs within non-coding regions to identify regulatory variants. The highest integrative weighted score (IW-score) was obtained for rs143356980, indicating that this SNP is a robust regulatory candidate. The rs143356980 region is located in a non-coding region close to the CISH gene. A CRISPR-Cas9-mediated deletion of this region and specific luciferase assays in K562 cells showed that rs143356980 modulates the enhancer activity in K562 cells. These analyses allowed us to identify several genes associated with death in patients with septic shock. They suggest that genetic variations in key genes, such as CISH, perturb relevant pathways, increasing the risk of death in sepsis patients.
Collapse
Affiliation(s)
- Florian Rosier
- Aix Marseille Univ, INSERM, TAGC, UMR_S_1090, MarMaRa Institute, 13288 Marseille, France; (F.R.); (A.B.); (S.B.); (D.P.); (C.B.)
| | - Audrey Brisebarre
- Aix Marseille Univ, INSERM, TAGC, UMR_S_1090, MarMaRa Institute, 13288 Marseille, France; (F.R.); (A.B.); (S.B.); (D.P.); (C.B.)
| | - Claire Dupuis
- Medical Intensive Care Unit, Clermont-Ferrand University Hospital, 58 rue Montalembert, 63003 Clermont-Ferrand, France;
| | - Sabrina Baaklini
- Aix Marseille Univ, INSERM, TAGC, UMR_S_1090, MarMaRa Institute, 13288 Marseille, France; (F.R.); (A.B.); (S.B.); (D.P.); (C.B.)
| | - Denis Puthier
- Aix Marseille Univ, INSERM, TAGC, UMR_S_1090, MarMaRa Institute, 13288 Marseille, France; (F.R.); (A.B.); (S.B.); (D.P.); (C.B.)
| | - Christine Brun
- Aix Marseille Univ, INSERM, TAGC, UMR_S_1090, MarMaRa Institute, 13288 Marseille, France; (F.R.); (A.B.); (S.B.); (D.P.); (C.B.)
- CNRS, 13288 Marseille, France
| | - Lydie C. Pradel
- Aix Marseille Univ, INSERM, TAGC, UMR_S_1090, MarMaRa Institute, 13288 Marseille, France; (F.R.); (A.B.); (S.B.); (D.P.); (C.B.)
- Correspondence: (L.C.P.); (P.R.); (D.P.); Tel.: +33-491828745 (L.C.P.); +33-491828723 (P.R.); +33-687506599 (D.P.)
| | - Pascal Rihet
- Aix Marseille Univ, INSERM, TAGC, UMR_S_1090, MarMaRa Institute, 13288 Marseille, France; (F.R.); (A.B.); (S.B.); (D.P.); (C.B.)
- Correspondence: (L.C.P.); (P.R.); (D.P.); Tel.: +33-491828745 (L.C.P.); +33-491828723 (P.R.); +33-687506599 (D.P.)
| | - Didier Payen
- UMR INSERM 1160: Alloimmunité, Autoimmunité, Transplantation, University of Paris 7 Denis Diderot, 2 rue Ambroise-Paré, CEDEX 10, 75475 Paris, France
- Correspondence: (L.C.P.); (P.R.); (D.P.); Tel.: +33-491828745 (L.C.P.); +33-491828723 (P.R.); +33-687506599 (D.P.)
| |
Collapse
|