1
|
Sadasivan C, Seidman MA, Oudit GY. Uncovering Early Irreversible Cardiac Damage in Patients With Fabry Disease: Getting to the Heart of It. Can J Cardiol 2025:S0828-282X(25)00093-5. [PMID: 39985540 DOI: 10.1016/j.cjca.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/24/2025] Open
Affiliation(s)
- Chandu Sadasivan
- Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada. https://twitter.com/Sadasivan
| | - Michael A Seidman
- Laboratory Medicine Program, University Health Network, Toronto, Canada. https://twitter.com/Seidman
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Tomsen-Melero J, Moltó-Abad M, Merlo-Mas J, Díaz-Riascos ZV, Cristóbal-Lecina E, Soldevila A, Altendorfer-Kroath T, Danino D, Ionita I, Pedersen JS, Snelling L, Clay H, Carreño A, Corchero JL, Pulido D, Casas J, Veciana J, Schwartz S, Sala S, Font A, Birngruber T, Royo M, Córdoba A, Ventosa N, Abasolo I, González-Mira E. Targeted nanoliposomes to improve enzyme replacement therapy of Fabry disease. SCIENCE ADVANCES 2024; 10:eadq4738. [PMID: 39671483 PMCID: PMC11801267 DOI: 10.1126/sciadv.adq4738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/07/2024] [Indexed: 12/15/2024]
Abstract
The central nervous system represents a major target tissue for therapeutic approach of numerous lysosomal storage disorders. Fabry disease arises from the lack or dysfunction of the lysosomal alpha-galactosidase A (GLA) enzyme, resulting in substrate accumulation and multisystemic clinical manifestations. Current enzyme replacement therapies (ERTs) face limited effectiveness due to poor enzyme biodistribution in target tissues and inability to reach the brain. We present an innovative drug delivery strategy centered on a peptide-targeted nanoliposomal formulation, designated as nanoGLA, engineered to selectively deliver a recombinant human GLA (rhGLA) to target tissues. In a Fabry mouse model, nanoGLA demonstrated improved efficacy, inducing a notable reduction in Gb3 deposits in contrast to non-nanoformulated GLA, even in the brain, highlighting the potential of the nanoGLA to address both systemic and cerebrovascular manifestations of Fabry disease. The EMA has granted the Orphan Drug Designation to this product, underscoring the potential clinical superiority of nanoGLA over authorized ERTs and encouraging to advance it toward clinical translation.
Collapse
Affiliation(s)
- Judit Tomsen-Melero
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Marc Moltó-Abad
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Clinical Biochemistry, Drug Delivery & Targeting (CB-DDT), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Josep Merlo-Mas
- Nanomol Technologies SL, Campus de la UAB, 08193 Bellaterra, Spain
| | - Zamira V. Díaz-Riascos
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Clinical Biochemistry, Drug Delivery & Targeting (CB-DDT), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Functional Validaton & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Edgar Cristóbal-Lecina
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Institut de Química Avançada de Catalunya (IQAC-CSIC), c/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | - Thomas Altendorfer-Kroath
- JOANNEUM RESEARCH–Institute for Biomedical Research and Technologies (HEALTH), Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Dganit Danino
- Cryo-EM Laboratory of Soft Matter, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 32000 Haifa, Israel
- Cryo-EM and Self-Assembly Laboratory, Guangdong-Technion Israel Institute of Technology, Shantou, China
| | - Inbal Ionita
- Cryo-EM Laboratory of Soft Matter, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Jan Skov Pedersen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - Hazel Clay
- Labcorp Drug Development, Harrogate HG3 IPY, UK
| | - Aida Carreño
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - José L. Corchero
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i de Microbiologia, Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Daniel Pulido
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Institut de Química Avançada de Catalunya (IQAC-CSIC), c/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Josefina Casas
- Institut de Química Avançada de Catalunya (IQAC-CSIC), c/ Jordi Girona 18-26, 08034 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| | - Jaume Veciana
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Simó Schwartz
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Clinical Biochemistry, Drug Delivery & Targeting (CB-DDT), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Servei de Bioquímica, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Santi Sala
- Nanomol Technologies SL, Campus de la UAB, 08193 Bellaterra, Spain
| | | | - Thomas Birngruber
- JOANNEUM RESEARCH–Institute for Biomedical Research and Technologies (HEALTH), Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Miriam Royo
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Institut de Química Avançada de Catalunya (IQAC-CSIC), c/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Alba Córdoba
- Nanomol Technologies SL, Campus de la UAB, 08193 Bellaterra, Spain
| | - Nora Ventosa
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Ibane Abasolo
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Clinical Biochemistry, Drug Delivery & Targeting (CB-DDT), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Functional Validaton & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Servei de Bioquímica, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
| | - Elisabet González-Mira
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| |
Collapse
|
3
|
Fekete N, Li LK, Kozma GT, Fekete G, Pállinger É, Kovács ÁF. Flow Cytometry-Based Assay to Detect Alpha Galactosidase Enzymatic Activity at the Cellular Level. Cells 2024; 13:706. [PMID: 38667321 PMCID: PMC11049294 DOI: 10.3390/cells13080706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Fabry disease is a progressive, X chromosome-linked lysosomal storage disorder with multiple organ dysfunction. Due to the absence or reduced activity of alpha-galactosidase A (AGAL), glycosphingolipids, primarily globotriaosyl-ceramide (Gb3), concentrate in cells. In heterozygous women, symptomatology is heterogenous and currently routinely used fluorometry-based assays measuring mean activity mostly fail to uncover AGAL dysfunction. The aim was the development of a flow cytometry assay to measure AGAL activity in individual cells. METHODS Conventional and multispectral imaging flow cytometry was used to detect AGAL activity. Specificity was validated using the GLA knockout (KO) Jurkat cell line and AGAL inhibitor 1-deoxygalactonojirimycin. The GLA KO cell line was generated via CRISPR-Cas9-based transfection, validated with exome sequencing, gene expression and substrate accumulation. RESULTS Flow cytometric detection of specific AGAL activity is feasible with fluorescently labelled Gb3. In the case of Jurkat cells, a substrate concentration of 2.83 nmol/mL and 6 h of incubation are required. Quenching of the aspecific exofacial binding of Gb3 with 20% trypan blue solution is necessary for the specific detection of lysosomal substrate accumulation. CONCLUSION A flow cytometry-based assay was developed for the quantitative detection of AGAL activity at the single-cell level, which may contribute to the diagnosis of Fabry patients.
Collapse
Affiliation(s)
- Nóra Fekete
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 1085 Budapest, Hungary; (N.F.); (É.P.)
- For Human Genome Foundation, 1094 Budapest, Hungary
| | - Luca Kamilla Li
- Pediatrics Centre, Tűzoltó Street Department, Semmelweis University, 1085 Budapest, Hungary; (L.K.L.); (G.F.)
| | - Gergely Tibor Kozma
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, 1085 Budapest, Hungary;
- SeroScience LCC, 1089 Budapest, Hungary
| | - György Fekete
- Pediatrics Centre, Tűzoltó Street Department, Semmelweis University, 1085 Budapest, Hungary; (L.K.L.); (G.F.)
| | - Éva Pállinger
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 1085 Budapest, Hungary; (N.F.); (É.P.)
| | - Árpád Ferenc Kovács
- For Human Genome Foundation, 1094 Budapest, Hungary
- Pediatrics Centre, Tűzoltó Street Department, Semmelweis University, 1085 Budapest, Hungary; (L.K.L.); (G.F.)
| |
Collapse
|
4
|
Li HY, Lin HY, Chang SK, Chiu YT, Hou CC, Ko TP, Huang KF, Niu DM, Cheng WC. Mechanistic Insights into Dibasic Iminosugars as pH-Selective Pharmacological Chaperones to Stabilize Human α-Galactosidase. JACS AU 2024; 4:908-918. [PMID: 38559739 PMCID: PMC10976572 DOI: 10.1021/jacsau.3c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 04/04/2024]
Abstract
The use of pharmacological chaperones (PCs) to stabilize specific enzymes and impart a therapeutic benefit is an emerging strategy in drug discovery. However, designing molecules that can bind optimally to their targets at physiological pH remains a major challenge. Our previous study found that dibasic polyhydroxylated pyrrolidine 5 exhibited superior pH-selective inhibitory activity and chaperoning activity for human α-galactosidase A (α-Gal A) compared with its monobasic parent molecule, 4. To further investigate the role of different C-2 moieties on the pH-selectivity and protecting effects of these compounds, we designed and synthesized a library of monobasic and dibasic iminosugars, screened them for α-Gal A-stabilizing activity using thermal shift and heat-induced denaturation assays, and characterized the mechanistic basis for this stabilization using X-ray crystallography and binding assays. We noted that the dibasic iminosugars 5 and 20 protect α-Gal A from denaturation and inactivation at lower concentrations than monobasic or other N-substituted derivatives; a finding attributed to the nitrogen on the C-2 methylene of 5 and 20, which forms the bifurcated salt bridges (BSBs) with two carboxyl residues, E203 and D231. Additionally, the formation of BSBs at pH 7.0 and the electrostatic repulsion between the vicinal ammonium cations of dibasic iminosugars at pH 4.5 are responsible for their pH-selective binding to α-Gal A. Moreover, compounds 5 and 20 demonstrated promising results in improving enzyme replacement therapy and exhibited significant chaperoning effects in Fabry cells. These findings suggest amino-iminosugars 5 and 20 as useful models to demonstrate how an additional exocyclic amino group can improve their pH-selectivity and protecting effects, providing new insights for the design of pH-selective PCs.
Collapse
Affiliation(s)
- Huang-Yi Li
- Genomics
Research Center, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 115201, Taiwan
- Institute
of Biochemistry and Molecular Biology, National
Yang Ming Chiao Tung University, 155, Section 2, Linong Street, Taipei 112304, Taiwan
| | - Hung-Yi Lin
- Genomics
Research Center, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 115201, Taiwan
| | - Sheng-Kai Chang
- Department
of Pediatrics, Taipei Veterans General Hospital, 201, Section 2, Shipai Road, Beitou, Taipei 112201, Taiwan
| | - Yu-Ting Chiu
- Genomics
Research Center, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 115201, Taiwan
| | - Chung-Chien Hou
- Genomics
Research Center, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 115201, Taiwan
| | - Tzu-Ping Ko
- Institute
of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Kai-Fa Huang
- Institute
of Biological Chemistry, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Dau-Ming Niu
- Department
of Pediatrics, Taipei Veterans General Hospital, 201, Section 2, Shipai Road, Beitou, Taipei 112201, Taiwan
- Institute
of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, 155, Section 2, Linong Street, Taipei 112304, Taiwan
| | - Wei-Chieh Cheng
- Genomics
Research Center, Academia Sinica, 128, Section 2, Academia Road, Nankang, Taipei 115201, Taiwan
- Department
of Chemistry, National Cheng Kung University, 1, University Road, East, Tainan 701401, Taiwan
- Department
of Chemistry, National University of Kaohsiung, 700, University Road, Nanzih, Kaohsiung 811726, Taiwan
- Department
of Chemistry, National Chiayi University, 300, Syuefu Road, Chiayi 600355, Taiwan
| |
Collapse
|
5
|
Nose Y, Fujii H, Goto S, Kono K, Okamoto H, Watanabe K, Nishi S. Investigation of bone mineral density and the changes by enzyme replacement therapy in patients with Fabry disease. Mol Genet Metab 2023; 139:107634. [PMID: 37406430 DOI: 10.1016/j.ymgme.2023.107634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/24/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Fabry disease (FD) is an inherited disorder that causes organ dysfunction. However, only a few studies have reported on bone mineral density (BMD) in FD patients, and the relationship between BMD and clinical factors such as globotriaosylsphingosine (lyso-Gb3) remains unclear. Therefore, the current study sought to investigate BMD in FD patients, the relationship between BMD and lyso-Gb3, and the effects of enzyme replacement therapy (ERT) on changes in BMD and lyso-Gb3. METHODS This single-center, observational study included 15 patients who visited our facility for FD between January 2008 and June 2021. We assessed BMD and clinical characteristics in study patients, including plasma lyso-Gb3 levels, and examined the relationship between BMD and plasma lyso-Gb3 levels, and changes in BMD after starting ERT. RESULTS Male patients' BMD had reduced, whereas female patients' BMD was preserved. Male patients had significantly higher plasma lyso-Gb3 levels than female patients. Moreover, plasma lyso-Gb3 levels were found to be significantly related to the lumbar spine and femoral BMD. These were strongly linked with plasma lyso-Gb3 levels in male patients, whereas no strong link was observed in female patients. Furthermore, BMD significantly increased only in male patients although plasma lyso-Gb3 levels significantly decreased by ERT in all patients. CONCLUSION BMD decreased possibly due to Gb3 accumulation, and ERT could increase BMD in male FD patients.
Collapse
Affiliation(s)
- Yuma Nose
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideki Fujii
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Shunsuke Goto
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Keiji Kono
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hayaki Okamoto
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kentaro Watanabe
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinichi Nishi
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
6
|
Boutin M, Lavoie P, Beaudon M, Kabala Ntumba G, Bichet DG, Maranda B, Auray-Blais C. Mass Spectrometry Analysis of Globotriaosylsphingosine and Its Analogues in Dried Blood Spots. Int J Mol Sci 2023; 24:ijms24043223. [PMID: 36834643 PMCID: PMC9966246 DOI: 10.3390/ijms24043223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Fabry disease (FD) is an X-linked lysosomal storage disorder where impaired α-galactosidase A enzyme activity leads to the intracellular accumulation of undegraded glycosphingolipids, including globotriaosylsphingosine (lyso-Gb3) and related analogues. Lyso-Gb3 and related analogues are useful biomarkers for screening and should be routinely monitored for longitudinal patient evaluation. In recent years, a growing interest has emerged in the analysis of FD biomarkers in dried blood spots (DBSs), considering the several advantages compared to venipuncture as a technique for collecting whole-blood specimens. The focus of this study was to devise and validate a UHPLC-MS/MS method for the analysis of lyso-Gb3 and related analogues in DBSs to facilitate sample collection and shipment to reference laboratories. The assay was devised in conventional DBS collection cards and in Capitainer®B blood collection devices using both capillary and venous blood specimens from 12 healthy controls and 20 patients affected with FD. The measured biomarker concentrations were similar in capillary and venous blood specimens. The hematocrit (Hct) did not affect the correlation between plasma and DBS measurements in our cohort (Hct range: 34.3-52.2%). This UHPLC-MS/MS method using DBS would facilitate high-risk screening and the follow-up and monitoring of patients affected with FD.
Collapse
Affiliation(s)
- Michel Boutin
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Centre de Recherche–CIUSSS de l’Estrie-CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Pamela Lavoie
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Centre de Recherche–CIUSSS de l’Estrie-CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Margot Beaudon
- Institut de Pharmacologie, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Georges Kabala Ntumba
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Centre de Recherche–CIUSSS de l’Estrie-CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Daniel G. Bichet
- Research Center, Hôpital du Sacré-Coeur de Montreal, University of Montreal and Nephrology Service, Montreal, QC H4J 1C5, Canada
| | - Bruno Maranda
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Centre de Recherche–CIUSSS de l’Estrie-CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Christiane Auray-Blais
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Centre de Recherche–CIUSSS de l’Estrie-CHUS, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Correspondence:
| |
Collapse
|
7
|
Li X, Ren X, Zhang Y, Ding L, Huo M, Li Q. Fabry disease: Mechanism and therapeutics strategies. Front Pharmacol 2022; 13:1025740. [PMID: 36386210 PMCID: PMC9643830 DOI: 10.3389/fphar.2022.1025740] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Fabry disease is a monogenic disease characterized by a deficiency or loss of the α-galactosidase A (GLA). The resulting impairment in lysosomal GLA enzymatic activity leads to the pathogenic accumulation of enzymatic substrate and, consequently, the progressive appearance of clinical symptoms in target organs, including the heart, kidney, and brain. However, the mechanisms involved in Fabry disease-mediated organ damage are largely ambiguous and poorly understood, which hinders the development of therapeutic strategies for the treatment of this disorder. Although currently available clinical approaches have shown some efficiency in the treatment of Fabry disease, they all exhibit limitations that need to be overcome. In this review, we first introduce current mechanistic knowledge of Fabry disease and discuss potential therapeutic strategies for its treatment. We then systemically summarize and discuss advances in research on therapeutic approaches, including enzyme replacement therapy (ERT), gene therapy, and chaperone therapy, as well as strategies targeting subcellular compartments, such as lysosomes, the endoplasmic reticulum, and the nucleus. Finally, the future development of potential therapeutic strategies is discussed based on the results of mechanistic studies and the limitations associated with these therapeutic approaches.
Collapse
Affiliation(s)
- Xi Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiangyi Ren
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Yabing Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lin Ding
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Minfeng Huo
- Shanghai Tenth People’s Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Qian Li, ; Minfeng Huo,
| | - Qian Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Qian Li, ; Minfeng Huo,
| |
Collapse
|
8
|
Viggiano E, Politano L. X Chromosome Inactivation in Carriers of Fabry Disease: Review and Meta-Analysis. Int J Mol Sci 2021; 22:ijms22147663. [PMID: 34299283 PMCID: PMC8304911 DOI: 10.3390/ijms22147663] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022] Open
Abstract
Anderson-Fabry disease is an X-linked inborn error of glycosphingolipid catabolism caused by a deficiency of α-galactosidase A. The incidence ranges between 1: 40,000 and 1:117,000 of live male births. In Italy, an estimate of incidence is available only for the north-western Italy, where it is of approximately 1:4000. Clinical symptoms include angiokeratomas, corneal dystrophy, and neurological, cardiac and kidney involvement. The prevalence of symptomatic female carriers is about 70%, and in some cases, they can exhibit a severe phenotype. Previous studies suggest a correlation between skewed X chromosome inactivation and symptoms in carriers of X-linked disease, including Fabry disease. In this review, we briefly summarize the disease, focusing on the clinical symptoms of carriers and analysis of the studies so far published in regards to X chromosome inactivation pattern, and manifesting Fabry carriers. Out of 151 records identified, only five reported the correlation between the analysis of XCI in leukocytes and the related phenotype in Fabry carriers, in particular evaluating the Mainz Severity Score Index or cardiac involvement. The meta-analysis did not show any correlation between MSSI or cardiac involvement and skewed XCI, likely because the analysis of XCI in leukocytes is not useful for predicting the phenotype in Fabry carriers.
Collapse
Affiliation(s)
- Emanuela Viggiano
- Department of Prevention, UOC Hygiene Service and Public Health, ASL Roma 2, 00142 Rome, Italy
- Correspondence: (E.V.); (L.P.)
| | - Luisa Politano
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, Luigi Vanvitelli University, 80138 Naples, Italy
- Correspondence: (E.V.); (L.P.)
| |
Collapse
|
9
|
Tsukimura T, Shiga T, Saito K, Ogawa Y, Sakuraba H, Togawa T. Does administration of hydroxychloroquine/amiodarone accelerate accumulation of globotriaosylceramide and globotriaosylsphingosine in Fabry mice? Mol Genet Metab Rep 2021; 28:100773. [PMID: 34136356 PMCID: PMC8178118 DOI: 10.1016/j.ymgmr.2021.100773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/19/2022] Open
Abstract
Drug-induced lysosomal storage disease (DILSD) caused by cationic amphiphilic drugs (CADs), which exhibits toxic manifestations and pathological findings mimicking Fabry disease (α-galactosidase A deficiency), has attracted the interests of clinicians and pathologists. Although the affected region is lysosomes in both the diseases, DILSD is characterized by intralysosomal accumulation of phospholipids and Fabry disease that of globotriaosylceramide (Gb3) and globotriaosylsphingosine (Lyso-Gb3). However, it is unknown whether administration of CADs affects the catabolism of Gb3 and Lyso-Gb3 in Fabry disease. In this study, we independently administered hydroxychloroquine/amiodarone to wild-type and Fabry mice and examined the effects of the drugs on the enzyme activity and substrates accumulated in organs and tissues. The results revealed that the administration of the drugs induced accumulation of phosphatidylcholine in both the wild-type and Fabry mice. However, reduction of α-galactosidase A activity in the organs and tissues of the wild-type mice was not found, and the storage of Gb3 and Lyso-Gb3 was not accelerated by these drugs in the Fabry mice. This suggests that hydroxychloroquine/amiodarone do not have any significant impact on the catabolism of Gb3 and Lyso-Gb3 in organs and tissues of both wild-type and Fabry mice. Effects of cationic amphiphilic drugs on the catabolism of Gb3/Lyso-Gb3 were examined. The drugs induced phospholipidosis in the wild-type and Fabry mice. The drugs did not induce reduction of α-galactosidase A activity in the wild-type mice. The drugs did not accelerate accumulation of Gb3/Lyso-gb3 in the Fabry mice.
Collapse
Key Words
- Amiodarone
- CAD, cationic amphiphilic drug
- DILSD, drug-induced lysosomal storage disease
- Drug-induced lysosomal storage disease
- Fabry disease
- Gb3, globotriaosylceramide
- Globotriaosylceramide
- Globotriaosylsphingosine
- Hydroxychloroquine
- ILV, intralysosomal luminal vesicle
- LC, liquid chromatography
- Lyso-Gb3, globotriaosylsphingosine
- MRM, multiple reaction monitoring
- MS/MS, tandem mass spectrometry
- PhC, phosphatidylcholine
- Phospholipid
- α-Gal, α-galactosidase A
- α-Galactosidase A
Collapse
Affiliation(s)
- Takahiro Tsukimura
- Department of Functional Bioanalysis, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Tomoko Shiga
- Department of Clinical Genetics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Koki Saito
- Department of Functional Bioanalysis, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yasuhiro Ogawa
- Department of Pharmacology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Hitoshi Sakuraba
- Department of Clinical Genetics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Tadayasu Togawa
- Department of Functional Bioanalysis, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
- Corresponding author.
| |
Collapse
|
10
|
Hsu CL, Dzhagalov IL, Niu DM. Response to Juang et al. Genet Med 2019; 21:1892-1893. [PMID: 30666049 DOI: 10.1038/s41436-019-0437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 11/10/2022] Open
Affiliation(s)
- Chia-Lin Hsu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan.
| | - Ivan L Dzhagalov
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Dau-Ming Niu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan. .,Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|