1
|
Light JE, Keane AS, Evans JW. Updating the Distribution of American Black Bears (Ursus americanus) in Texas Using Community Science, State Agencies, and Natural History Collections. WEST N AM NATURALIST 2021. [DOI: 10.3398/064.081.0308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jessica E. Light
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77843
| | - Alaya S. Keane
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77843
| | | |
Collapse
|
2
|
Maduna SN, Aars J, Fløystad I, Klütsch CFC, Zeyl Fiskebeck EML, Wiig Ø, Ehrich D, Andersen M, Bachmann L, Derocher AE, Nyman T, Eiken HG, Hagen SB. Sea ice reduction drives genetic differentiation among Barents Sea polar bears. Proc Biol Sci 2021; 288:20211741. [PMID: 34493082 PMCID: PMC8424353 DOI: 10.1098/rspb.2021.1741] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022] Open
Abstract
Loss of Arctic sea ice owing to climate change is predicted to reduce both genetic diversity and gene flow in ice-dependent species, with potentially negative consequences for their long-term viability. Here, we tested for the population-genetic impacts of reduced sea ice cover on the polar bear (Ursus maritimus) sampled across two decades (1995-2016) from the Svalbard Archipelago, Norway, an area that is affected by rapid sea ice loss in the Arctic Barents Sea. We analysed genetic variation at 22 microsatellite loci for 626 polar bears from four sampling areas within the archipelago. Our results revealed a 3-10% loss of genetic diversity across the study period, accompanied by a near 200% increase in genetic differentiation across regions. These effects may best be explained by a decrease in gene flow caused by habitat fragmentation owing to the loss of sea ice coverage, resulting in increased inbreeding of local polar bears within the focal sampling areas in the Svalbard Archipelago. This study illustrates the importance of genetic monitoring for developing adaptive management strategies for polar bears and other ice-dependent species.
Collapse
Affiliation(s)
- Simo Njabulo Maduna
- Norwegian Institute of Bioeconomy Research, Division of Environment and Natural Resources, Svanhovd, N-9925 Svanvik, Norway
| | - Jon Aars
- Norwegian Polar Institute, N-9296 Tromsø, Norway
| | - Ida Fløystad
- Norwegian Institute of Bioeconomy Research, Division of Environment and Natural Resources, Svanhovd, N-9925 Svanvik, Norway
| | - Cornelya F. C. Klütsch
- Norwegian Institute of Bioeconomy Research, Division of Environment and Natural Resources, Svanhovd, N-9925 Svanvik, Norway
| | | | - Øystein Wiig
- Natural History Museum, University of Oslo, N-0318 Oslo, Norway
| | - Dorothee Ehrich
- Department of Arctic and Marine Biology, UiT Arctic University of Tromsø, N-9037 Tromsø, Norway
| | | | - Lutz Bachmann
- Natural History Museum, University of Oslo, N-0318 Oslo, Norway
| | - Andrew E. Derocher
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - Tommi Nyman
- Norwegian Institute of Bioeconomy Research, Division of Environment and Natural Resources, Svanhovd, N-9925 Svanvik, Norway
| | - Hans Geir Eiken
- Norwegian Institute of Bioeconomy Research, Division of Environment and Natural Resources, Svanhovd, N-9925 Svanvik, Norway
| | - Snorre B. Hagen
- Norwegian Institute of Bioeconomy Research, Division of Environment and Natural Resources, Svanhovd, N-9925 Svanvik, Norway
| |
Collapse
|
3
|
Abstract
Connectivity and wildlife corridors are often key components to successful conservation and management plans. Connectivity for wildlife is typically modeled in a static environment that reflects a single snapshot in time. However, it has been shown that, when compared with dynamic connectivity models, static models can underestimate connectivity and mask important population processes. Therefore, including dynamism in connectivity models is important if the goal is to predict functional connectivity. We incorporated four levels of dynamism (individual, daily, seasonal, and interannual) into an individual-based movement model for black bears (Ursus americanus) in Massachusetts, USA. We used future development projections to model movement into the year 2050. We summarized habitat connectivity over the 32-year simulation period as the number of simulated movement paths crossing each pixel in our study area. Our results predict black bears will further colonize the expanding part of their range in the state and move beyond this range towards the greater Boston metropolitan area. This information is useful to managers for predicting and addressing human–wildlife conflict and in targeting public education campaigns on bear awareness. Including dynamism in connectivity models can produce more realistic models and, when future projections are incorporated, can ensure the identification of areas that offer long-term functional connectivity for wildlife.
Collapse
|
4
|
Balkenhol N, Schwartz MK, Inman RM, Copeland JP, Squires JS, Anderson NJ, Waits LP. Landscape genetics of wolverines ( Gulo gulo): scale-dependent effects of bioclimatic, topographic, and anthropogenic variables. J Mammal 2020; 101:790-803. [PMID: 32665742 PMCID: PMC7333878 DOI: 10.1093/jmammal/gyaa037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 03/16/2020] [Indexed: 11/14/2022] Open
Abstract
Climate change can have particularly severe consequences for high-elevation species that are well-adapted to long-lasting snow conditions within their habitats. One such species is the wolverine, Gulo gulo, with several studies showing a strong, year-round association of the species with the area defined by persistent spring snow cover. This bioclimatic niche also predicts successful dispersal paths for wolverines in the contiguous United States, where the species shows low levels of genetic exchange and low effective population size. Here, we assess the influence of additional climatic, vegetative, topographic, and anthropogenic, variables on wolverine genetic structure in this region using a multivariate, multiscale, landscape genetic approach. This approach allows us to detect landscape-genetic relationships both due to typical, small-scale genetic exchange within habitat, as well as exceptional, long-distance dispersal among habitats. Results suggest that a combination of snow depth, terrain ruggedness, and housing density, best predict gene flow in wolverines, and that the relative importance of variables is scale-dependent. Environmental variables (i.e., isolation-by-resistance, IBR) were responsible for 79% of the explained variation at small scales (i.e., up to ~230 km), and 65% at broad scales (i.e., beyond ~420 km). In contrast, a null model based on only space (i.e., isolation-by-distance, IBD) accounted only for 17% and 11% of the variation at small and broad scales, respectively. Snow depth was the most important variable for predicting genetic structures overall, and at small scales, where it contributed 43% to the variance explained. At broad spatial scales, housing density and terrain ruggedness were most important with contributions to explained variation of 55% and 25%, respectively. While the small-scale analysis most likely captures gene flow within typical wolverine habitat complexes, the broad-scale analysis reflects long-distance dispersal across areas not typically inhabited by wolverines. These findings help to refine our understanding of the processes shaping wolverine genetic structure, which is important for maintaining and improving functional connectivity among remaining wolverine populations.
Collapse
Affiliation(s)
- Niko Balkenhol
- Wildlife Sciences, University of Goettingen, Buesgenweg, Goettingen, Germany.,Department of Fish & Wildlife Sciences, Univesity of Idaho, Moscow, ID, USA
| | - Michael K Schwartz
- USDA Forest Service Rocky Mountain Research Station, E. Beckwith, Missoula, MT, USA
| | | | - Jeffrey P Copeland
- USDA Forest Service Rocky Mountain Research Station, E. Beckwith, Missoula, MT, USA
| | - John S Squires
- USDA Forest Service Rocky Mountain Research Station, E. Beckwith, Missoula, MT, USA
| | | | - Lisette P Waits
- Department of Fish & Wildlife Sciences, Univesity of Idaho, Moscow, ID, USA
| |
Collapse
|
5
|
Mariela G, Laura C, Belant JL. Planning for carnivore recolonization by mapping sex-specific landscape connectivity. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2019.e00869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
6
|
Landguth EL, Forester BR, Eckert AJ, Shirk AJ, Menon M, Whipple A, Day CC, Cushman SA. Modelling multilocus selection in an individual‐based, spatially‐explicit landscape genetics framework. Mol Ecol Resour 2019; 20:605-615. [DOI: 10.1111/1755-0998.13121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 10/28/2019] [Accepted: 11/12/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Erin L. Landguth
- School of Public and Community Health Sciences University of Montana Missoula MT USA
| | | | - Andrew J. Eckert
- Department of Biology Virginia Commonwealth University Richmond VA USA
| | - Andrew J. Shirk
- Climate Impacts Group College of the Environment University of Washington Seattle WA USA
| | - Mitra Menon
- Integrative Life Sciences Virginian Commonwealth University Richmond VA USA
| | - Amy Whipple
- Department of Biological Sciences and Merriam‐Powell Center for Environmental Research Northern Arizona University Flagstaff AZ USA
| | - Casey C. Day
- School of Public and Community Health Sciences University of Montana Missoula MT USA
| | - Samuel A. Cushman
- USDA Forest Service Rocky Mountain Research Station Flagstaff AZ USA
| |
Collapse
|
7
|
Meredith EP, Adkins JK, Rodzen JA. UrsaPlex: An STR multiplex for forensic identification of North American black bear (Ursus americanus). Forensic Sci Int Genet 2019; 44:102161. [PMID: 31677443 DOI: 10.1016/j.fsigen.2019.102161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 10/25/2022]
Abstract
UrsaPlex is a forensic quality 5-dye multiplexed tetranucleotide STR and sex identification panel for individual genetic identification of North American black bears (Ursus americanus). The panel is validated for the identification of black bears involved in human-wildlife conflict events and poaching investigations. This is the first single multiplex panel composed solely of tetranucleotide STRs derived from black bear and bear-specific sex markers. UrsaPlex produces complete genetic profiles from as little as 78 pg of DNA template and has a probability of identity of 2.63 × 10-13. The panel has also been tested for utility in other ursids, and our results indicate with minor modifications, UrsaPlex should prove valuable in identification investigations involving these species as well.
Collapse
Affiliation(s)
- Erin P Meredith
- California Department of Fish and Wildlife - Wildlife Forensic Laboratory, 1415 North Market Blvd. Suite 3, Sacramento, CA, 95834, USA.
| | - Jillian K Adkins
- California Department of Fish and Wildlife - Wildlife Forensic Laboratory, 1415 North Market Blvd. Suite 3, Sacramento, CA, 95834, USA
| | - Jeff A Rodzen
- California Department of Fish and Wildlife - Genetic Research Laboratory, 1415 North Market Blvd. Suite 9, Sacramento, CA, 95834, USA
| |
Collapse
|
8
|
Rutten A, Cox K, Scheppers T, Broecke BV, Leirs H, Casaer J. Analysing the recolonisation of a highly fragmented landscape by wild boar using a landscape genetic approach. WILDLIFE BIOLOGY 2019. [DOI: 10.2981/wlb.00542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
| | - Karen Cox
- K. Cox, Res. Inst. for Nature and Forest (INBO), Geraardsbergen, Belgium
| | | | - Bram Vanden Broecke
- B. Vanden Broecke and H. Leirs, Dept of Biology, Univ. of Antwerp, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Herwig Leirs
- B. Vanden Broecke and H. Leirs, Dept of Biology, Univ. of Antwerp, Universiteitsplein 1, BE-2610 Antwerp, Belgium
| | - Jim Casaer
- J. Casaer, Res. Inst. for Nature and Forest (INBO), Brussels, Belgium
| |
Collapse
|