1
|
Dong PP, Wang RR, Abduriyim S. Diversity and evolution of the MHC class II DRB gene in the Capra sibirica experienced a demographic fluctuation in China. Sci Rep 2023; 13:19352. [PMID: 37935954 PMCID: PMC10630338 DOI: 10.1038/s41598-023-46717-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023] Open
Abstract
The major histocompatibility complex (MHC) genes are the most polymorphic genes in vertebrates, and their proteins play a critical role in adaptive immunity for defense against a variety of pathogens. MHC diversity was lost in many species after experiencing a decline in size. To understand the variation and evolution of MHC genes in the Siberian ibex, Capra sibirica, which has undergone a population decline, we analyzed the variation of the second exon of MHC class II DRB genes in samples collected from five geographic localities in Xinjiang, China, that belong to three diverged mitochondrial clades. Consequently, we identified a total of 26 putative functional alleles (PFAs) with 260 bp in length from 43 individuals, and found one (for 27 individuals) to three (for 5 individuals) PFAs per individual, indicating the presence of one or two DRB loci per haploid genome. The Casi-DRB1*16 was the most frequently occurring PFA, Casi-DRB1*22 was found in only seven individuals, 14 PFAs occurred once, 7 PFAs twice, implying high frequency of rare PFAs. Interestingly, more than half (15) of the PFAs were specific to clade I, only two and three PFAs were specific to clades II and III, respectively. So, we assume that the polygamy and sexual segregation nature of this species likely contributed to the allelic diversity of DRB genes. Genetic diversity indices showed that PFAs of clade II were lower in nucleotide, amino acid, and supertype diversity compared to those of the other two clades. The pattern of allele sharing and FST values between the three clades was to some extent in agreement with the pattern observed in mitochondrial DNA divergence. In addition, recombination analyses revealed no evidence for significant signatures of recombination events. Alleles shared by clades III and the other two clades diverged 6 million years ago, and systematic neighbor grids showed Trans-species polymorphism. Together with the PAML and MEME analyses, the results indicated that the DRB gene in C. sibirica evolved under balancing and positive selection. However, by comparison, it can be clearly seen that different populations were under different selective pressures. Our results are valuable in understanding the diversity and evolution of the DRB gene in a mountain living C. sibirica and in making decisions on future long-term protection strategies.
Collapse
Affiliation(s)
- Pei-Pei Dong
- College of Life Science, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Rui-Rui Wang
- College of Life Science, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Shamshidin Abduriyim
- College of Life Science, Shihezi University, Shihezi, 832003, Xinjiang, China.
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, Shihezi University, Shihezi, 832003, Xinjiang, China.
| |
Collapse
|
2
|
Lam DK, Frantz AC, Burke T, Geffen E, Sin SYW. Both selection and drift drive the spatial pattern of adaptive genetic variation in a wild mammal. Evolution 2023; 77:221-238. [PMID: 36626810 DOI: 10.1093/evolut/qpac014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 10/03/2022] [Accepted: 11/04/2022] [Indexed: 01/12/2023]
Abstract
The major histocompatibility complex (MHC) has been intensively studied for the relative effects of different evolutionary forces in recent decades. Pathogen-mediated balancing selection is generally thought to explain the high polymorphism observed in MHC genes, but it is still unclear to what extent MHC diversity is shaped by selection relative to neutral drift. In this study, we genotyped MHC class II DRB genes and 15 neutral microsatellite loci across 26 geographic populations of European badgers (Meles meles) covering most of their geographic range. By comparing variation of microsatellite and diversity of MHC at different levels, we demonstrate that both balancing selection and drift have shaped the evolution of MHC genes. When only MHC allelic identity was investigated, the spatial pattern of MHC variation was similar to that of microsatellites. By contrast, when functional aspects of the MHC diversity (e.g., immunological supertypes) were considered, balancing selection appears to decrease genetic structuring across populations. Our comprehensive sampling and analytical approach enable us to conclude that the likely mechanisms of selection are heterozygote advantage and/or rare-allele advantage. This study is a clear demonstration of how both balancing selection and genetic drift simultaneously affect the evolution of MHC genes in a widely distributed wild mammal.
Collapse
Affiliation(s)
- Derek Kong Lam
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Alain C Frantz
- Musée National d'Histoire Naturelle, Luxembourg, Luxembourg
| | - Terry Burke
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Eli Geffen
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Zoologist, traveller and explorer: celebrating the 60th anniversary of Alexei Vladimirovich Abramov. RUSSIAN JOURNAL OF THERIOLOGY 2022. [DOI: 10.15298/rusjtheriol.21.2.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Surviving despite reduce MHC variation: selection patterns and genetic variation of the endangered Huillín (Lontra provocax). MAMMAL RES 2021. [DOI: 10.1007/s13364-021-00594-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Ren Y, MacPhillamy C, To TH, Smith TPL, Williams JL, Low WY. Adaptive selection signatures in river buffalo with emphasis on immune and major histocompatibility complex genes. Genomics 2021; 113:3599-3609. [PMID: 34455036 DOI: 10.1016/j.ygeno.2021.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 11/27/2022]
Abstract
River buffalo is an agriculturally important species with many traits, such as disease tolerance, which promote its use worldwide. Highly contiguous genome assemblies of the river buffalo, goat, pig, human and two cattle subspecies were aligned to study gene gains and losses and signs of positive selection. The gene families that have changed significantly in river buffalo since divergence from cattle play important roles in protein degradation, the olfactory receptor system, detoxification and the immune system. We used the branch site model in PAML to analyse single-copy orthologs to identify positively selected genes that may be involved in skin differentiation, mammary development and bone formation in the river buffalo branch. The high contiguity of the genomes enabled evaluation of differences among species in the major histocompatibility complex. We identified a Babesia-like L1 LINE insertion in the DRB1-like gene in the river buffalo and discuss the implication of this finding.
Collapse
Affiliation(s)
- Yan Ren
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Callum MacPhillamy
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia
| | - Thu-Hien To
- Norwegian University of Life Sciences: NMBU, Universitetstunet 3, 1430 Ås, Norway
| | | | - John L Williams
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia; Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Wai Yee Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA 5371, Australia.
| |
Collapse
|
6
|
Ghani MU, Bo L, Buyang A, Yanchun X, Hussain S, Yasir M. Molecular Characterization of MHC Class I Genes in Four Species of the Turdidae Family to Assess Genetic Diversity and Selection. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5585687. [PMID: 33937397 PMCID: PMC8055405 DOI: 10.1155/2021/5585687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/19/2021] [Indexed: 11/17/2022]
Abstract
In vertebrate animals, the molecules encoded by major histocompatibility complex (MHC) genes play an essential role in the adaptive immunity. MHC class I deals with intracellular pathogens (virus) in birds. MHC class I diversity depends on the consequence of local and global environment selective pressure and gene flow. Here, we evaluated the MHC class I gene in four species of the Turdidae family from a broad geographical area of northeast China. We isolated 77 MHC class I sequences, including 47 putatively functional sequences and 30 pseudosequences from 80 individuals. Using the method based on analysis of cloned amplicons (n = 25) for each species, we found two and seven MHC I sequences per individual indicating more than one MHC I locus identified in all sampled species. Results revealed an overall elevated genetic diversity at MHC class I, evidence of different selection patterns among the domains of PBR and non-PBR. Alleles are found to be divergent with overall polymorphic sites per species ranging between 58 and 70 (out of 291 sites). Moreover, transspecies alleles were evident due to convergent evolution or recent speciation for the genus. Phylogenetic relationships among MHC I show an intermingling of alleles clustering among the Turdidae family rather than between other passerines. Pronounced MHC I gene diversity is essential for the existence of species. Our study signifies a valuable tool for the characterization of evolutionary relevant difference across a population of birds with high conservational concerns.
Collapse
Affiliation(s)
- Muhammad Usman Ghani
- College of Wildlife Resources and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Li Bo
- College of Wildlife Resources and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - An Buyang
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Science, Kyushu University, Fukuoka 810-0000, Japan
| | - Xu Yanchun
- College of Wildlife Resources and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Shakeel Hussain
- College of Wildlife Resources and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Muhammad Yasir
- Department of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Evolution of MHC class I genes in Japanese and Russian raccoon dogs, Nyctereutes procyonoides (Carnivora: Canidae). MAMMAL RES 2021; 66:371-383. [PMID: 33747753 PMCID: PMC7957040 DOI: 10.1007/s13364-021-00561-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/03/2021] [Indexed: 10/27/2022]
Abstract
Major histocompatibility complex (MHC) genes have been widely studied to assess the immunological fitness and evolutionary adaptation of animal populations. Among the Canidae, the raccoon dog's adventurous nature, omnivorous behavior, and high variability of intracellular pathogens make it ideal to study selection on MHC class I in a non-model canid species. Here, we examined allelic diversity and evolutionary patterns of MHC class I genes in the raccoon dog (Nyctereutes procyonoides). We identified 48 novel MHC class I alleles from 31 raccoon dogs from Japan and Russia. Some alleles were geographically restricted, whereas others were widely distributed across the species' range. The rate of non-synonymous substitutions was greater than that of synonymous substitutions for both exon 2 and exon 3 encoding α1 and α2 domains, respectively, in the α chain of the MHC class I protein. Positively selected sites at the amino acid level were evident in both the α1 and α2 domains, and a recombination breakpoint was found in exon 3. Bayesian phylogenetic trees showed no evidence of trans-species polymorphism (TSP) with alleles from carnivoran species in other families but did detect TSP between raccoon dogs and the domestic dog, Canis familiaris, indicative of long-term balancing selection in canids. Our results indicate that the extensive allelic diversity of MHC class I in Japanese and Russian raccoon dogs has been influenced and maintained by pathogen-driven positive selection, recombination, and long-term balancing selection. Supplementary Information The online version contains supplementary material available at 10.1007/s13364-021-00561-y.
Collapse
|
8
|
Zhao B, Zhang X, Li B, Du P, Shi L, Dong Y, Gao X, Sha W, Zhang H. Evolution of major histocompatibility complex class I genes in the sable Martes zibellina (Carnivora, Mustelidae). Ecol Evol 2020; 10:3439-3449. [PMID: 32274000 PMCID: PMC7141072 DOI: 10.1002/ece3.6140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 11/10/2022] Open
Abstract
The molecules encoded by major histocompatibility complex (MHC) genes play an essential role in the adaptive immune response among vertebrates. We investigated the molecular evolution of MHC class I genes in the sable Martes zibellina. We isolated 26 MHC class I sequences, including 12 putatively functional sequences and 14 pseudogene sequences, from 24 individuals from two geographic areas of northeast China. The number of putatively functional sequences found in a single individual ranged from one to five, which might be at least 1-3 loci. We found that both balancing selection and recombination contribute to evolution of MHC class I genes in M. zibellina. In addition, we identified a candidate nonclassical MHC class I lineage in Carnivora, which may have preceded the divergence (about 52-57 Mya) of Caniformia and Feliformia. This may contribute to further understanding of the origin and evolution of nonclassical MHC class I genes. Our study provides important immune information of MHC for M. zibellina, as well as other carnivores.
Collapse
Affiliation(s)
- Baojun Zhao
- College of Life Science Qufu Normal University Qufu China
| | - Xue Zhang
- College of Life Science Qufu Normal University Qufu China
| | - Bo Li
- College of Wildlife and Protected Area Northeast Forestry University Harbin China
| | - Pengfei Du
- College of Life Science Qufu Normal University Qufu China
| | - Lupeng Shi
- College of Life Science Qufu Normal University Qufu China
| | - Yuehuan Dong
- College of Life Science Qufu Normal University Qufu China
| | - Xiaodong Gao
- College of Life Science Qufu Normal University Qufu China
| | - Weilai Sha
- College of Life Science Qufu Normal University Qufu China
| | - Honghai Zhang
- College of Life Science Qufu Normal University Qufu China
| |
Collapse
|
9
|
Abduriyim S, Zou D, Zhao H. Origin and evolution of the major histocompatibility complex class I region in eutherian mammals. Ecol Evol 2019; 9:7861-7874. [PMID: 31346446 PMCID: PMC6636196 DOI: 10.1002/ece3.5373] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 01/09/2023] Open
Abstract
Major histocompatibility complex (MHC) genes in vertebrates are vital in defending against pathogenic infections. To gain new insights into the evolution of MHC Class I (MHCI) genes and test competing hypotheses on the origin of the MHCI region in eutherian mammals, we studied available genome assemblies of nine species in Afrotheria, Xenarthra, and Laurasiatheria, and successfully characterized the MHCI region in six species. The following numbers of putatively functional genes were detected: in the elephant, four, one, and eight in the extended class I region, and κ and β duplication blocks, respectively; in the tenrec, one in the κ duplication block; and in the four bat species, one or two in the β duplication block. Our results indicate that MHCI genes in the κ and β duplication blocks may have originated in the common ancestor of eutherian mammals. In the elephant, tenrec, and all four bats, some MHCI genes occurred outside the MHCI region, suggesting that eutherians may have a more complex MHCI genomic organization than previously thought. Bat-specific three- or five-amino-acid insertions were detected in the MHCI α1 domain in all four bats studied, suggesting that pathogen defense in bats relies on MHCIs having a wider peptide-binding groove, as previously assayed by a bat MHCI gene with a three-amino-acid insertion showing a larger peptide repertoire than in other mammals. Our study adds to knowledge on the diversity of eutherian MHCI genes, which may have been shaped in a taxon-specific manner.
Collapse
Affiliation(s)
- Shamshidin Abduriyim
- Department of Ecology, Hubei Key Laboratory of Cell Homeostasis, College of Life ScienceWuhan UniversityWuhanChina
| | - Da‐Hu Zou
- Department of Ecology, Hubei Key Laboratory of Cell Homeostasis, College of Life ScienceWuhan UniversityWuhanChina
| | - Huabin Zhao
- Department of Ecology, Hubei Key Laboratory of Cell Homeostasis, College of Life ScienceWuhan UniversityWuhanChina
| |
Collapse
|