1
|
Aalborg T, Nielsen KL. To be or not to be tetraploid-the impact of marker ploidy on genomic prediction and GWAS of potato. FRONTIERS IN PLANT SCIENCE 2024; 15:1386837. [PMID: 39139728 PMCID: PMC11319270 DOI: 10.3389/fpls.2024.1386837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024]
Abstract
Cultivated potato, Solanum tuberosum L., is considered an autotetraploid with 12 chromosomes with four homologous phases. However, recent evidence found that, due to frequent large phase deletions in the genome, gene ploidy is not constant across the genome. The elite cultivar "Otava" was found to have an average gene copy number of 3.2 across all loci. Breeding programs for elite potato cultivars rely increasingly on genomic prediction tools for selection breeding and elucidation of quantitative trait loci underpinning trait genetic variance. These are typically based on anonymous single nucleotide polymorphism (SNP) markers, which are usually called from, for example, SNP array or sequencing data using a tetraploid model. In this study, we analyzed the impact of using whole genome markers genotyped as either tetraploid or observed allele frequencies from genotype-by-sequencing data on single-trait additive genomic best linear unbiased prediction (GBLUP) genomic prediction (GP) models and single-marker regression genome-wide association studies of potato to evaluate the implications of capturing varying ploidy on the statistical models employed in genomic breeding. A panel of 762 offspring of a diallel cross of 18 parents of elite breeding material was used for modeling. These were genotyped by sequencing and phenotyped for five key performance traits: chipping quality, length/width ratio, senescence, dry matter content, and yield. We also estimated the read coverage required to confidently discriminate between a heterozygous triploid and tetraploid state from simulated data. It was found that using a tetraploid model neither impaired nor improved genomic predictions compared to using the observed allele frequencies that account for true marker ploidy. In genome-wide associations studies (GWAS), very minor variations of both signal amplitude and number of SNPs supporting both minor and major quantitative trait loci (QTLs) were observed between the two data sets. However, all major QTLs were reproducible using both data sets.
Collapse
Affiliation(s)
- Trine Aalborg
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Kåre Lehmann Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Research and Development, Kartoffelmelcentralen (KMC) Amba, Brande, Denmark
| |
Collapse
|
2
|
Phillips AR. Variant calling in polyploids for population and quantitative genetics. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11607. [PMID: 39184203 PMCID: PMC11342233 DOI: 10.1002/aps3.11607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/03/2024] [Accepted: 04/10/2024] [Indexed: 08/27/2024]
Abstract
Advancements in genome assembly and sequencing technology have made whole genome sequence (WGS) data and reference genomes accessible to study polyploid species. Compared to popular reduced-representation sequencing approaches, the genome-wide coverage and greater marker density provided by WGS data can greatly improve our understanding of polyploid species and polyploid biology. However, biological features that make polyploid species interesting also pose challenges in read mapping, variant identification, and genotype estimation. Accounting for characteristics in variant calling like allelic dosage uncertainty, homology between subgenomes, and variance in chromosome inheritance mode can reduce errors. Here, I discuss the challenges of variant calling in polyploid WGS data and discuss where potential solutions can be integrated into a standard variant calling pipeline.
Collapse
Affiliation(s)
- Alyssa R. Phillips
- Department of Evolution and EcologyUniversity of California, DavisDavis95616CaliforniaUSA
| |
Collapse
|
3
|
Alemu A, Åstrand J, Montesinos-López OA, Isidro Y Sánchez J, Fernández-Gónzalez J, Tadesse W, Vetukuri RR, Carlsson AS, Ceplitis A, Crossa J, Ortiz R, Chawade A. Genomic selection in plant breeding: Key factors shaping two decades of progress. MOLECULAR PLANT 2024; 17:552-578. [PMID: 38475993 DOI: 10.1016/j.molp.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Genomic selection, the application of genomic prediction (GP) models to select candidate individuals, has significantly advanced in the past two decades, effectively accelerating genetic gains in plant breeding. This article provides a holistic overview of key factors that have influenced GP in plant breeding during this period. We delved into the pivotal roles of training population size and genetic diversity, and their relationship with the breeding population, in determining GP accuracy. Special emphasis was placed on optimizing training population size. We explored its benefits and the associated diminishing returns beyond an optimum size. This was done while considering the balance between resource allocation and maximizing prediction accuracy through current optimization algorithms. The density and distribution of single-nucleotide polymorphisms, level of linkage disequilibrium, genetic complexity, trait heritability, statistical machine-learning methods, and non-additive effects are the other vital factors. Using wheat, maize, and potato as examples, we summarize the effect of these factors on the accuracy of GP for various traits. The search for high accuracy in GP-theoretically reaching one when using the Pearson's correlation as a metric-is an active research area as yet far from optimal for various traits. We hypothesize that with ultra-high sizes of genotypic and phenotypic datasets, effective training population optimization methods and support from other omics approaches (transcriptomics, metabolomics and proteomics) coupled with deep-learning algorithms could overcome the boundaries of current limitations to achieve the highest possible prediction accuracy, making genomic selection an effective tool in plant breeding.
Collapse
Affiliation(s)
- Admas Alemu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Johanna Åstrand
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden; Lantmännen Lantbruk, Svalöv, Sweden
| | | | - Julio Isidro Y Sánchez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223 Madrid, Spain
| | - Javier Fernández-Gónzalez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223 Madrid, Spain
| | - Wuletaw Tadesse
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Ramesh R Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Anders S Carlsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - José Crossa
- International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera México-Veracruz, Texcoco, México 52640, Mexico
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
4
|
Montesinos-López OA, Crespo-Herrera L, Xavier A, Godwa M, Beyene Y, Pierre CS, de la Rosa-Santamaria R, Salinas-Ruiz J, Gerard G, Vitale P, Dreisigacker S, Lillemo M, Grignola F, Sarinelli M, Pozzo E, Quiroga M, Montesinos-López A, Crossa J. A marker weighting approach for enhancing within-family accuracy in genomic prediction. G3 (BETHESDA, MD.) 2024; 14:jkad278. [PMID: 38079160 PMCID: PMC10849334 DOI: 10.1093/g3journal/jkad278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/27/2023] [Indexed: 02/09/2024]
Abstract
Genomic selection is revolutionizing plant breeding. However, its practical implementation is still very challenging, since predicted values do not necessarily have high correspondence to the observed phenotypic values. When the goal is to predict within-family, it is not always possible to obtain reasonable accuracies, which is of paramount importance to improve the selection process. For this reason, in this research, we propose the Adversaria-Boruta (AB) method, which combines the virtues of the adversarial validation (AV) method and the Boruta feature selection method. The AB method operates primarily by minimizing the disparity between training and testing distributions. This is accomplished by reducing the weight assigned to markers that display the most significant differences between the training and testing sets. Therefore, the AB method built a weighted genomic relationship matrix that is implemented with the genomic best linear unbiased predictor (GBLUP) model. The proposed AB method is compared using 12 real data sets with the GBLUP model that uses a nonweighted genomic relationship matrix. Our results show that the proposed AB method outperforms the GBLUP by 8.6, 19.7, and 9.8% in terms of Pearson's correlation, mean square error, and normalized root mean square error, respectively. Our results support that the proposed AB method is a useful tool to improve the prediction accuracy of a complete family, however, we encourage other investigators to evaluate the AB method to increase the empirical evidence of its potential.
Collapse
Affiliation(s)
| | - Leonardo Crespo-Herrera
- International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera México-Veracruz, CP 52640, Edo. de México, Mexico
| | - Alencar Xavier
- Corteva Agrisciences, 8305 NW 62nd Ave, Johnston, IA 50131, USA
- Purdue University, 915W State Street, West Lafayette, IN 47907, USA
| | - Manje Godwa
- International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera México-Veracruz, CP 52640, Edo. de México, Mexico
| | - Yoseph Beyene
- International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera México-Veracruz, CP 52640, Edo. de México, Mexico
| | - Carolina Saint Pierre
- International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera México-Veracruz, CP 52640, Edo. de México, Mexico
| | | | - Josafhat Salinas-Ruiz
- Colegio de Postgraduados Campus Córdoba, Carretera Federal Córdoba-Veracruz km 348, Manuel León, Amatlán de los Reyes, Veracruz, CP 94953, Mexico
| | - Guillermo Gerard
- International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera México-Veracruz, CP 52640, Edo. de México, Mexico
| | - Paolo Vitale
- International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera México-Veracruz, CP 52640, Edo. de México, Mexico
| | - Susanne Dreisigacker
- International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera México-Veracruz, CP 52640, Edo. de México, Mexico
| | - Morten Lillemo
- Department of Plant Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1433 As, Norway
| | | | | | | | | | - Abelardo Montesinos-López
- Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, 44430, Guadalajara, Jalisco, Mexico
| | - José Crossa
- International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera México-Veracruz, CP 52640, Edo. de México, Mexico
- Colegio de Postgraduados, Montecillos, Edo. de México CP 56230, Mexico
| |
Collapse
|
5
|
Song H, Zhang Q, Hu H. polyGBLUP: a modified genomic best linear unbiased prediction improved the genomic prediction efficiency for autopolyploid species. Brief Bioinform 2024; 25:bbae106. [PMID: 38517695 PMCID: PMC10959164 DOI: 10.1093/bib/bbae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 03/24/2024] Open
Abstract
Given the universality of autopolyploid species in nature, it is crucial to develop genomic selection methods that consider different allele dosages for autopolyploid breeding. However, no method has been developed to deal with autopolyploid data regardless of the ploidy level. In this study, we developed a modified genomic best linear unbiased prediction (GBLUP) model (polyGBLUP) through constructing additive and dominant genomic relationship matrices based on different allele dosages. polyGBLUP could carry out genomic prediction for autopolyploid species regardless of the ploidy level. Through comprehensive simulations and analysis of real data of autotetraploid blueberry and guinea grass and autohexaploid sweet potato, the results showed that polyGBLUP achieved higher prediction accuracy than GBLUP and its superiority was more obvious when the ploidy level of autopolyploids is high. Furthermore, when the dominant effect was added to polyGBLUP (polyGDBLUP), the greater the dominance degree, the more obvious the advantages of polyGDBLUP over the diploid models in terms of prediction accuracy, bias, mean squared error and mean absolute error. For real data, the superiority of polyGBLUP over GBLUP appeared in blueberry and sweet potato populations and a part of the traits in guinea grass population due to the high correlation coefficients between diploid and polyploidy genomic relationship matrices. In addition, polyGDBLUP did not produce higher prediction accuracy than polyGBLUP for most traits of real data as dominant genetic variance was not captured for these traits. Our study will be a significant promising method for genomic prediction of autopolyploid species.
Collapse
Affiliation(s)
- Hailiang Song
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences & Beijing Key Laboratory of Fisheries Biotechnology, Beijing 100068, China
- Key Laboratory of Sturgeon Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hangzhou, 311799, China
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271001, China
| | - Hongxia Hu
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences & Beijing Key Laboratory of Fisheries Biotechnology, Beijing 100068, China
- Key Laboratory of Sturgeon Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Hangzhou, 311799, China
| |
Collapse
|
6
|
Azevedo CF, Ferrão LFV, Benevenuto J, de Resende MDV, Nascimento M, Nascimento ACC, Munoz PR. Using visual scores for genomic prediction of complex traits in breeding programs. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 137:9. [PMID: 38102495 DOI: 10.1007/s00122-023-04512-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
KEY MESSAGE An approach for handling visual scores with potential errors and subjectivity in scores was evaluated in simulated and blueberry recurrent selection breeding schemes to assist breeders in their decision-making. Most genomic prediction methods are based on assumptions of normality due to their simplicity and ease of implementation. However, in plant and animal breeding, continuous traits are often visually scored as categorical traits and analyzed as a Gaussian variable, thus violating the normality assumption, which could affect the prediction of breeding values and the estimation of genetic parameters. In this study, we examined the main challenges of visual scores for genomic prediction and genetic parameter estimation using mixed models, Bayesian, and machine learning methods. We evaluated these approaches using simulated and real breeding data sets. Our contribution in this study is a five-fold demonstration: (i) collecting data using an intermediate number of categories (1-3 and 1-5) is the best strategy, even considering errors associated with visual scores; (ii) Linear Mixed Models and Bayesian Linear Regression are robust to the normality violation, but marginal gains can be achieved when using Bayesian Ordinal Regression Models (BORM) and Random Forest Classification; (iii) genetic parameters are better estimated using BORM; (iv) our conclusions using simulated data are also applicable to real data in autotetraploid blueberry; and (v) a comparison of continuous and categorical phenotypes found that investing in the evaluation of 600-1000 categorical data points with low error, when it is not feasible to collect continuous phenotypes, is a strategy for improving predictive abilities. Our findings suggest the best approaches for effectively using visual scores traits to explore genetic information in breeding programs and highlight the importance of investing in the training of evaluator teams and in high-quality phenotyping.
Collapse
Affiliation(s)
- Camila Ferreira Azevedo
- Statistics Department, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
- Horticultural Sciences Department, Blueberry Breeding and Genomics Lab, University of Florida, Gainesville, FL, USA
| | - Luis Felipe Ventorim Ferrão
- Horticultural Sciences Department, Blueberry Breeding and Genomics Lab, University of Florida, Gainesville, FL, USA
| | - Juliana Benevenuto
- Horticultural Sciences Department, Blueberry Breeding and Genomics Lab, University of Florida, Gainesville, FL, USA
| | - Marcos Deon Vilela de Resende
- Statistics Department, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
- Department of Forestry Engineering, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
- Embrapa Café, Brasília, Distrito Federal, Brazil
| | - Moyses Nascimento
- Statistics Department, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Patricio R Munoz
- Horticultural Sciences Department, Blueberry Breeding and Genomics Lab, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
7
|
Martins FB, Aono AH, Moraes ADCL, Ferreira RCU, Vilela MDM, Pessoa-Filho M, Rodrigues-Motta M, Simeão RM, de Souza AP. Genome-wide family prediction unveils molecular mechanisms underlying the regulation of agronomic traits in Urochloa ruziziensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1303417. [PMID: 38148869 PMCID: PMC10749977 DOI: 10.3389/fpls.2023.1303417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/28/2023]
Abstract
Tropical forage grasses, particularly those belonging to the Urochloa genus, play a crucial role in cattle production and serve as the main food source for animals in tropical and subtropical regions. The majority of these species are apomictic and tetraploid, highlighting the significance of U. ruziziensis, a sexual diploid species that can be tetraploidized for use in interspecific crosses with apomictic species. As a means to support breeding programs, our study investigates the feasibility of genome-wide family prediction in U. ruziziensis families to predict agronomic traits. Fifty half-sibling families were assessed for green matter yield, dry matter yield, regrowth capacity, leaf dry matter, and stem dry matter across different clippings established in contrasting seasons with varying available water capacity. Genotyping was performed using a genotyping-by-sequencing approach based on DNA samples from family pools. In addition to conventional genomic prediction methods, machine learning and feature selection algorithms were employed to reduce the necessary number of markers for prediction and enhance predictive accuracy across phenotypes. To explore the regulation of agronomic traits, our study evaluated the significance of selected markers for prediction using a tree-based approach, potentially linking these regions to quantitative trait loci (QTLs). In a multiomic approach, genes from the species transcriptome were mapped and correlated to those markers. A gene coexpression network was modeled with gene expression estimates from a diverse set of U. ruziziensis genotypes, enabling a comprehensive investigation of molecular mechanisms associated with these regions. The heritabilities of the evaluated traits ranged from 0.44 to 0.92. A total of 28,106 filtered SNPs were used to predict phenotypic measurements, achieving a mean predictive ability of 0.762. By employing feature selection techniques, we could reduce the dimensionality of SNP datasets, revealing potential genotype-phenotype associations. The functional annotation of genes near these markers revealed associations with auxin transport and biosynthesis of lignin, flavonol, and folic acid. Further exploration with the gene coexpression network uncovered associations with DNA metabolism, stress response, and circadian rhythm. These genes and regions represent important targets for expanding our understanding of the metabolic regulation of agronomic traits and offer valuable insights applicable to species breeding. Our work represents an innovative contribution to molecular breeding techniques for tropical forages, presenting a viable marker-assisted breeding approach and identifying target regions for future molecular studies on these agronomic traits.
Collapse
Affiliation(s)
- Felipe Bitencourt Martins
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alexandre Hild Aono
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Aline da Costa Lima Moraes
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | | | - Marco Pessoa-Filho
- Embrapa Cerrados, Brazilian Agricultural Research Corporation, Brasília, Brazil
| | | | - Rosangela Maria Simeão
- Embrapa Gado de Corte, Brazilian Agricultural Research Corporation, Campo Grande, Mato Grosso, Brazil
| | - Anete Pereira de Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
8
|
Magon G, De Rosa V, Martina M, Falchi R, Acquadro A, Barcaccia G, Portis E, Vannozzi A, De Paoli E. Boosting grapevine breeding for climate-smart viticulture: from genetic resources to predictive genomics. FRONTIERS IN PLANT SCIENCE 2023; 14:1293186. [PMID: 38148866 PMCID: PMC10750425 DOI: 10.3389/fpls.2023.1293186] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
The multifaceted nature of climate change is increasing the urgency to select resilient grapevine varieties, or generate new, fitter cultivars, to withstand a multitude of new challenging conditions. The attainment of this goal is hindered by the limiting pace of traditional breeding approaches, which require decades to result in new selections. On the other hand, marker-assisted breeding has proved useful when it comes to traits governed by one or few genes with great effects on the phenotype, but its efficacy is still restricted for complex traits controlled by many loci. On these premises, innovative strategies are emerging which could help guide selection, taking advantage of the genetic diversity within the Vitis genus in its entirety. Multiple germplasm collections are also available as a source of genetic material for the introgression of alleles of interest via adapted and pioneering transformation protocols, which present themselves as promising tools for future applications on a notably recalcitrant species such as grapevine. Genome editing intersects both these strategies, not only by being an alternative to obtain focused changes in a relatively rapid way, but also by supporting a fine-tuning of new genotypes developed with other methods. A review on the state of the art concerning the available genetic resources and the possibilities of use of innovative techniques in aid of selection is presented here to support the production of climate-smart grapevine genotypes.
Collapse
Affiliation(s)
- Gabriele Magon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padova, Agripolis, Viale dell’Università 16, Legnaro, Italy
| | - Valeria De Rosa
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze, 206, Udine, Italy
| | - Matteo Martina
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Largo P. Braccini 2, Grugliasco, Italy
| | - Rachele Falchi
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze, 206, Udine, Italy
| | - Alberto Acquadro
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Largo P. Braccini 2, Grugliasco, Italy
| | - Gianni Barcaccia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padova, Agripolis, Viale dell’Università 16, Legnaro, Italy
| | - Ezio Portis
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Largo P. Braccini 2, Grugliasco, Italy
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padova, Agripolis, Viale dell’Università 16, Legnaro, Italy
| | - Emanuele De Paoli
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze, 206, Udine, Italy
| |
Collapse
|
9
|
Qin X, Hu J, Xu G, Song H, Zhang L, Cao Y. An Efficient Transformation System for Fast Production of VcCHS Transgenic Blueberry Callus and Its Expressional Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2905. [PMID: 37631118 PMCID: PMC10458251 DOI: 10.3390/plants12162905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
The Agrobacterium tumefaciens-mediated transformation for blueberries remains less efficient than is desirable. A new leaf callus regeneration and genetic transformation system was investigated in blueberries in this study. The leaf explants of cv. 'Legacy' and 'Northland' were used to establish the stable callus induction system when placed on the woody plant medium (WPM) supplemented with 1.0 mg·L-1 2, 4-D, 0.4 mg·L-1 6-BA for 30 d; then, the callus was sub-cultured in the proliferation medium supplemented with 1.5 mg·L-1 2, 4-D, 0.4 mg·L-1 6-BA in the darkness at 25 °C every 30 days. The co-cultivation of callus with A. tumefaciens was operated on WPM plus 100 μM acetosyringone for 4 days; then, the transferred callus was grown in WPM supplemented with 1.5 mg·L-1 2,4-D, 0.4 mg·L-1 6-BA, 50 mg·L-1 hygromycin, and 200 mg·L-1 cefotaxime. The VcCHS transgenic blueberry callus with both GFP signal and Hyg resistance was obtained from the transformed callus of cv. 'Northland'. The rate of GFP signal detected in the transformed callus was as high as 49.02%, which was consistent with the PCR assay. Collectively, this study provides a highly efficient genetic transformation system in blueberry callus and a powerful approach for the molecular breeding of blueberries.
Collapse
Affiliation(s)
- Xuejing Qin
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing 100083, China; (X.Q.); (J.H.); (H.S.)
| | - Jing Hu
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing 100083, China; (X.Q.); (J.H.); (H.S.)
| | - Guohui Xu
- College of Life and Health, Dalian University, Dalian 116000, China;
| | - Huifang Song
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing 100083, China; (X.Q.); (J.H.); (H.S.)
| | - Lingyun Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing 100083, China; (X.Q.); (J.H.); (H.S.)
| | - Yibo Cao
- State Key Laboratory of Efficient Production of Forest Resources, Key Laboratory of Forest Silviculture and Conservation of the Ministry of Education, The College of Forestry, Beijing Forestry University, Beijing 100083, China; (X.Q.); (J.H.); (H.S.)
| |
Collapse
|
10
|
Edger PP, Iorizzo M, Bassil NV, Benevenuto J, Ferrão LFV, Giongo L, Hummer K, Lawas LMF, Leisner CP, Li C, Munoz PR, Ashrafi H, Atucha A, Babiker EM, Canales E, Chagné D, DeVetter L, Ehlenfeldt M, Espley RV, Gallardo K, Günther CS, Hardigan M, Hulse-Kemp AM, Jacobs M, Lila MA, Luby C, Main D, Mengist MF, Owens GL, Perkins-Veazie P, Polashock J, Pottorff M, Rowland LJ, Sims CA, Song GQ, Spencer J, Vorsa N, Yocca AE, Zalapa J. There and back again; historical perspective and future directions for Vaccinium breeding and research studies. HORTICULTURE RESEARCH 2022; 9:uhac083. [PMID: 35611183 PMCID: PMC9123236 DOI: 10.1093/hr/uhac083] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/22/2022] [Indexed: 06/02/2023]
Abstract
The genus Vaccinium L. (Ericaceae) contains a wide diversity of culturally and economically important berry crop species. Consumer demand and scientific research in blueberry (Vaccinium spp.) and cranberry (Vaccinium macrocarpon) have increased worldwide over the crops' relatively short domestication history (~100 years). Other species, including bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), and ohelo berry (Vaccinium reticulatum) are largely still harvested from the wild but with crop improvement efforts underway. Here, we present a review article on these Vaccinium berry crops on topics that span taxonomy to genetics and genomics to breeding. We highlight the accomplishments made thus far for each of these crops, along their journey from the wild, and propose research areas and questions that will require investments by the community over the coming decades to guide future crop improvement efforts. New tools and resources are needed to underpin the development of superior cultivars that are not only more resilient to various environmental stresses and higher yielding, but also produce fruit that continue to meet a variety of consumer preferences, including fruit quality and health related traits.
Collapse
Affiliation(s)
- Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- MSU AgBioResearch, Michigan State University, East Lansing, MI, 48824, USA
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | - Nahla V Bassil
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, OR 97333, USA
| | - Juliana Benevenuto
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Luis Felipe V Ferrão
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Lara Giongo
- Fondazione Edmund Mach - Research and Innovation CentreItaly
| | - Kim Hummer
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, OR 97333, USA
| | - Lovely Mae F Lawas
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Courtney P Leisner
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Changying Li
- Phenomics and Plant Robotics Center, College of Engineering, University of Georgia, Athens, USA
| | - Patricio R Munoz
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Hamid Ashrafi
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | - Amaya Atucha
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ebrahiem M Babiker
- USDA-ARS Southern Horticultural Laboratory, Poplarville, MS 39470-0287, USA
| | - Elizabeth Canales
- Department of Agricultural Economics, Mississippi State University, Mississippi State, MS 39762, USA
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, New Zealand
| | - Lisa DeVetter
- Department of Horticulture, Washington State University Northwestern Washington Research and Extension Center, Mount Vernon, WA, 98221, USA
| | - Mark Ehlenfeldt
- SEBS, Plant Biology, Rutgers University, New Brunswick NJ 01019 USA
| | - Richard V Espley
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, New Zealand
| | - Karina Gallardo
- School of Economic Sciences, Washington State University, Puyallup, WA 98371, USA
| | - Catrin S Günther
- The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, New Zealand
| | - Michael Hardigan
- USDA-ARS, Horticulture Crops Research Unit, Corvallis, OR 97333, USA
| | - Amanda M Hulse-Kemp
- USDA-ARS, Genomics and Bioinformatics Research Unit, Raleigh, NC 27695, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - MacKenzie Jacobs
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48823, USA
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
| | - Claire Luby
- USDA-ARS, Horticulture Crops Research Unit, Corvallis, OR 97333, USA
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA, 99163, USA
| | - Molla F Mengist
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | | | | | - James Polashock
- SEBS, Plant Biology, Rutgers University, New Brunswick NJ 01019 USA
| | - Marti Pottorff
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC USA
| | - Lisa J Rowland
- USDA-ARS, Genetic Improvement of Fruits and Vegetables Laboratory, Beltsville, MD 20705, USA
| | - Charles A Sims
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Guo-qing Song
- Plant Biotechnology Resource and Outreach Center, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Jessica Spencer
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | - Nicholi Vorsa
- SEBS, Plant Biology, Rutgers University, New Brunswick NJ 01019 USA
| | - Alan E Yocca
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Juan Zalapa
- USDA-ARS, VCRU, Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
11
|
Jighly A. When do autopolyploids need poly-sequencing data? Mol Ecol 2021; 31:1021-1027. [PMID: 34875138 DOI: 10.1111/mec.16313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022]
Abstract
The sequencing depth required to genotype autopolyploid populations is a very controversial topic. Different studies have adopted variable depth values without a clear guide on the optimal sequencing depth value. Many studies suggest high depth thresholds for different ploidies that may not be practical and substantially increase the overall genotyping cost for different projects. However, such conservative thresholds may not be required to achieve the most common research goals. In fact, some recent reports in the field of quantitative genetics found that much lower sequencing depth thresholds could achieve the same accuracy as high depth thresholds. In this manuscript, I discuss when researchers need to use stringent sequencing depth thresholds and when they can use more relaxed ones. I support my argument by calculating the probabilities of sampling different homologues at a given sequencing depth. I also discuss the uses and the uncertainty in calculating a continuous allelic dosage as the proportion of sequencing reads that hold the alternative allele, which is becoming a common method now in quantitative genetics to replace discrete dosage estimation.
Collapse
Affiliation(s)
- Abdulqader Jighly
- AgriBio, Centre for AgriBiosciences, Agriculture Victoria, Bundoora, Victoria, Australia
| |
Collapse
|
12
|
Strategies to Increase Prediction Accuracy in Genomic Selection of Complex Traits in Alfalfa ( Medicago sativa L.). Cells 2021; 10:cells10123372. [PMID: 34943880 PMCID: PMC8699225 DOI: 10.3390/cells10123372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022] Open
Abstract
Agronomic traits such as biomass yield and abiotic stress tolerance are genetically complex and challenging to improve through conventional breeding approaches. Genomic selection (GS) is an alternative approach in which genome-wide markers are used to determine the genomic estimated breeding value (GEBV) of individuals in a population. In alfalfa (Medicago sativa L.), previous results indicated that low to moderate prediction accuracy values (<70%) were obtained in complex traits, such as yield and abiotic stress resistance. There is a need to increase the prediction value in order to employ GS in breeding programs. In this paper we reviewed different statistic models and their applications in polyploid crops, such as alfalfa and potato. Specifically, we used empirical data affiliated with alfalfa yield under salt stress to investigate approaches that use DNA marker importance values derived from machine learning models, and genome-wide association studies (GWAS) of marker-trait association scores based on different GWASpoly models, in weighted GBLUP analyses. This approach increased prediction accuracies from 50% to more than 80% for alfalfa yield under salt stress. Finally, we expended the weighted GBLUP approach to potato and analyzed 13 phenotypic traits and obtained similar results. This is the first report on alfalfa to use variable importance and GWAS-assisted approaches to increase the prediction accuracy of GS, thus helping to select superior alfalfa lines based on their GEBVs.
Collapse
|
13
|
Yu J, Hulse-Kemp AM, Babiker E, Staton M. High-quality reference genome and annotation aids understanding of berry development for evergreen blueberry (Vaccinium darrowii). HORTICULTURE RESEARCH 2021; 8:228. [PMID: 34719668 PMCID: PMC8558335 DOI: 10.1038/s41438-021-00641-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/22/2021] [Accepted: 07/13/2021] [Indexed: 05/07/2023]
Abstract
Vaccinium darrowii Camp (2n = 2x = 24) is a native North American blueberry species and an important source of traits such as low chill requirement in commercial southern highbush blueberry breeding (Vaccinium corymbosum, 2n = 4x = 48). We present a chromosomal-scale genome of V. darrowii generated by the combination of PacBio sequencing and high throughput chromatin conformation capture (Hi-C) scaffolding technologies, yielding a total length of 1.06 Gigabases (Gb). Over 97.8% of the genome sequences are scaffolded into 24 chromosomes representing the two haplotypes. The primary haplotype assembly of V. darrowii contains 34,809 protein-coding genes. Comparison to a V. corymbosum haplotype assembly reveals high collinearity between the two genomes with small intrachromosomal rearrangements in eight chromosome pairs. With small RNA sequencing, the annotation was further expanded to include more than 200,000 small RNA loci and 638 microRNAs expressed in berry tissues. Transcriptome analysis across fruit development stages indicates that genes involved in photosynthesis are downregulated, while genes involved in flavonoid and anthocyanin biosynthesis are significantly increased at the late stage of berry ripening. A high-quality reference genome and accompanying annotation of V. darrowii is a significant new resource for assessing the evergreen blueberry contribution to the breeding of southern highbush blueberries.
Collapse
Affiliation(s)
- Jiali Yu
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, 37996, USA
| | - Amanda M Hulse-Kemp
- USDA-ARS Genomics and Bioinformatics Research Unit, Raleigh, NC, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA
| | - Ebrahiem Babiker
- USDA-ARS Thad Cochran Southern Horticultural Laboratory, Poplarville, MS, USA.
| | - Margaret Staton
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
14
|
Isidro y Sánchez J, Akdemir D. Training Set Optimization for Sparse Phenotyping in Genomic Selection: A Conceptual Overview. FRONTIERS IN PLANT SCIENCE 2021; 12:715910. [PMID: 34589099 PMCID: PMC8475495 DOI: 10.3389/fpls.2021.715910] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Genomic selection (GS) is becoming an essential tool in breeding programs due to its role in increasing genetic gain per unit time. The design of the training set (TRS) in GS is one of the key steps in the implementation of GS in plant and animal breeding programs mainly because (i) TRS optimization is critical for the efficiency and effectiveness of GS, (ii) breeders test genotypes in multi-year and multi-location trials to select the best-performing ones. In this framework, TRS optimization can help to decrease the number of genotypes to be tested and, therefore, reduce phenotyping cost and time, and (iii) we can obtain better prediction accuracies from optimally selected TRS than an arbitrary TRS. Here, we concentrate the efforts on reviewing the lessons learned from TRS optimization studies and their impact on crop breeding and discuss important features for the success of TRS optimization under different scenarios. In this article, we review the lessons learned from training population optimization in plants and the major challenges associated with the optimization of GS including population size, the relationship between training and test set (TS), update of TRS, and the use of different packages and algorithms for TRS implementation in GS. Finally, we describe general guidelines to improving the rate of genetic improvement by maximizing the use of the TRS optimization in the GS framework.
Collapse
Affiliation(s)
- Julio Isidro y Sánchez
- Centro de Biotecnologia y Genómica de Plantas, Instituto Nacional de Investigación y Tecnologia Agraria y Alimentaria, Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid, Spain
| | - Deniz Akdemir
- Animal and Crop Science Division, Agriculture and Food Science Centre, University College Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Rios EF, Andrade MHML, Resende MFR, Kirst M, de Resende MDV, de Almeida Filho JE, Gezan SA, Munoz P. Genomic prediction in family bulks using different traits and cross-validations in pine. G3-GENES GENOMES GENETICS 2021; 11:6321952. [PMID: 34544139 PMCID: PMC8496210 DOI: 10.1093/g3journal/jkab249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022]
Abstract
Genomic prediction integrates statistical, genomic, and computational tools to improve the estimation of breeding values and increase genetic gain. Due to the broad diversity in mating systems, breeding schemes, propagation methods, and unit of selection, no universal genomic prediction approach can be applied in all crops. In a genome-wide family prediction (GWFP) approach, the family is the basic unit of selection. We tested GWFP in two loblolly pine (Pinus taeda L.) datasets: a breeding population composed of 63 full-sib families (5–20 individuals per family), and a simulated population with the same pedigree structure. In both populations, phenotypic and genomic data was pooled at the family level in silico. Marker effects were estimated to compute genomic estimated breeding values (GEBV) at the individual and family (GWFP) levels. Less than six individuals per family produced inaccurate estimates of family phenotypic performance and allele frequency. Tested across different scenarios, GWFP predictive ability was higher than those for GEBV in both populations. Validation sets composed of families with similar phenotypic mean and variance as the training population yielded predictions consistently higher and more accurate than other validation sets. Results revealed potential for applying GWFP in breeding programs whose selection unit are family, and for systems where family can serve as training sets. The GWFP approach is well suited for crops that are routinely genotyped and phenotyped at the plot-level, but it can be extended to other breeding programs. Higher predictive ability obtained with GWFP would motivate the application of genomic prediction in these situations.
Collapse
Affiliation(s)
- Esteban F Rios
- Agronomy Department, University of Florida, Gainesville, FL 32611, USA
| | | | - Marcio F R Resende
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Matias Kirst
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - Marcos D V de Resende
- EMBRAPA Café/Department of Statistics, Federal University of Viçosa, Avenida PH Rolfs S/N, Viçosa 36570-000, Brazil
| | | | | | - Patricio Munoz
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
16
|
Ferrão LFV, Amadeu RR, Benevenuto J, de Bem Oliveira I, Munoz PR. Genomic Selection in an Outcrossing Autotetraploid Fruit Crop: Lessons From Blueberry Breeding. FRONTIERS IN PLANT SCIENCE 2021; 12:676326. [PMID: 34194453 PMCID: PMC8236943 DOI: 10.3389/fpls.2021.676326] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/12/2021] [Indexed: 05/17/2023]
Abstract
Blueberry (Vaccinium corymbosum and hybrids) is a specialty crop with expanding production and consumption worldwide. The blueberry breeding program at the University of Florida (UF) has greatly contributed to expanding production areas by developing low-chilling cultivars better adapted to subtropical and Mediterranean climates of the globe. The breeding program has historically focused on recurrent phenotypic selection. As an autopolyploid, outcrossing, perennial, long juvenile phase crop, blueberry breeding cycles are costly and time consuming, which results in low genetic gains per unit of time. Motivated by applying molecular markers for a more accurate selection in the early stages of breeding, we performed pioneering genomic selection studies and optimization for its implementation in the blueberry breeding program. We have also addressed some complexities of sequence-based genotyping and model parametrization for an autopolyploid crop, providing empirical contributions that can be extended to other polyploid species. We herein revisited some of our previous genomic selection studies and showed for the first time its application in an independent validation set. In this paper, our contribution is three-fold: (i) summarize previous results on the relevance of model parametrizations, such as diploid or polyploid methods, and inclusion of dominance effects; (ii) assess the importance of sequence depth of coverage and genotype dosage calling steps; (iii) demonstrate the real impact of genomic selection on leveraging breeding decisions by using an independent validation set. Altogether, we propose a strategy for using genomic selection in blueberry, with the potential to be applied to other polyploid species of a similar background.
Collapse
Affiliation(s)
- Luís Felipe V. Ferrão
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Rodrigo R. Amadeu
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Juliana Benevenuto
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Ivone de Bem Oliveira
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
- Hortifrut North America, Inc., Estero, FL, United States
| | - Patricio R. Munoz
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|
17
|
Akdemir D, Rio S, Isidro y Sánchez J. TrainSel: An R Package for Selection of Training Populations. Front Genet 2021; 12:655287. [PMID: 34025720 PMCID: PMC8138169 DOI: 10.3389/fgene.2021.655287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/31/2021] [Indexed: 01/01/2023] Open
Abstract
A major barrier to the wider use of supervised learning in emerging applications, such as genomic selection, is the lack of sufficient and representative labeled data to train prediction models. The amount and quality of labeled training data in many applications is usually limited and therefore careful selection of the training examples to be labeled can be useful for improving the accuracies in predictive learning tasks. In this paper, we present an R package, TrainSel, which provides flexible, efficient, and easy-to-use tools that can be used for the selection of training populations (STP). We illustrate its use, performance, and potentials in four different supervised learning applications within and outside of the plant breeding area.
Collapse
Affiliation(s)
- Deniz Akdemir
- Agriculture & Food Science Centre, Animal and Crop Science Division, University College Dublin, Dublin, Ireland
| | - Simon Rio
- Centro de Biotecnologia y Genómica de Plantas (CBGP, UPM-INIA), Instituto Nacional de Investigación y Tecnologia Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Julio Isidro y Sánchez
- Centro de Biotecnologia y Genómica de Plantas (CBGP, UPM-INIA), Instituto Nacional de Investigación y Tecnologia Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
18
|
Bentley AR, Compton LJ. Theory into practice: opportunities & applications of quantitative genetics in plants. Heredity (Edinb) 2020; 125:373-374. [PMID: 33168960 DOI: 10.1038/s41437-020-00374-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 11/09/2022] Open
Affiliation(s)
| | - Lindsey J Compton
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|