1
|
Manjarrez LF, Guevara MÁ, de María N, Vélez MD, Cobo-Simón I, López-Hinojosa M, Cabezas JA, Mancha JA, Pizarro A, Díaz-Sala MC, Cervera MT. Maritime Pine Rootstock Genotype Modulates Gene Expression Associated with Stress Tolerance in Grafted Stems. PLANTS (BASEL, SWITZERLAND) 2024; 13:1644. [PMID: 38931075 PMCID: PMC11207801 DOI: 10.3390/plants13121644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Climate change-induced hazards, such as drought, threaten forest resilience, particularly in vulnerable regions such as the Mediterranean Basin. Maritime pine (Pinus pinaster Aiton), a model species in Western Europe, plays a crucial role in the Mediterranean forest due to its genetic diversity and ecological plasticity. This study characterizes transcriptional profiles of scion and rootstock stems of four P. pinaster graft combinations grown under well-watered conditions. Our grafting scheme combined drought-sensitive and drought-tolerant genotypes for scions (GAL1056: drought-sensitive scion; and Oria6: drought-tolerant scion) and rootstocks (R1S: drought-sensitive rootstock; and R18T: drought-tolerant rootstock). Transcriptomic analysis revealed expression patterns shaped by genotype provenance and graft combination. The accumulation of differentially expressed genes (DEGs) encoding proteins, involved in defense mechanisms and pathogen recognition, was higher in drought-sensitive scion stems and also increased when grafted onto drought-sensitive rootstocks. DEGs involved in drought tolerance mechanisms were identified in drought-tolerant genotypes as well as in drought-sensitive scions grafted onto drought-tolerant rootstocks, suggesting their establishment prior to drought. These mechanisms were associated with ABA metabolism and signaling. They were also involved in the activation of the ROS-scavenging pathways, which included the regulation of flavonoid and terpenoid metabolisms. Our results reveal DEGs potentially associated with the conifer response to drought and point out differences in drought tolerance strategies. These findings suggest genetic trade-offs between pine growth and defense, which could be relevant in selecting more drought-tolerant Pinus pinaster trees.
Collapse
Affiliation(s)
- Lorenzo Federico Manjarrez
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestal (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria—Consejo Superior de Investigaciones Científicas (INIA–CSIC), 28040 Madrid, Spain; (L.F.M.); (N.d.M.); (M.D.V.); (I.C.-S.); (M.L.-H.); (J.A.C.); (J.A.M.)
| | - María Ángeles Guevara
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestal (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria—Consejo Superior de Investigaciones Científicas (INIA–CSIC), 28040 Madrid, Spain; (L.F.M.); (N.d.M.); (M.D.V.); (I.C.-S.); (M.L.-H.); (J.A.C.); (J.A.M.)
| | - Nuria de María
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestal (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria—Consejo Superior de Investigaciones Científicas (INIA–CSIC), 28040 Madrid, Spain; (L.F.M.); (N.d.M.); (M.D.V.); (I.C.-S.); (M.L.-H.); (J.A.C.); (J.A.M.)
| | - María Dolores Vélez
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestal (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria—Consejo Superior de Investigaciones Científicas (INIA–CSIC), 28040 Madrid, Spain; (L.F.M.); (N.d.M.); (M.D.V.); (I.C.-S.); (M.L.-H.); (J.A.C.); (J.A.M.)
| | - Irene Cobo-Simón
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestal (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria—Consejo Superior de Investigaciones Científicas (INIA–CSIC), 28040 Madrid, Spain; (L.F.M.); (N.d.M.); (M.D.V.); (I.C.-S.); (M.L.-H.); (J.A.C.); (J.A.M.)
| | - Miriam López-Hinojosa
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestal (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria—Consejo Superior de Investigaciones Científicas (INIA–CSIC), 28040 Madrid, Spain; (L.F.M.); (N.d.M.); (M.D.V.); (I.C.-S.); (M.L.-H.); (J.A.C.); (J.A.M.)
| | - José Antonio Cabezas
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestal (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria—Consejo Superior de Investigaciones Científicas (INIA–CSIC), 28040 Madrid, Spain; (L.F.M.); (N.d.M.); (M.D.V.); (I.C.-S.); (M.L.-H.); (J.A.C.); (J.A.M.)
| | - José Antonio Mancha
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestal (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria—Consejo Superior de Investigaciones Científicas (INIA–CSIC), 28040 Madrid, Spain; (L.F.M.); (N.d.M.); (M.D.V.); (I.C.-S.); (M.L.-H.); (J.A.C.); (J.A.M.)
| | - Alberto Pizarro
- Departamento de Ciencias de la Vida, Universidad de Alcalá (UAH), 28805 Alcalá de Henares, Spain; (A.P.); (M.C.D.-S.)
| | - María Carmen Díaz-Sala
- Departamento de Ciencias de la Vida, Universidad de Alcalá (UAH), 28805 Alcalá de Henares, Spain; (A.P.); (M.C.D.-S.)
| | - María Teresa Cervera
- Departamento de Ecología y Genética Forestal, Instituto de Ciencias Forestal (ICIFOR), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria—Consejo Superior de Investigaciones Científicas (INIA–CSIC), 28040 Madrid, Spain; (L.F.M.); (N.d.M.); (M.D.V.); (I.C.-S.); (M.L.-H.); (J.A.C.); (J.A.M.)
| |
Collapse
|
2
|
Cappa EP, Chen C, Klutsch JG, Sebastian-Azcona J, Ratcliffe B, Wei X, Da Ros L, Ullah A, Liu Y, Benowicz A, Sadoway S, Mansfield SD, Erbilgin N, Thomas BR, El-Kassaby YA. Multiple-trait analyses improved the accuracy of genomic prediction and the power of genome-wide association of productivity and climate change-adaptive traits in lodgepole pine. BMC Genomics 2022; 23:536. [PMID: 35870886 PMCID: PMC9308220 DOI: 10.1186/s12864-022-08747-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background Genomic prediction (GP) and genome-wide association (GWA) analyses are currently being employed to accelerate breeding cycles and to identify alleles or genomic regions of complex traits in forest trees species. Here, 1490 interior lodgepole pine (Pinus contorta Dougl. ex. Loud. var. latifolia Engelm) trees from four open-pollinated progeny trials were genotyped with 25,099 SNPs, and phenotyped for 15 growth, wood quality, pest resistance, drought tolerance, and defense chemical (monoterpenes) traits. The main objectives of this study were to: (1) identify genetic markers associated with these traits and determine their genetic architecture, and to compare the marker detected by single- (ST) and multiple-trait (MT) GWA models; (2) evaluate and compare the accuracy and control of bias of the genomic predictions for these traits underlying different ST and MT parametric and non-parametric GP methods. GWA, ST and MT analyses were compared using a linear transformation of genomic breeding values from the respective genomic best linear unbiased prediction (GBLUP) model. GP, ST and MT parametric and non-parametric (Reproducing Kernel Hilbert Spaces, RKHS) models were compared in terms of prediction accuracy (PA) and control of bias. Results MT-GWA analyses identified more significant associations than ST. Some SNPs showed potential pleiotropic effects. Averaging across traits, PA from the studied ST-GP models did not differ significantly from each other, with generally a slight superiority of the RKHS method. MT-GP models showed significantly higher PA (and lower bias) than the ST models, being generally the PA (bias) of the RKHS approach significantly higher (lower) than the GBLUP. Conclusions The power of GWA and the accuracy of GP were improved when MT models were used in this lodgepole pine population. Given the number of GP and GWA models fitted and the traits assessed across four progeny trials, this work has produced the most comprehensive empirical genomic study across any lodgepole pine population to date. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08747-7.
Collapse
|
3
|
Ence D, Smith KE, Fan S, Gomide Neves L, Paul R, Wegrzyn J, Peter GF, Kirst M, Brawner J, Nelson CD, Davis JM. NLR diversity and candidate fusiform rust resistance genes in loblolly pine. G3 GENES|GENOMES|GENETICS 2022; 12:6460333. [PMID: 34897455 PMCID: PMC9210285 DOI: 10.1093/g3journal/jkab421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 11/14/2022]
Abstract
Abstract
Resistance to fusiform rust disease in loblolly pine (Pinus taeda) is a classic gene-for-gene system. Early resistance gene mapping in the P. taeda family 10-5 identified RAPD markers for a major fusiform rust resistance gene, Fr1. More recently, single nucleotide polymorphism (SNP) markers associated with resistance were mapped to a full-length gene model in the loblolly pine genome encoding for a nucleotide-binding site leucine-rich repeat (NLR) protein. NLR genes are one of the most abundant gene families in plant genomes and are involved in effector-triggered immunity. Inter- and intraspecies studies of NLR gene diversity and expression have resulted in improved disease resistance. To characterize NLR gene diversity and discover potential resistance genes, we assembled de novo transcriptomes from 92 loblolly genotypes from across the natural range of the species. In these transcriptomes, we identified novel NLR transcripts that are not present in the loblolly pine reference genome and found significant geographic diversity of NLR genes providing evidence of gene family evolution. We designed capture probes for these NLRs to identify and map SNPs that stably cosegregate with resistance to the SC20-21 isolate of Cronartium quercuum f.sp. fusiforme (Cqf) in half-sib progeny of the 10-5 family. We identified 10 SNPs and 2 quantitative trait loci associated with resistance to SC20-21 Cqf. The geographic diversity of NLR genes provides evidence of NLR gene family evolution in loblolly pine. The SNPs associated with rust resistance provide a resource to enhance breeding and deployment of resistant pine seedlings.
Collapse
Affiliation(s)
- Daniel Ence
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Katherine E Smith
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
- USDA Forest Service, Southern Research, Southern Institute of Forest Genetics, Saucier, MS 39574, USA
| | - Shenghua Fan
- Forest Health Research and Education Center, University of Kentucky, Lexington, KY 40546, USA
- Department of Horticulture, University of Kentucky, Lexington, KY 40546, USA
| | | | - Robin Paul
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Jill Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Gary F Peter
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Matias Kirst
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Jeremy Brawner
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - C Dana Nelson
- USDA Forest Service, Southern Research, Southern Institute of Forest Genetics, Saucier, MS 39574, USA
- USDA Forest Service, Southern Research Station, Forest Health Research and Education Center, Lexington, KY 40546, USA
| | - John M Davis
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Lauer E, Holland J, Isik F. Prediction ability of genome-wide markers in Pinus taeda L. within and between population is affected by relatedness to the training population and trait genetic architecture. G3 (BETHESDA, MD.) 2022; 12:6440053. [PMID: 34849838 PMCID: PMC9210318 DOI: 10.1093/g3journal/jkab405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022]
Abstract
Genomic prediction has the potential to significantly increase the rate of genetic gain in tree breeding programs. In this study, a clonally replicated population (n = 2063) was used to train a genomic prediction model. The model was validated both within the training population and in a separate population (n = 451). The prediction abilities from random (20% vs 80%) cross validation within the training population were 0.56 and 0.78 for height and stem form, respectively. Removal of all full-sib relatives within the training population resulted in ∼50% reduction in their genomic prediction ability for both traits. The average prediction ability for all 451 individual trees was 0.29 for height and 0.57 for stem form. The degree of genetic linkage (full-sib family, half sib family, unrelated) between the training and validation sets had a strong impact on prediction ability for stem form but not for height. A dominant dwarfing allele, the first to be reported in a conifer species, was discovered via genome-wide association studies on linkage Group 5 that conferred a 0.33-m mean height reduction. However, the QTL was family specific. The rapid decay of linkage disequilibrium, large genome size, and inconsistencies in marker-QTL linkage phase suggest that large, diverse training populations are needed for genomic selection in Pinus taeda L.
Collapse
Affiliation(s)
- Edwin Lauer
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - James Holland
- USDA-ARS Plant Science Research Unit, North Carolina State University, Raleigh, NC 27695, USA
| | - Fikret Isik
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|