1
|
Dwivedi SL, Heslop‐Harrison P, Amas J, Ortiz R, Edwards D. Epistasis and pleiotropy-induced variation for plant breeding. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2788-2807. [PMID: 38875130 PMCID: PMC11536456 DOI: 10.1111/pbi.14405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024]
Abstract
Epistasis refers to nonallelic interaction between genes that cause bias in estimates of genetic parameters for a phenotype with interactions of two or more genes affecting the same trait. Partitioning of epistatic effects allows true estimation of the genetic parameters affecting phenotypes. Multigenic variation plays a central role in the evolution of complex characteristics, among which pleiotropy, where a single gene affects several phenotypic characters, has a large influence. While pleiotropic interactions provide functional specificity, they increase the challenge of gene discovery and functional analysis. Overcoming pleiotropy-based phenotypic trade-offs offers potential for assisting breeding for complex traits. Modelling higher order nonallelic epistatic interaction, pleiotropy and non-pleiotropy-induced variation, and genotype × environment interaction in genomic selection may provide new paths to increase the productivity and stress tolerance for next generation of crop cultivars. Advances in statistical models, software and algorithm developments, and genomic research have facilitated dissecting the nature and extent of pleiotropy and epistasis. We overview emerging approaches to exploit positive (and avoid negative) epistatic and pleiotropic interactions in a plant breeding context, including developing avenues of artificial intelligence, novel exploitation of large-scale genomics and phenomics data, and involvement of genes with minor effects to analyse epistatic interactions and pleiotropic quantitative trait loci, including missing heritability.
Collapse
Affiliation(s)
| | - Pat Heslop‐Harrison
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
- Department of Genetics and Genome Biology, Institute for Environmental FuturesUniversity of LeicesterLeicesterUK
| | - Junrey Amas
- Centre for Applied Bioinformatics, School of Biological SciencesUniversity of Western AustraliaPerthWAAustralia
| | - Rodomiro Ortiz
- Department of Plant BreedingSwedish University of Agricultural SciencesAlnarpSweden
| | - David Edwards
- Centre for Applied Bioinformatics, School of Biological SciencesUniversity of Western AustraliaPerthWAAustralia
| |
Collapse
|
2
|
Evans C, Mogg SL, Soraru C, Wallington E, Coates J, Borrill P. Wheat NAC transcription factor NAC5-1 is a positive regulator of senescence. PLANT DIRECT 2024; 8:e620. [PMID: 38962173 PMCID: PMC11217990 DOI: 10.1002/pld3.620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024]
Abstract
Wheat (Triticum aestivum L.) is an important source of both calories and protein in global diets, but there is a trade-off between grain yield and protein content. The timing of leaf senescence could mediate this trade-off as it is associated with both declines in photosynthesis and nitrogen remobilization from leaves to grain. NAC transcription factors play key roles in regulating senescence timing. In rice, OsNAC5 expression is correlated with increased protein content and upregulated in senescing leaves, but the role of the wheat ortholog in senescence had not been characterized. We verified that NAC5-1 is the ortholog of OsNAC5 and that it is expressed in senescing flag leaves in wheat. To characterize NAC5-1, we combined missense mutations in NAC5-A1 and NAC5-B1 from a TILLING mutant population and overexpressed NAC5-A1 in wheat. Mutation in NAC5-1 was associated with delayed onset of flag leaf senescence, while overexpression of NAC5-A1 was associated with slightly earlier onset of leaf senescence. DAP-seq was performed to locate transcription factor binding sites of NAC5-1. Analysis of DAP-seq and comparison with other studies identified putative downstream target genes of NAC5-1 which could be associated with senescence. This work showed that NAC5-1 is a positive transcriptional regulator of leaf senescence in wheat. Further research is needed to test the effect of NAC5-1 on yield and protein content in field trials, to assess the potential to exploit this senescence regulator to develop high-yielding wheat while maintaining grain protein content.
Collapse
Affiliation(s)
- Catherine Evans
- Department of Crop GeneticsJohn Innes CentreNorwichUK
- School of BiosciencesUniversity of BirminghamBirminghamUK
| | | | | | | | - Juliet Coates
- School of BiosciencesUniversity of BirminghamBirminghamUK
| | | |
Collapse
|
3
|
Li Z, Luo Q, Gan Y, Li X, Ou X, Deng Y, Fu S, Tang Z, Tan F, Luo P, Ren T. Identification and validation of major and stable quantitative trait locus for falling number in common wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:83. [PMID: 38491113 DOI: 10.1007/s00122-024-04588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
KEY MESSAGE A major and stable QTL, QFn.sau-1B.2, which can explain 13.6% of the PVE in FN and has a positive effect on resistance in SGR, was mapped and validated. The falling number (FN) is considered one of the most important quality traits of wheat grain and is the most important quality evaluation index for wheat trade worldwide. The quantitative trait loci (QTLs) for FN were mapped in three years of experiments. 23, 30, and 58 QTLs were identified using the ICIM-BIP, ICIM-MET, and ICIM-EPI methods, respectively. Among them, seven QTLs were considered stable. QFn.sau-1B.2, which was mapped to the 1BL chromosome, can explain 13.6% of the phenotypic variation on average and is considered a major and stable QTL for FN. This QTL was mapped in a 1 cM interval and is flanked by the markers AX-110409346 and AX-108743901. Epistatic analysis indicated that QFN.sau-1B.2 has a strong influence on FN through both additive and epistatic effects. The Kompetitive Allele-Specific PCR marker KASP-AX-108743901, which is closely linked to QFn.sau-1B.2, was designed. The genetic effect of QFn.sau-1B.2 on FN was successfully confirmed in Chuannong18 × T1208 and CN17 × CN11 populations. Moreover, the results of the additive effects of favorable alleles for FN showed that the QTLs for FN had significant effects not only on FN but also on the resistance to spike germination. Within the interval of QFn.sau-1B.2, 147 high-confidence genes were found. According to the gene annotation and the transcriptome data, four genes might be associated with FN. QFn.sau-1B.2 may provide a new resource for the high-quality breeding of wheat in the future.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Plant Genetics and Breeding at, Sichuan Agricultural University of Sichuan Province, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Qinyi Luo
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Plant Genetics and Breeding at, Sichuan Agricultural University of Sichuan Province, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yujie Gan
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xinli Li
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Plant Genetics and Breeding at, Sichuan Agricultural University of Sichuan Province, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Xia Ou
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Yawen Deng
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Shulan Fu
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Plant Genetics and Breeding at, Sichuan Agricultural University of Sichuan Province, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Zongxiang Tang
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Plant Genetics and Breeding at, Sichuan Agricultural University of Sichuan Province, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Feiquan Tan
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Plant Genetics and Breeding at, Sichuan Agricultural University of Sichuan Province, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Peigao Luo
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China
- Key Laboratory of Plant Genetics and Breeding at, Sichuan Agricultural University of Sichuan Province, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Tianheng Ren
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Plant Genetics and Breeding at, Sichuan Agricultural University of Sichuan Province, Wenjiang, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
4
|
Muqaddasi QH, Muqaddasi RK, Ebmeyer E, Korzun V, Argillier O, Mirdita V, Reif JC, Ganal MW, Röder MS. Genetic control and prospects of predictive breeding for European winter wheat's Zeleny sedimentation values and Hagberg-Perten falling number. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:229. [PMID: 37874400 PMCID: PMC10598174 DOI: 10.1007/s00122-023-04450-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/16/2023] [Indexed: 10/25/2023]
Abstract
KEY MESSAGE Sedimentation values and falling number in the last decades have helped maintain high baking quality despite rigorous selection for grain yield in wheat. Allelic combinations of major loci sustained the bread-making quality while improving grain yield. Glu-D1, Pinb-D1, and non-gluten proteins are associated with sedimentation values and falling number in European wheat. Zeleny sedimentation values (ZSV) and Hagberg-Perten falling number (HFN) are among the most important parameters that help determine the baking quality classes of wheat and, thus, influence the monetary benefits for growers. We used a published data set of 372 European wheat varieties evaluated in replicated field trials in multiple environments. ZSV and HFN traits hold a wide and significant genotypic variation and high broad-sense heritability. The genetic correlations revealed positive and significant associations of ZSV and HFN with each other, grain protein content (GPC) and grain hardness; however, they were all significantly negatively correlated with grain yield. Besides, GPC appeared to be the major predictor for ZSV and HFN. Our genome-wide association analyses based on high-quality SSR, SNP, and candidate gene markers revealed a strong quantitative genetic nature of ZSV and HFN by explaining their total genotypic variance as 41.49% and 38.06%, respectively. The association of known Glutenin (Glu-1) and Puroindoline (Pin-1) with ZSV provided positive analytic proof of our studies. We report novel candidate loci associated with globulins and albumins-the non-gluten monomeric proteins in wheat. In addition, predictive breeding analyses for ZSV and HFN suggest using genomic selection in the early stages of breeding programs with an average prediction accuracy of 81 and 59%, respectively.
Collapse
Affiliation(s)
- Quddoos H Muqaddasi
- European Wheat Breeding Center, BASF Agricultural Solutions GmbH, Am Schwabeplan 8, 06466, Stadt Seeland OT Gatersleben, Germany.
- KWS SAAT SE & Co. KGaA, Einbeck, 37574, Germany.
| | - Roop Kamal Muqaddasi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466, Stadt Seeland OT Gatersleben, Germany
| | | | | | | | - Vilson Mirdita
- European Wheat Breeding Center, BASF Agricultural Solutions GmbH, Am Schwabeplan 8, 06466, Stadt Seeland OT Gatersleben, Germany
| | - Jochen C Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466, Stadt Seeland OT Gatersleben, Germany
| | - Martin W Ganal
- TraitGenetics GmbH, Am Schwabeplan 1B, 06466, Stadt Seeland OT Gatersleben, Germany
| | - Marion S Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466, Stadt Seeland OT Gatersleben, Germany
| |
Collapse
|
5
|
Bouidghaghen J, Moreau L, Beauchêne K, Chapuis R, Mangel N, Cabrera-Bosquet L, Welcker C, Bogard M, Tardieu F. Robotized indoor phenotyping allows genomic prediction of adaptive traits in the field. Nat Commun 2023; 14:6603. [PMID: 37857601 PMCID: PMC10587076 DOI: 10.1038/s41467-023-42298-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
Breeding for resilience to climate change requires considering adaptive traits such as plant architecture, stomatal conductance and growth, beyond the current selection for yield. Robotized indoor phenotyping allows measuring such traits at high throughput for speed breeding, but is often considered as non-relevant for field conditions. Here, we show that maize adaptive traits can be inferred in different fields, based on genotypic values obtained indoor and on environmental conditions in each considered field. The modelling of environmental effects allows translation from indoor to fields, but also from one field to another field. Furthermore, genotypic values of considered traits match between indoor and field conditions. Genomic prediction results in adequate ranking of genotypes for the tested traits, although with lesser precision for elite varieties presenting reduced phenotypic variability. Hence, it distinguishes genotypes with high or low values for adaptive traits, conferring either spender or conservative strategies for water use under future climates.
Collapse
Affiliation(s)
- Jugurta Bouidghaghen
- LEPSE, Univ Montpellier, INRAE, Montpellier, France
- ARVALIS, Chemin de la côte vieille, Baziège, France
| | - Laurence Moreau
- GQE-Le Moulon, INRAE, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Katia Beauchêne
- ARVALIS, 45 Voie Romaine, Ouzouer-Le-Marché, Beauce La Romaine, France
| | | | - Nathalie Mangel
- ARVALIS, Station de recherche et d'expérimentation, Boigneville, France
| | | | | | | | | |
Collapse
|
6
|
Sakuma S, Koppolu R. Form follows function in Triticeae inflorescences. BREEDING SCIENCE 2023; 73:46-56. [PMID: 37168815 PMCID: PMC10165339 DOI: 10.1270/jsbbs.22085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/21/2022] [Indexed: 05/13/2023]
Abstract
Grass inflorescences produce grains, which are directly connected to our food. In grass crops, yields are mainly affected by grain number and weight; thus, understanding inflorescence shape is crucially important for cereal crop breeding. In the last two decades, several key genes controlling inflorescence shape have been elucidated, thanks to the availability of rich genetic resources and powerful genomics tools. In this review, we focus on the inflorescence architecture of Triticeae species, including the major cereal crops wheat and barley. We summarize recent advances in our understanding of the genetic basis of spike branching, and spikelet and floret development in the Triticeae. Considering our changing climate and its impacts on cereal crop yields, we also discuss the future orientation of research.
Collapse
Affiliation(s)
- Shun Sakuma
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
- Corresponding authors (e-mail: and )
| | - Ravi Koppolu
- Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
- Corresponding authors (e-mail: and )
| |
Collapse
|
7
|
Fradgley NS, Bacon J, Bentley AR, Costa‐Neto G, Cottrell A, Crossa J, Cuevas J, Kerton M, Pope E, Swarbreck SM, Gardner KA. Prediction of near-term climate change impacts on UK wheat quality and the potential for adaptation through plant breeding. GLOBAL CHANGE BIOLOGY 2023; 29:1296-1313. [PMID: 36482280 PMCID: PMC10108302 DOI: 10.1111/gcb.16552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 05/26/2023]
Abstract
Wheat is a major crop worldwide, mainly cultivated for human consumption and animal feed. Grain quality is paramount in determining its value and downstream use. While we know that climate change threatens global crop yields, a better understanding of impacts on wheat end-use quality is also critical. Combining quantitative genetics with climate model outputs, we investigated UK-wide trends in genotypic adaptation for wheat quality traits. In our approach, we augmented genomic prediction models with environmental characterisation of field trials to predict trait values and climate effects in historical field trial data between 2001 and 2020. Addition of environmental covariates, such as temperature and rainfall, successfully enabled prediction of genotype by environment interactions (G × E), and increased prediction accuracy of most traits for new genotypes in new year cross validation. We then extended predictions from these models to much larger numbers of simulated environments using climate scenarios projected under Representative Concentration Pathways 8.5 for 2050-2069. We found geographically varying climate change impacts on wheat quality due to contrasting associations between specific weather covariables and quality traits across the UK. Notably, negative impacts on quality traits were predicted in the East of the UK due to increased summer temperatures while the climate in the North and South-west may become more favourable with increased summer temperatures. Furthermore, by projecting 167,040 simulated future genotype-environment combinations, we found only limited potential for breeding to exploit predictable G × E to mitigate year-to-year environmental variability for most traits except Hagberg falling number. This suggests low adaptability of current UK wheat germplasm across future UK climates. More generally, approaches demonstrated here will be critical to enable adaptation of global crops to near-term climate change.
Collapse
Affiliation(s)
| | | | - Alison R. Bentley
- NIABCambridgeUK
- International Maize and Wheat Improvement Center (CIMMYT)Carretera México‐VeracruzMexico
| | | | | | - Jose Crossa
- International Maize and Wheat Improvement Center (CIMMYT)Carretera México‐VeracruzMexico
| | - Jaime Cuevas
- Universidad Autonoma del Estado de Quintana RooChetumalQuintana RooMexico
| | | | | | | | - Keith A. Gardner
- NIABCambridgeUK
- International Maize and Wheat Improvement Center (CIMMYT)Carretera México‐VeracruzMexico
| |
Collapse
|
8
|
Fan X, Liu X, Feng B, Zhou Q, Deng G, Long H, Cao J, Guo S, Ji G, Xu Z, Wang T. Construction of a novel Wheat 55 K SNP array-derived genetic map and its utilization in QTL mapping for grain yield and quality related traits. Front Genet 2022; 13:978880. [PMID: 36092872 PMCID: PMC9462458 DOI: 10.3389/fgene.2022.978880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Wheat is one of the most important staple crops for supplying nutrition and energy to people world. A new genetic map based on the Wheat 55 K SNP array was constructed using recombinant inbred lines derived from a cross between Zhongkemai138 and Kechengmai2 to explore the genetic foundation for wheat grain features. This new map covered 2,155.72 cM across the 21 wheat chromosomes with 11,455 markers. And 2,846 specific markers for this genetic map and 148 coincident markers among different maps were documented, which was helpful for improving and updating wheat genetic and genomic information. Using this map, a total of 68 additive QTLs and 82 pairs of epistatic QTLs were detected for grain features including yield, nutrient composition, and quality-related traits by QTLNetwork 2.1 and IciMapping 4.1 software. Fourteen additive QTLs and one pair of epistatic QTLs could be detected by both software programs and thus regarded as stable QTLs here, all of which explained higher phenotypic variance and thus could be utilized for wheat grain improvement. Additionally, thirteen additive QTLs were clustered into three genomic intervals (C4D.2, C5D, and C6D2), each of which had at least two stable QTLs. Among them, C4D.2 and C5D have been attributed to the famous dwarfing gene Rht2 and the hardness locus Pina, respectively, while endowed with main effects on eight grain yield/quality related traits and epistatically interacted with each other to control moisture content, indicating that the correlation of involved traits was supported by the pleotropic of individual genes but also regulated by the gene interaction networks. Additionally, the stable additive effect of C6D2 (QMc.cib-6D2 and QTw.cib-6D2) on moisture content was also highlighted, potentially affected by a novel locus, and validated by its flanking Kompetitive Allele-Specific PCR marker, and TraesCS6D02G109500, encoding aleurone layer morphogenesis protein, was deduced to be one of the candidate genes for this locus. This result observed at the QTL level the possible contribution of grain water content to the balances among yield, nutrients, and quality properties and reported a possible new locus controlling grain moisture content as well as its linked molecular marker for further grain feature improvement.
Collapse
Affiliation(s)
- Xiaoli Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaofeng Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Feng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jun Cao
- Yibin University, Yibin, China
| | - Shaodan Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Guangsi Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhibin Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- *Correspondence: Zhibin Xu, ; Tao Wang,
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Zhibin Xu, ; Tao Wang,
| |
Collapse
|
9
|
Multi-faceted approaches for breeding nutrient-dense, disease-resistant, and climate-resilient crop varieties for food and nutritional security. Heredity (Edinb) 2022; 128:387-390. [PMID: 35606571 DOI: 10.1038/s41437-022-00542-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 12/17/2022] Open
|