1
|
Liang YF, Xue TT, Gadagkar SR, Qin F, Janssens SB, Yu SX. Phylogenomic conflict analyses of plastid and mitochondrial genomes of Impatiens (Balsaminaceae) reveal its complex evolutionary history. Mol Phylogenet Evol 2025; 206:108325. [PMID: 40068780 DOI: 10.1016/j.ympev.2025.108325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Impatiens is among the most diverse angiosperm genera, comprising more than 1000 species. The phylogenetic relationship among sections of Impatiens remains unclear. Plastomes and mitogenomes are useful for resolving problematic relationships in plant phylogenetics; however, conflicts between the organellar genomes have been reported. Here, we reconstructed the phylogeny of Impatiens using concatenated and multispecies coalescent (MSC) methods based on coding and noncoding regions of the plastome and coding regions of the mitogenome from 139 species, representing all major clades in Impatiens. Conflict analyses were conducted to test and visualize the incongruences between the organellar genomes and within the plastome. The analyses supported the monophyly of all subgenera and sections and identified a new clade (clade Longlinensis), but the relationships among these sections are inconsistent. There was incongruence between the organellar genome trees regarding the relationships among sect. Semeiocardium, sect. Racemosae and clade Longlinensis. There was also incongruence within the plastome regarding the relationships among sections Fasciculatae, Impatiens, Tuberosae, Scorpioidae, and Uniflorae. Our results show that incongruence between organellar genomes likely results from the complex evolutionary history of the genus, involving mixed inheritance of organellar genomes and hybridization. The incongruence within the plastome may result from the limited phylogenetic signal in plastome data, which could be due to the rapid radiation between 15.07 and 12.93 Ma. Specific genes and regions that led to such incongruence have been identified. By confirming the monophyly of Impatiens sections and detecting phylogenetic conflicts, this study provides a unique plastid and mitogenomic perspective on Impatiens phylogeny.
Collapse
Affiliation(s)
- Yun-Fen Liang
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Tian Xue
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sudhindra R Gadagkar
- Biomedical Sciences, College of Graduate Studies, Midwestern University, AZ 85308, USA; College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Fei Qin
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Steven B Janssens
- Meise Botanic Garden, Nieuwelaan 38, BE-1860 Meise, Belgium; Department of Biology, KU Leuven, Kasteelpark Arenberg 31, BE-3001 Leuven, Belgium.
| | - Sheng-Xiang Yu
- State Key Laboratory of Plant Diversity and Prominent Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Li PW, Lu YB, Antonelli A, Zhu ZJ, Wang W, Qin XM, Yang XR, Zhang Q. Sliding-window phylogenetic analyses uncover complex interplastomic recombination in the tropical Asian-American disjunct plant genus Hedyosmum (Chloranthaceae). THE NEW PHYTOLOGIST 2025. [PMID: 40165720 DOI: 10.1111/nph.70120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Affiliation(s)
- Peng-Wei Li
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| | - Yong-Bin Lu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, London, TW9 3AE, UK
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30, Göteborg, Sweden
- Department of Biology, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
- Wuhan Botanical Garden, Chinese Academy of Sciences, No. 201 Jiufeng 1 Road, East Lake High-Tech Development Zone, Wuhan, 430074, Hubei, China
| | - Zheng-Juan Zhu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| | - Wei Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xin-Mei Qin
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| | - Xue-Rong Yang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| | - Qiang Zhang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, 541006, China
| |
Collapse
|
3
|
Zhai T, Zhao Z, Fu C, Huang L, Jiang C, Li M, Wang Z, Yang X. De novo assembly and comparative analysis of cherry ( Prunus subgenus Cerasus) mitogenomes. FRONTIERS IN PLANT SCIENCE 2025; 16:1568698. [PMID: 40196431 PMCID: PMC11973375 DOI: 10.3389/fpls.2025.1568698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 02/28/2025] [Indexed: 04/09/2025]
Abstract
Prunus subgenus Cerasus (Mill) A. Gray, commonly known as cherries and cherry blossoms, possesses significant edible and ornamental value. However, the mitochondrial genomes (mitogenomes) of cherry species remain largely unexplored. Here, we successfully assembled the mitogenomes of five cherry species (P. campanulata, P. fruticosa, P. mahaleb, P. pseudocerasus, and P. speciosa), revealing common circular structures. The assembled mitogenomes exhibited sizes ranging from 383,398 bp to 447,498 bp, with GC content varying between 45.54% and 45.76%. A total of 62 to 69 genes were annotated, revealing variability in the copy number of protein-coding genes (PCGs) and tRNA genes. Mitogenome collinearity analysis indicated genomic rearrangements across Prunus species, driven by repetitive sequences, particularly dispersed repeats. Additionally, the five cherry species displayed highly conserved codon usage and RNA editing patterns, highlighting the evolutionary conservation of the mitochondrial PCGs. Phylogenetic analyses confirmed the monophyly of subg. Cerasus, although notable phylogenetic incongruences were observed between the mitochondrial and plastid datasets. These results provide significant genomic resources for forthcoming studies on the evolution and molecular breeding of cherry mitogenomes, enhancing the overall comprehension of mitogenome structure and evolution within Prunus.
Collapse
Affiliation(s)
- Tianya Zhai
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Zhuang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Chenlong Fu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
- College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Lizhen Huang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Changci Jiang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Meng Li
- College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Zefu Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Xiaoyue Yang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
4
|
Paquin F, Cristescu ME, Blier PU, Lemieux H, Dufresne F. Cumulative effects of mutation accumulation on mitochondrial function and fitness. Mitochondrion 2025; 80:101976. [PMID: 39486563 DOI: 10.1016/j.mito.2024.101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The impact of mutations on the mitochondria deserves specific interest due to the crucial role played by these organelles on numerous cellular functions. This study examines the effects of repeated bottlenecks on mitochondrial function and fitness. Daphnia pulex mutation accumulation lines (MA) lines were maintained for over 120 generations under copper and no copper conditions. Following the MA propagation, Daphnia from MA lines were raised under optimal and high temperatures for two generations before assessing mitochondrial and phenotypic traits. Spontaneous mutation accumulation under copper led to a later age at maturity and lowered fecundity in the MA lines. Mitochondrial respiration was found to be 10% lower in all mutation accumulation (MA) lines as compared to the non-MA control. MtDNA copy number was elevated in MA lines compared to the control under optimal temperature suggesting a compensatory mechanism. Three MA lines propagated under low copper had very low mtDNA copy number and fitness, suggesting mutations might have affected genes involved in mtDNA replication or mitochondrial biogenesis. Overall, our study suggests that mutation accumulation had an impact on life history traits, mtDNA copy number, and mitochondrial respiration. Some phenotypic effects were magnified under high temperatures. MtDNA copy number appears to be an important mitigation factor to allow mitochondria to cope with mutation accumulation up to a certain level beyond which it can no longer compensate.
Collapse
Affiliation(s)
- Frédérique Paquin
- Département de biologie, Université du Québec à Rimouski, 300 allée des ursulines, Rimouski, Québec G5L 3A1, Canada
| | - Melania E Cristescu
- Department of Biology, McGill University, 1205 Docteur Penfield, Montréal, Québec H3A 1B1, Canada
| | - Pierre U Blier
- Département de biologie, Université du Québec à Rimouski, 300 allée des ursulines, Rimouski, Québec G5L 3A1, Canada
| | - Hélène Lemieux
- Department of Medicine, Women and Children Research Health Institute, University of Alberta, Edmonton, Alberta T6C 4G9, Canada
| | - France Dufresne
- Département de biologie, Université du Québec à Rimouski, 300 allée des ursulines, Rimouski, Québec G5L 3A1, Canada.
| |
Collapse
|
5
|
Hou Z, Wang M, Jiang Y, Xue Q, Liu W, Niu Z, Ding X. Mitochondrial genome insights into the spatio-temporal distribution and genetic diversity of Dendrobium hancockii Rolfe (Orchidaceae). FRONTIERS IN PLANT SCIENCE 2024; 15:1469267. [PMID: 39502918 PMCID: PMC11535511 DOI: 10.3389/fpls.2024.1469267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Introduction With its distinctive evolutionary rate and inheritance patterns separate from the nuclear genome, mitochondrial genome analysis has become a prominent focus of current research. Dendrobium hancockii Rolfe, a species of orchid with both medicinal and horticultural value, will benefit from the application of the fully assembled and annotated mitochondrial genome. This will aid in elucidating its phylogenetic relationships, comparative genomics, and population genetic diversity. Methods Based on sequencing results from Illumina combined with PacBio and Nanopore, the mitochondrial genome map of D. hancockii was constructed. Comparative analysis was conducted from the perspectives of phylogeny across multiple species, selection pressure on protein-coding genes, and homologous segments. The population diversity of D. hancockii was analyzed using single nucleotide polymorphism (SNP) data from the mitochondrial genome and single-copy nuclear genes. Results and discussion This research constructed a circular mitochondrial map for D. hancockii, spanning 523,952 bp, containing 40 unique protein-coding genes, 37 transfer RNA genes, and 4 ribosomal RNA genes. Comparative analysis of mitochondrial genes from 26 land plants revealed a conserved gene cluster, "rpl16-ccmFn-rps3-rps19," particularly within the Dendrobium genus. The mitochondrial genome of D. hancockii exhibits a lower point mutation rate but significant structural variation. Analysis of 103 resequencing samples identified 19,101 SNP sites, dividing D. hancockii into two major groups with limited gene flow between them, as supported by population diversity, genetic structure analysis, principal component analysis, and phylogenetic trees. The geographical distribution and genetic differentiation of D. hancockii into two major groups suggest a clear phytogeographical division, likely driven by ancient geological or climatic events. The close alignment of mitochondrial data with nuclear gene data highlights the potential of the mitochondrial genome for future studies on genetic evolution in this species.
Collapse
Affiliation(s)
- Zhenyu Hou
- College of Life Science, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Mengting Wang
- College of Life Science, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi, China
| | - Yu Jiang
- College of Life Science, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Qingyun Xue
- College of Life Science, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Wei Liu
- College of Life Science, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Zhitao Niu
- College of Life Science, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| | - Xiaoyu Ding
- College of Life Science, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, China
| |
Collapse
|
6
|
Kan S, Su X, Yang L, Zhou H, Qian M, Zhang W, Li C. From light into shadow: comparative plastomes in Petrocosmea and implications for low light adaptation. BMC PLANT BIOLOGY 2024; 24:949. [PMID: 39394065 PMCID: PMC11468349 DOI: 10.1186/s12870-024-05669-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Plastids originated from an ancient endosymbiotic event and evolved into the photosynthetic organelles in plant cells. They absorb light energy and carbon dioxide, converting them into chemical energy and oxygen, which are crucial for plant development and adaptation. However, little is known about the plastid genome to light adaptation. Petrocosmea, a member of the Gesneriaceae family, comprises approximately 70 species with diverse light environment, serve as an ideal subject for studying plastomes adapt to light. RESULTS In this study, we selected ten representative species of Petrocosmea from diverse light environments, assembled their plastid genomes, and conducted a comparative genomic analysis. We found that the plastid genome of Petrocosmea is highly conserved in both structure and gene content. The phylogenetic relationships reconstructed based on the plastid genes were divided into five clades, which is consistent with the results of previous studies. The vast majority of plastid protein-coding genes were under purifying selection, with only the rps8 and rps16 genes identified under positive selection in different light environments. Notably, significant differences of evolutionary rate were observed in NADH dehydrogenase, ATPase ribosome, and RNA polymerase between Clade A and the other clades. Additionally, we identified ycf1 and several intergenic regions (trnH-psbA, trnK-rps16, rpoB-trnC, petA-psbJ, ccsA-trnL, rps16-trnQ, and trnS-trnG) as candidate barcodes for this emerging ornamental horticulture. CONCLUSION We newly assembled ten plastid genomes of Petrocosmea and identified several hypervariable regions, providing genetic resources and candidate markers for this promising emerging ornamental horticulture. Furthermore, our study suggested that rps8 and rps16 were under positive selection and that the evolutionary patterns of NADH dehydrogenase, ATPase ribosome, and RNA polymerase were related to the diversity light environment in Petrocosmea. This revealed an evolutionary scenario for light adaptation of the plastid genome in plants.
Collapse
Affiliation(s)
- Shenglong Kan
- Marine College, Shandong University, Weihai, 264209, China
| | - Xiaoju Su
- Marine College, Shandong University, Weihai, 264209, China
| | - Liu Yang
- Marine College, Shandong University, Weihai, 264209, China
| | - Hongling Zhou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518116, China
| | - Mu Qian
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, 250110, China
| | - Wei Zhang
- Marine College, Shandong University, Weihai, 264209, China.
| | - Chaoqun Li
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China.
- Shandong Engineering Research Center of Rose Breeding Technology and Germplasm Innovation, School of Life Sciences, Qilu Normal University, Jinan, 250200, China.
| |
Collapse
|
7
|
Veeraragavan S, Johansen M, Johnston IG. Evolution and maintenance of mtDNA gene content across eukaryotes. Biochem J 2024; 481:1015-1042. [PMID: 39101615 PMCID: PMC11346449 DOI: 10.1042/bcj20230415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Across eukaryotes, most genes required for mitochondrial function have been transferred to, or otherwise acquired by, the nucleus. Encoding genes in the nucleus has many advantages. So why do mitochondria retain any genes at all? Why does the set of mtDNA genes vary so much across different species? And how do species maintain functionality in the mtDNA genes they do retain? In this review, we will discuss some possible answers to these questions, attempting a broad perspective across eukaryotes. We hope to cover some interesting features which may be less familiar from the perspective of particular species, including the ubiquity of recombination outside bilaterian animals, encrypted chainmail-like mtDNA, single genes split over multiple mtDNA chromosomes, triparental inheritance, gene transfer by grafting, gain of mtDNA recombination factors, social networks of mitochondria, and the role of mtDNA dysfunction in feeding the world. We will discuss a unifying picture where organismal ecology and gene-specific features together influence whether organism X retains mtDNA gene Y, and where ecology and development together determine which strategies, importantly including recombination, are used to maintain the mtDNA genes that are retained.
Collapse
Affiliation(s)
| | - Maria Johansen
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
8
|
Ben-Hur S, Sernik S, Afar S, Kolpakova A, Politi Y, Gal L, Florentin A, Golani O, Sivan E, Dezorella N, Morgenstern D, Pietrokovski S, Schejter E, Yacobi-Sharon K, Arama E. Egg multivesicular bodies elicit an LC3-associated phagocytosis-like pathway to degrade paternal mitochondria after fertilization. Nat Commun 2024; 15:5715. [PMID: 38977659 PMCID: PMC11231261 DOI: 10.1038/s41467-024-50041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
Mitochondria are maternally inherited, but the mechanisms underlying paternal mitochondrial elimination after fertilization are far less clear. Using Drosophila, we show that special egg-derived multivesicular body vesicles promote paternal mitochondrial elimination by activating an LC3-associated phagocytosis-like pathway, a cellular defense pathway commonly employed against invading microbes. Upon fertilization, these egg-derived vesicles form extended vesicular sheaths around the sperm flagellum, promoting degradation of the sperm mitochondrial derivative and plasma membrane. LC3-associated phagocytosis cascade of events, including recruitment of a Rubicon-based class III PI(3)K complex to the flagellum vesicular sheaths, its activation, and consequent recruitment of Atg8/LC3, are all required for paternal mitochondrial elimination. Finally, lysosomes fuse with strings of large vesicles derived from the flagellum vesicular sheaths and contain degrading fragments of the paternal mitochondrial derivative. Given reports showing that in some mammals, the paternal mitochondria are also decorated with Atg8/LC3 and surrounded by multivesicular bodies upon fertilization, our findings suggest that a similar pathway also mediates paternal mitochondrial elimination in other flagellated sperm-producing organisms.
Collapse
Affiliation(s)
- Sharon Ben-Hur
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Shoshana Sernik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sara Afar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Alina Kolpakova
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Politi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Liron Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Anat Florentin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ehud Sivan
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Nili Dezorella
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - David Morgenstern
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalised Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Yacobi-Sharon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
9
|
Khachaturyan M, Santer M, Reusch TBH, Dagan T. Heteroplasmy Is Rare in Plant Mitochondria Compared with Plastids despite Similar Mutation Rates. Mol Biol Evol 2024; 41:msae135. [PMID: 38934796 PMCID: PMC11245704 DOI: 10.1093/molbev/msae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Plant cells harbor two membrane-bound organelles containing their own genetic material-plastids and mitochondria. Although the two organelles coexist and coevolve within the same plant cells, they differ in genome copy number, intracellular organization, and mode of segregation. How these attributes affect the time to fixation or, conversely, loss of neutral alleles is currently unresolved. Here, we show that mitochondria and plastids share the same mutation rate, yet plastid alleles remain in a heteroplasmic state significantly longer compared with mitochondrial alleles. By analyzing genetic variants across populations of the marine flowering plant Zostera marina and simulating organelle allele dynamics, we examine the determinants of allele segregation and allele fixation. Our results suggest that the bottlenecks on the cell population, e.g. during branching or seeding, and stratification of the meristematic tissue are important determinants of mitochondrial allele dynamics. Furthermore, we suggest that the prolonged plastid allele dynamics are due to a yet unknown active plastid partition mechanism. The dissimilarity between plastid and mitochondrial novel allele fixation at different levels of organization may manifest in differences in adaptation processes. Our study uncovers fundamental principles of organelle population genetics that are essential for further investigations of long-term evolution and molecular dating of divergence events.
Collapse
Affiliation(s)
- Marina Khachaturyan
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Institute of General Microbiology, University of Kiel, Kiel, Germany
| | - Mario Santer
- Institute of General Microbiology, University of Kiel, Kiel, Germany
| | - Thorsten B H Reusch
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Tal Dagan
- Institute of General Microbiology, University of Kiel, Kiel, Germany
| |
Collapse
|
10
|
Ortiz AJ, Sharbrough J. Genome-wide patterns of homoeologous gene flow in allotetraploid coffee. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11584. [PMID: 39184198 PMCID: PMC11342229 DOI: 10.1002/aps3.11584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 08/27/2024]
Abstract
Premise Allopolyploidy-a hybridization-induced whole-genome duplication event-has been a major driver of plant diversification. The extent to which chromosomes pair with their proper homolog vs. with their homoeolog in allopolyploids varies across taxa, and methods to detect homoeologous gene flow (HGF) are needed to understand how HGF has shaped polyploid lineages. Methods The ABBA-BABA test represents a classic method for detecting introgression between closely related species, but here we developed a modified use of the ABBA-BABA test to characterize the extent and direction of HGF in allotetraploid Coffea arabica. Results We found that HGF is abundant in the C. arabica genome, with both subgenomes serving as donors and recipients of variation. We also found that HGF is highly maternally biased in plastid-targeted-but not mitochondrial-targeted-genes, as would be expected if plastid-nuclear incompatibilities exist between the two parent species. Discussion Together, our analyses provide a simple framework for detecting HGF and new evidence consistent with selection favoring overwriting of paternally derived alleles by maternally derived alleles to ameliorate plastid-nuclear incompatibilities. Natural selection therefore appears to shape the direction and intensity of HGF in allopolyploid coffee, indicating that cytoplasmic inheritance has long-term consequences for polyploid lineages.
Collapse
Affiliation(s)
- Andre J. Ortiz
- Department of BiologyNew Mexico Institute of Mining and TechnologySocorroNew MexicoUSA
| | - Joel Sharbrough
- Department of BiologyNew Mexico Institute of Mining and TechnologySocorroNew MexicoUSA
| |
Collapse
|
11
|
Laugier F, Saclier N, Béthune K, Braun A, Konecny L, Lefébure T, Luquet E, Plénet S, Romiguier J, David P. Both nuclear and cytoplasmic polymorphisms are involved in genetic conflicts over male fertility in the gynodioecious snail, Physa acuta. Evolution 2024; 78:1227-1236. [PMID: 38554118 DOI: 10.1093/evolut/qpae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/01/2024]
Abstract
Gynodioecy, the coexistence of hermaphrodites with females, often reflects conflicts between cytoplasmic male sterility (CMS) genes and nuclear genes restoring male fertility. CMS is frequent in plants and has been recently discovered in one animal: the freshwater snail, Physa acuta. In this system, CMS was linked to a single divergent mitochondrial genome (D), devoid of apparent nuclear restoration. Our study uncovers a second, novel CMS-associated mitogenome (K) in Physa acuta, demonstrating an extraordinary acceleration of molecular evolution throughout the entire K mitochondrial genome, akin to the previously observed pattern in D. This suggests a pervasive occurrence of accelerated evolution in both CMS-associated lineages. Through a 17-generation introgression experiment, we further show that nuclear polymorphisms in K-mitogenome individuals contribute to the restoration of male function in natural populations. Our results underscore shared characteristics in gynodioecy between plants and animals, emphasizing the presence of multiple CMS mitotypes and cytonuclear conflicts. This reaffirms the pivotal role of mitochondria in influencing male function and in generating genomic conflicts that impact reproductive processes in animals.
Collapse
Affiliation(s)
- Fanny Laugier
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| | | | - Kévin Béthune
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| | - Axelle Braun
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622 Villeurbanne, France
| | - Lara Konecny
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622 Villeurbanne, France
| | - Tristan Lefébure
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622 Villeurbanne, France
| | - Emilien Luquet
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622 Villeurbanne, France
| | - Sandrine Plénet
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622 Villeurbanne, France
| | | | - Patrice David
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| |
Collapse
|
12
|
Fields PD, Jalinsky JR, Bankers L, McElroy KE, Sharbrough J, Higgins C, Morgan-Richards M, Boore JL, Neiman M, Logsdon JM. Genome Evolution and Introgression in the New Zealand mud Snails Potamopyrgus estuarinus and Potamopyrgus kaitunuparaoa. Genome Biol Evol 2024; 16:evae091. [PMID: 38776329 PMCID: PMC11110935 DOI: 10.1093/gbe/evae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
We have sequenced, assembled, and analyzed the nuclear and mitochondrial genomes and transcriptomes of Potamopyrgus estuarinus and Potamopyrgus kaitunuparaoa, two prosobranch snail species native to New Zealand that together span the continuum from estuary to freshwater. These two species are the closest known relatives of the freshwater species Potamopyrgus antipodarum-a model for studying the evolution of sex, host-parasite coevolution, and biological invasiveness-and thus provide key evolutionary context for understanding its unusual biology. The P. estuarinus and P. kaitunuparaoa genomes are very similar in size and overall gene content. Comparative analyses of genome content indicate that these two species harbor a near-identical set of genes involved in meiosis and sperm functions, including seven genes with meiosis-specific functions. These results are consistent with obligate sexual reproduction in these two species and provide a framework for future analyses of P. antipodarum-a species comprising both obligately sexual and obligately asexual lineages, each separately derived from a sexual ancestor. Genome-wide multigene phylogenetic analyses indicate that P. kaitunuparaoa is likely the closest relative to P. antipodarum. We nevertheless show that there has been considerable introgression between P. estuarinus and P. kaitunuparaoa. That introgression does not extend to the mitochondrial genome, which appears to serve as a barrier to hybridization between P. estuarinus and P. kaitunuparaoa. Nuclear-encoded genes whose products function in joint mitochondrial-nuclear enzyme complexes exhibit similar patterns of nonintrogression, indicating that incompatibilities between the mitochondrial and the nuclear genome may have prevented more extensive gene flow between these two species.
Collapse
Affiliation(s)
- Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, Basel 4051, Switzerland
| | | | - Laura Bankers
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Kyle E McElroy
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Joel Sharbrough
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| | - Chelsea Higgins
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Mary Morgan-Richards
- School of Natural Sciences, Massey University Manawatū, Palmerston North, New Zealand
| | - Jeffrey L Boore
- Phenome Health, Seattle, WA, USA
- Institute for Systems Biology, Seattle, WA, USA
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, IA, USA
- Department of Gender, Women's, and Sexuality Studies, University of Iowa, Iowa City, IA, USA
| | - John M Logsdon
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
13
|
Sloan DB, Conover JL, Grover CE, Wendel JF, Sharbrough J. Polyploid plants take cytonuclear perturbations in stride. THE PLANT CELL 2024; 36:829-839. [PMID: 38267606 PMCID: PMC10980399 DOI: 10.1093/plcell/koae021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/26/2024]
Abstract
Hybridization in plants is often accompanied by nuclear genome doubling (allopolyploidy), which has been hypothesized to perturb interactions between nuclear and organellar (mitochondrial and plastid) genomes by creating imbalances in the relative copy number of these genomes and producing genetic incompatibilities between maternally derived organellar genomes and the half of the allopolyploid nuclear genome from the paternal progenitor. Several evolutionary responses have been predicted to ameliorate these effects, including selection for changes in protein sequences that restore cytonuclear interactions; biased gene retention/expression/conversion favoring maternal nuclear gene copies; and fine-tuning of relative cytonuclear genome copy numbers and expression levels. Numerous recent studies, however, have found that evolutionary responses are inconsistent and rarely scale to genome-wide generalities. The apparent robustness of plant cytonuclear interactions to allopolyploidy may reflect features that are general to allopolyploids such as the lack of F2 hybrid breakdown under disomic inheritance, and others that are more plant-specific, including slow sequence divergence in organellar genomes and preexisting regulatory responses to changes in cell size and endopolyploidy during development. Thus, cytonuclear interactions may only rarely act as the main barrier to establishment of allopolyploid lineages, perhaps helping to explain why allopolyploidy is so pervasive in plant evolution.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Justin L Conover
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Joel Sharbrough
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| |
Collapse
|
14
|
Schieweck R, Götz M. Pan-cellular organelles and suborganelles-from common functions to cellular diversity? Genes Dev 2024; 38:98-114. [PMID: 38485267 PMCID: PMC10982711 DOI: 10.1101/gad.351337.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Cell diversification is at the base of increasing multicellular organism complexity in phylogeny achieved during ontogeny. However, there are also functions common to all cells, such as cell division, cell migration, translation, endocytosis, exocytosis, etc. Here we revisit the organelles involved in such common functions, reviewing recent evidence of unexpected differences of proteins at these organelles. For instance, centrosomes or mitochondria differ significantly in their protein composition in different, sometimes closely related, cell types. This has relevance for development and disease. Particularly striking is the high amount and diversity of RNA-binding proteins at these and other organelles, which brings us to review the evidence for RNA at different organelles and suborganelles. We include a discussion about (sub)organelles involved in translation, such as the nucleolus and ribosomes, for which unexpected cell type-specific diversity has also been reported. We propose here that the heterogeneity of these organelles and compartments represents a novel mechanism for regulating cell diversity. One reason is that protein functions can be multiplied by their different contributions in distinct organelles, as also exemplified by proteins with moonlighting function. The specialized organelles still perform pan-cellular functions but in a cell type-specific mode, as discussed here for centrosomes, mitochondria, vesicles, and other organelles. These can serve as regulatory hubs for the storage and transport of specific and functionally important regulators. In this way, they can control cell differentiation, plasticity, and survival. We further include examples highlighting the relevance for disease and propose to examine organelles in many more cell types for their possible differences with functional relevance.
Collapse
Affiliation(s)
- Rico Schieweck
- Institute of Biophysics, National Research Council (CNR) Unit at Trento, 38123 Povo, Italy;
- Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| | - Magdalena Götz
- Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany;
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 82152 Planegg-Martinsried, Germany
- SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
15
|
Kan S, Liao X, Lan L, Kong J, Wang J, Nie L, Zou J, An H, Wu Z. Cytonuclear Interactions and Subgenome Dominance Shape the Evolution of Organelle-Targeted Genes in the Brassica Triangle of U. Mol Biol Evol 2024; 41:msae043. [PMID: 38391484 PMCID: PMC10919925 DOI: 10.1093/molbev/msae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
The interaction and coevolution between nuclear and cytoplasmic genomes are one of the fundamental hallmarks of eukaryotic genome evolution and, 2 billion yr later, are still major contributors to the formation of new species. Although many studies have investigated the role of cytonuclear interactions following allopolyploidization, the relative magnitude of the effect of subgenome dominance versus cytonuclear interaction on genome evolution remains unclear. The Brassica triangle of U features 3 diploid species that together have formed 3 separate allotetraploid species on similar evolutionary timescales, providing an ideal system for understanding the contribution of the cytoplasmic donor to hybrid polyploid. Here, we investigated the evolutionary pattern of organelle-targeted genes in Brassica carinata (BBCC) and 2 varieties of Brassica juncea (AABB) at the whole-genome level, with particular focus on cytonuclear enzyme complexes. We found partial evidence that plastid-targeted genes experience selection to match plastid genomes, but no obvious corresponding signal in mitochondria-targeted genes from these 2 separately formed allopolyploids. Interestingly, selection acting on plastid genomes always reduced the retention rate of plastid-targeted genes encoded by the B subgenome, regardless of whether the Brassica nigra (BB) subgenome was contributed by the paternal or maternal progenitor. More broadly, this study illustrates the distinct selective pressures experienced by plastid- and mitochondria-targeted genes, despite a shared pattern of inheritance and natural history. Our study also highlights an important role for subgenome dominance in allopolyploid genome evolution, even in genes whose function depends on separately inherited molecules.
Collapse
Affiliation(s)
- Shenglong Kan
- Marine College, Shandong University, Weihai 264209, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lan Lan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, 6150 Western Australia, Australia
| | - Jiali Kong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, 6150 Western Australia, Australia
| | - Liyun Nie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong An
- Bioinformatics and Analytics Core, University of Missouri, Columbia, MO, USA
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
16
|
Zhao R, He Q, Chu X, He A, Zhang Y, Zhu Z. Regional environmental differences significantly affect the genetic structure and genetic differentiation of Carpinus tientaiensis Cheng, an endemic and extremely endangered species from China. FRONTIERS IN PLANT SCIENCE 2024; 15:1277173. [PMID: 38405582 PMCID: PMC10885731 DOI: 10.3389/fpls.2024.1277173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/10/2024] [Indexed: 02/27/2024]
Abstract
Differences in topography and environment greatly affect the genetic structure and genetic differentiation of species, and endemic or endangered species with limited geographic ranges seem to be more sensitive to changes in climate and other environmental factors. The complex topography of eastern China is likely to affect genetic differentiation of plants there. Carpinus tientaiensis Cheng is a native and endangered plants from China, and exploring its genetic diversity has profound significance for protection and the collection of germplasm resources. Based on AFLP markers, this study found that C. tientaiensis has low genetic diversity, which mainly came from within populations, while Shangshantou and Tiantai Mountain populations have relatively high genetic diversity. The Nei genetic distance was closely related to geographical distance, and temperature and precipitation notablely affected the genetic variation and genetic differentiation of C. tientaiensis. Based on cpDNA, this study indicated that C. tientaiensis exhibits a moderate level of genetic diversity, and which mainly came from among populations, while Tiantai Mountain population have the highest genetic diversity. It demonstrated that there was genetic differentiation between populations, which can be divided into two independent geographical groups, but there was no significant phylogeographic structure between them. The MaxEnt model showed that climate change significantly affects its distribution, and the suitable distribution areas in Zhejiang were primarily divided into two regions, eastern Zhejiang and southern Zhejiang, and there was niche differentiation in its suitable distribution areas. Therefore, this study speculated that the climate and the terrain of mountains and hills in East China jointly shape the genetic structure of C. tientaiensis, which gived rise to an obvious north-south differentiation trend of these species, and the populations located in the hilly areas of eastern Zhejiang and the mountainous areas of southern Zhejiang formed two genetic branches respectively.
Collapse
Affiliation(s)
- Runan Zhao
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Qianqian He
- Research Center for Urban and Rural Living Environment, Zhijiang College of Zhejiang University of Technology, Shaoxing, China
| | - Xiaojie Chu
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Anguo He
- Administration of Zhejiang Dapanshan National Nature Reserve, Pan’an, China
| | - Yuanlan Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Zunling Zhu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Jinpu Research Institute, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
17
|
Li CQ, Mu Q, Li Y, Kan SL, Liu GX. Complete chloroplast genome of Petrocosmea qinlingensis (Gesneriaceae), a protected wild plant in the Qinling mountains. Mitochondrial DNA B Resour 2024; 9:163-167. [PMID: 38274855 PMCID: PMC10810633 DOI: 10.1080/23802359.2024.2306206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Petrocosmea qinlingensis is a protected wild plant endemic in China, inhabiting low-light limestone cliffs but the complete chloroplast genome has not been reported. In this study, we first sequenced and assembled the complete chloroplast genome of P. qinlingensis. The total size of this genome was 153,865 bp, including a large single-copy (LSC) region (84,737 bp), a small single-copy (SSC) region (18,244 bp), and two inverted repeats (IRs) regions (25,442 bp). This genome encoded 111 uniquegenes, consisted of 77 protein-coding genes, four ribosomal RNA genes, and 30 transfer RNA genes. Phylogenomic analysis based on the chloroplast protein-coding genes and showed that the genus Petrocosmea was the closest relative to Raphiocarpus. Our results will support further phylogeographic, population genetic studies of this species.
Collapse
Affiliation(s)
- Chao-Qun Li
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Qian Mu
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yun Li
- Hanzhong Wildlife Protection and Management Station, Hanzhong, Shaanxi, China
| | | | - Guang-Xiao Liu
- Junan Branch, Linyi Ecological Environmental Bureau, Linyi, China
| |
Collapse
|
18
|
Krishnan N, Csiszár V, Móri TF, Garay J. Genesis of ectosymbiotic features based on commensalistic syntrophy. Sci Rep 2024; 14:1366. [PMID: 38228651 DOI: 10.1038/s41598-023-47211-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/10/2023] [Indexed: 01/18/2024] Open
Abstract
The symbiogenetic origin of eukaryotes with mitochondria is considered a major evolutionary transition. The initial interactions and conditions of symbiosis, along with the phylogenetic affinity of the host, are widely debated. Here, we focus on a possible evolutionary path toward an association of individuals of two species based on unidirectional syntrophy. With the backing of a theoretical model, we hypothesize that the first step in the evolution of such symbiosis could be the appearance of a linking structure on the symbiont's membrane, using which it forms an ectocommensalism with its host. We consider a commensalistic model based on the syntrophy hypothesis in the framework of coevolutionary dynamics and mutant invasion into a monomorphic resident system (evolutionary substitution). We investigate the ecological and evolutionary stability of the consortium (or symbiotic merger), with vertical transmissions playing a crucial role. The impact of the 'effectiveness of vertical transmission' on the dynamics is also analyzed. We find that the transmission of symbionts and the additional costs incurred by the mutant determine the conditions of fixation of the consortia. Additionally, we observe that small and highly metabolically active symbionts are likely to form the consortia.
Collapse
Affiliation(s)
- Nandakishor Krishnan
- HUN-REN Centre for Ecological Research, Institute of Evolution, Konkoly-Thege M. Út 29-33, Budapest, 1121, Hungary.
- Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
| | - Villő Csiszár
- Department of Probability Theory and Statistics, Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Tamás F Móri
- HUN-REN Alfréd Rényi Institute of Mathematics, Reáltanoda U. 13-15, Budapest, 1053, Hungary
| | - József Garay
- HUN-REN Centre for Ecological Research, Institute of Evolution, Konkoly-Thege M. Út 29-33, Budapest, 1121, Hungary
| |
Collapse
|
19
|
Camus MF, Inwongwan S. Mitonuclear interactions modulate nutritional preference. Biol Lett 2023; 19:20230375. [PMID: 38053364 PMCID: PMC10698477 DOI: 10.1098/rsbl.2023.0375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023] Open
Abstract
In nature, organisms are faced with constant nutritional options which fuel key life-history traits. Studies have shown that species can actively make nutritional decisions based on internal and external cues. Metabolism itself is underpinned by complex genomic interactions involving components from both nuclear and mitochondrial genomes. Products from these two genomes must coordinate how nutrients are extracted, used and recycled. Given the complicated nature of metabolism, it is not well understood how nutritional choices are affected by mitonuclear interactions. This is under the rationale that changes in genomic interactions will affect metabolic flux and change physiological requirements. To this end we used a large Drosophila mitonuclear genetic panel, comprising nine isogenic nuclear genomes coupled to nine mitochondrial haplotypes, giving a total of 81 different mitonuclear genotypes. We use a capillary-based feeding assay to screen this panel for dietary preference between carbohydrate and protein. We find significant mitonuclear interactions modulating nutritional choices, with these epistatic interactions also being dependent on sex. Our findings support the notion that complex genomic interactions can place a constraint on metabolic flux. This work gives us deeper insights into how key metabolic interactions can have broad implications on behaviour.
Collapse
Affiliation(s)
- M. Florencia Camus
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Sahutchai Inwongwan
- Research Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
20
|
Hitchcock TJ, Gardner A. Sexual antagonism in sequential hermaphrodites. Proc Biol Sci 2023; 290:20232222. [PMID: 37989243 PMCID: PMC10688264 DOI: 10.1098/rspb.2023.2222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023] Open
Abstract
Females and males may have distinct phenotypic optima, but share essentially the same complement of genes, potentially leading to trade-offs between attaining high fitness through female versus male reproductive success. Such sexual antagonism may be particularly acute in hermaphrodites, where both reproductive strategies are housed within a single individual. While previous models have focused on simultaneous hermaphroditism, we lack theory for how sexual antagonism may play out under sequential hermaphroditism, which has the additional complexities of age-structure. Here, we develop a formal theory of sexual antagonism in sequential hermaphrodites. First, we construct a general theoretical overview of the problem, then consider different types of sexually antagonistic and life-history trade-offs, under different modes of genetic inheritance (autosomal or cytoplasmic), and different forms of sequential hermaphroditism (protogynous, protoandrous or bidirectional). Finally, we provide a concrete illustration of these general patterns by developing a two-stage two-sex model, which yields conditions for both invasion of sexually antagonistic alleles and maintenance of sexually antagonistic polymorphisms.
Collapse
Affiliation(s)
- Thomas J. Hitchcock
- RIKEN Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS), RIKEN, Wako, Saitama 351-0198, Japan
- School of Biology, University of St Andrews, St Andrews, Fife KY16 9TH, UK
| | - Andy Gardner
- School of Biology, University of St Andrews, St Andrews, Fife KY16 9TH, UK
| |
Collapse
|
21
|
Nagamine K, Kanno Y, Sahara K, Fujimoto T, Yoshido A, Ishikawa Y, Terao M, Kageyama D, Shintani Y. Male-killing virus in a noctuid moth Spodoptera litura. Proc Natl Acad Sci U S A 2023; 120:e2312124120. [PMID: 37931114 PMCID: PMC10655585 DOI: 10.1073/pnas.2312124120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/28/2023] [Indexed: 11/08/2023] Open
Abstract
A female-biased sex ratio is considered advantageous for the cytoplasmic elements that inhabit sexually reproducing organisms. There are numerous examples of bacterial symbionts in the arthropod cytoplasm that bias the host sex ratio toward females through various means, including feminization and male killing. Recently, maternally inherited RNA viruses belonging to the family Partitiviridae were found to cause male killing in moths and flies, but it was unknown whether male-killing viruses were restricted to Partitiviridae or could be found in other taxa. Here, we provide compelling evidence that a maternally inherited RNA virus, Spodoptera litura male-killing virus (SlMKV), selectively kills male embryos of the tobacco caterpillar Spodoptera litura, resulting in all-female broods. SlMKV injected into uninfected S. litura can also be inherited maternally and causes male killing. SlMKV has five genomic segments encoding seven open reading frames, has no homolog of known male-killing genes, and belongs to an unclassified group of arthropod-specific viruses closely related to Tolivirales. When transinfected into larvae, both male and female recipients allow SlMKV to proliferate, but only males die at the pupal stage. The viral RNA levels in embryonic and pupal male killing suggest that the mechanism of male killing involves the constitutive expression of viral products that are specifically lethal to males, rather than the male-specific expression of viral products. Our results, together with recent findings on male-killing partiti-like viruses, suggest that diverse viruses in arthropods tend to acquire male killing independently and that such viruses may be important components of intragenomic conflict in arthropods.
Collapse
Affiliation(s)
- Keisuke Nagamine
- Department of Environmental and Horticultural Sciences, Minami Kyushu University, Miyakonojo, Miyazaki885-0035, Japan
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki305-0851, Japan
| | - Yoshiaki Kanno
- Department of Environmental and Horticultural Sciences, Minami Kyushu University, Miyakonojo, Miyazaki885-0035, Japan
| | - Ken Sahara
- Faculty of Agriculture, Iwate University, Morioka, Iwate020-8550, Japan
| | - Toshiaki Fujimoto
- Faculty of Agriculture, Iwate University, Morioka, Iwate020-8550, Japan
| | - Atsuo Yoshido
- Faculty of Agriculture, Iwate University, Morioka, Iwate020-8550, Japan
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice370 05, Czech Republic
| | - Yukio Ishikawa
- Faculty of Agriculture, Setsunan University, Hirakata, Osaka573-0101, Japan
| | - Misato Terao
- Department of Environmental and Horticultural Sciences, Minami Kyushu University, Miyakonojo, Miyazaki885-0035, Japan
| | - Daisuke Kageyama
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki305-0851, Japan
| | - Yoshinori Shintani
- Department of Environmental and Horticultural Sciences, Minami Kyushu University, Miyakonojo, Miyazaki885-0035, Japan
| |
Collapse
|
22
|
Orive ME, Barfield M, Holt RD. Partial Clonality Expands the Opportunity for Spatial Adaptation. Am Nat 2023; 202:681-698. [PMID: 37963114 DOI: 10.1086/726335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
AbstractReproductive mode may strongly impact adaptation in spatially varying populations linked by dispersal, especially when sexual and clonal offspring differ in dispersal. We determined how spatial structure affects adaptation in populations with mixed clonal and sexual reproduction. In a source-sink quantitative genetic deterministic model (with stabilizing selection around different optima), greater clonal reproduction or parent-offspring association (a measure of the part of the parent's phenotype other than the additive genetic component inherited by clonal offspring) increased the selective difference (difference between phenotypic optima) allowing sink populations to adapt. Given dispersal differences between clonally and sexually produced juveniles, adaptation increased with an increasing fraction of clonal dispersers. When considering migrational meltdown, partially clonal reproduction reduced cases where dispersal caused habitat loss. Stochastic individual-based simulations support these results, although the effect of differential dispersal was reversed, with decreased clonal dispersal allowing greater adaptation. These results parallel earlier findings that for an instantaneous shift in phenotypic optimum, increasing clonality allowed population persistence for a greater shift; here, selective change is spatial rather than temporal. These results may help explain the success of many partially clonal organisms in invading new habitats, complementing traditional explanations based on avoiding Allee effects.
Collapse
|
23
|
Cvejić S, Hrnjaković O, Jocković M, Kupusinac A, Doroslovački K, Gvozdenac S, Jocić S, Miladinović D. Oil yield prediction for sunflower hybrid selection using different machine learning algorithms. Sci Rep 2023; 13:17611. [PMID: 37848668 PMCID: PMC10582183 DOI: 10.1038/s41598-023-44999-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 10/14/2023] [Indexed: 10/19/2023] Open
Abstract
Due to the increased demand for sunflower production, its breeding assignment is the intensification of the development of highly productive oil seed hybrids to satisfy the edible oil industry. Sunflower Oil Yield Prediction (SOYP) can help breeders to identify desirable new hybrids with high oil yield and their characteristics using machine learning (ML) algorithms. In this study, we developed ML models to predict oil yield using two sets of features. Moreover, we evaluated the most relevant features for accurate SOYP. ML algorithms that were used and compared were Artificial Neural Network (ANN), Support Vector Regression, K-Nearest Neighbour, and Random Forest Regressor (RFR). The dataset consisted of samples for 1250 hybrids of which 70% were randomly selected and were used to train the model and 30% were used to test the model and assess its performance. Employing MAE, MSE, RMSE and R2 evaluation metrics, RFR consistently outperformed in all datasets, achieving a peak of 0.92 for R2 in 2019. In contrast, ANN recorded the lowest MAE, reaching 65 in 2018 The paper revealed that in addition to seed yield, the following characteristics of hybrids were important for SOYP: resistance to broomrape (Or) and downy mildew (Pl) and maturity. It was also disclosed that the locality feature could be used for the estimation of sunflower oil yield but it is highly dependable on weather conditions that affect the oil content and seed yield. Up to our knowledge, this is the first study in which ML was used for sunflower oil yield prediction. The obtained results indicate that ML has great potential for application in oil yield prediction, but also selection of parental lines for hybrid production, RFR algorithm was found to be the most effective and along with locality feature is going to be further evaluated as an alternative method for genotypic selection.
Collapse
Affiliation(s)
- Sandra Cvejić
- Institute of Field and Vegetable Crops, Novi Sad, Serbia.
| | | | - Milan Jocković
- Institute of Field and Vegetable Crops, Novi Sad, Serbia
| | | | | | | | - Siniša Jocić
- Institute of Field and Vegetable Crops, Novi Sad, Serbia
| | | |
Collapse
|
24
|
Su Y, Zhang M, Guo Q, Wei M, Shi H, Wang T, Han Z, Liu H, Liu C, Huang J. Classification of Isatis indigotica Fortune and Isatis tinctoria Linnaeus via comparative analysis of chloroplast genomes. BMC Genomics 2023; 24:465. [PMID: 37596543 PMCID: PMC10436401 DOI: 10.1186/s12864-023-09534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/26/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Isatis tinctoria Linnaeus and Isatis indigotica Fortune are very inconsistent in their morphological characteristics, but the Flora of China treats them as the same species. In this work, a new technology that differs from conventional barcodes is developed to prove that they are different species and to clarify their classification. RESULTS AND METHODS I. indigotica was indistinguishable from I. tinctoria when using ITS2. CPGAVAS2 was used to construct the chloroplast genomes. MAFFT and DnaSP were used to calculate nucleotide polymorphism, the chloroplast genomes of the two have high diversity in the rpl32 ~ trnL-UAG short region. When using this region as a mini barcode, it was found that there are obvious differences in the base numbers of I. tinctoria and different ploidy I. indigotica were found, but diploid and tetraploid I. indigotica had the same number of bases. Moreover, the reconstruction of the maximum likelihood (ML) tree, utilizing the mini-barcode, demonstrated that I. tinctoria and both diploid and tetraploid I. indigotica are located on distinct branches. The genome size of tetraploid I. indigotica was approximately 643.773 MB, the heterozygosity rate was approximately 0.98%, and the repeat sequence content was approximately 90.43%. This species has a highly heterozygous, extremely repetitive genome. CONCLUSION A new method was established to differentiate between I. indigotica and I. tinctoria. Furthermore, this approach provides a reference and basis for the directional breeding of Isatis.
Collapse
Grants
- JATS|[2022]461,JATS[2022]291 Jiangsu Modern Agricultural Industrial Technology System Construction Project
- JATS|[2022]461,JATS[2022]291 Jiangsu Modern Agricultural Industrial Technology System Construction Project
- JATS|[2022]461,JATS[2022]291 Jiangsu Modern Agricultural Industrial Technology System Construction Project
- JATS|[2022]461,JATS[2022]291 Jiangsu Modern Agricultural Industrial Technology System Construction Project
- JATS|[2022]461,JATS[2022]291 Jiangsu Modern Agricultural Industrial Technology System Construction Project
- JATS|[2022]461,JATS[2022]291 Jiangsu Modern Agricultural Industrial Technology System Construction Project
- JATS|[2022]461,JATS[2022]291 Jiangsu Modern Agricultural Industrial Technology System Construction Project
- JATS|[2022]461,JATS[2022]291 Jiangsu Modern Agricultural Industrial Technology System Construction Project
- JATS|[2022]461,JATS[2022]291 Jiangsu Modern Agricultural Industrial Technology System Construction Project
- JATS|[2022]461,JATS[2022]291 Jiangsu Modern Agricultural Industrial Technology System Construction Project
Collapse
Affiliation(s)
- Yong Su
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, PR China
| | - Man Zhang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, PR China
| | - Qiaosheng Guo
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, PR China.
| | - Min Wei
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, PR China
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen City, 518000, PR China
| | - Hongzhuan Shi
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, PR China
| | - Tao Wang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, PR China
| | - Zhengzhou Han
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen City, 518000, PR China
| | - Huihui Liu
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen City, 518000, PR China
| | - Chang Liu
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, PR China
| | - Jianmin Huang
- Institute of Chinese Medicinal Materials, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, PR China
| |
Collapse
|
25
|
Estes S, Dietz ZP, Katju V, Bergthorsson U. Evolutionary codependency: insights into the mitonuclear interaction landscape from experimental and wild Caenorhabditis nematodes. Curr Opin Genet Dev 2023; 81:102081. [PMID: 37421904 PMCID: PMC11684519 DOI: 10.1016/j.gde.2023.102081] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 07/10/2023]
Abstract
Aided by new technologies, the upsurgence of research into mitochondrial genome biology during the past 15 years suggests that we have misunderstood, and perhaps dramatically underestimated, the ongoing biological and evolutionary significance of our long-time symbiotic partner. While we have begun to scratch the surface of several topics, many questions regarding the nature of mutation and selection in the mitochondrial genome, and the nature of its relationship to the nuclear genome, remain unanswered. Although best known for their contributions to studies of developmental and aging biology, Caenorhabditis nematodes are increasingly recognized as excellent model systems to advance understanding in these areas. We review recent discoveries with relevance to mitonuclear coevolution and conflict and offer several fertile areas for future work.
Collapse
Affiliation(s)
- Suzanne Estes
- Portland State University, Department of Biology, Portland, OR, USA.
| | - Zachary P Dietz
- Portland State University, Department of Biology, Portland, OR, USA
| | - Vaishali Katju
- Uppsala University, Department of Ecology and Genetics, 752 36 Uppsala, Sweden
| | - Ulfar Bergthorsson
- Uppsala University, Department of Ecology and Genetics, 752 36 Uppsala, Sweden
| |
Collapse
|
26
|
Munasinghe M, Ågren JA. When and why are mitochondria paternally inherited? Curr Opin Genet Dev 2023; 80:102053. [PMID: 37245242 DOI: 10.1016/j.gde.2023.102053] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/30/2023]
Abstract
In contrast with nuclear genes that are passed on through both parents, mitochondrial genes are maternally inherited in most species, most of the time. The genetic conflict stemming from this transmission asymmetry is well-documented, and there is an abundance of population-genetic theory associated with it. While occasional or aberrant paternal inheritance occurs, there are only a few cases where exclusive paternal inheritance of mitochondrial genomes is the evolved state. Why this is remains poorly understood. By examining commonalities between species with exclusive paternal inheritance, we discuss what they may tell us about the evolutionary forces influencing mitochondrial inheritance patterns. We end by discussing recent technological advances that make exploring the causes and consequences of paternal inheritance feasible.
Collapse
Affiliation(s)
- Manisha Munasinghe
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA. https://twitter.com/@ManishaMuna
| | - J Arvid Ågren
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden; Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
27
|
Yoosefzadeh Najafabadi M, Hesami M, Rajcan I. Unveiling the Mysteries of Non-Mendelian Heredity in Plant Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:1956. [PMID: 37653871 PMCID: PMC10221147 DOI: 10.3390/plants12101956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 07/30/2023]
Abstract
Mendelian heredity is the cornerstone of plant breeding and has been used to develop new varieties of plants since the 19th century. However, there are several breeding cases, such as cytoplasmic inheritance, methylation, epigenetics, hybrid vigor, and loss of heterozygosity (LOH), where Mendelian heredity is not applicable, known as non-Mendelian heredity. This type of inheritance can be influenced by several factors besides the genetic architecture of the plant and its breeding potential. Therefore, exploring various non-Mendelian heredity mechanisms, their prevalence in plants, and the implications for plant breeding is of paramount importance to accelerate the pace of crop improvement. In this review, we examine the current understanding of non-Mendelian heredity in plants, including the mechanisms, inheritance patterns, and applications in plant breeding, provide an overview of the various forms of non-Mendelian inheritance (including epigenetic inheritance, cytoplasmic inheritance, hybrid vigor, and LOH), explore insight into the implications of non-Mendelian heredity in plant breeding, and the potential it holds for future research.
Collapse
Affiliation(s)
| | | | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.Y.N.); (M.H.)
| |
Collapse
|
28
|
Tyszka AS, Bretz EC, Robertson HM, Woodcock-Girard MD, Ramanauskas K, Larson DA, Stull GW, Walker JF. Characterizing conflict and congruence of molecular evolution across organellar genome sequences for phylogenetics in land plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1125107. [PMID: 37063179 PMCID: PMC10098128 DOI: 10.3389/fpls.2023.1125107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Chloroplasts and mitochondria each contain their own genomes, which have historically been and continue to be important sources of information for inferring the phylogenetic relationships among land plants. The organelles are predominantly inherited from the same parent, and therefore should exhibit phylogenetic concordance. In this study, we examine the mitochondrion and chloroplast genomes of 226 land plants to infer the degree of similarity between the organelles' evolutionary histories. Our results show largely concordant topologies are inferred between the organelles, aside from four well-supported conflicting relationships that warrant further investigation. Despite broad patterns of topological concordance, our findings suggest that the chloroplast and mitochondrial genomes evolved with significant differences in molecular evolution. The differences result in the genes from the chloroplast and the mitochondrion preferentially clustering with other genes from their respective organelles by a program that automates selection of evolutionary model partitions for sequence alignments. Further investigation showed that changes in compositional heterogeneity are not always uniform across divergences in the land plant tree of life. These results indicate that although the chloroplast and mitochondrial genomes have coexisted for over 1 billion years, phylogenetically, they are still evolving sufficiently independently to warrant separate models of evolution. As genome sequencing becomes more accessible, research into these organelles' evolution will continue revealing insight into the ancient cellular events that shaped not only their history, but the history of plants as a whole.
Collapse
Affiliation(s)
- Alexa S. Tyszka
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Eric C. Bretz
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Holly M. Robertson
- Sainsbury Laboratory, School of Biological Sciences, University of Cambridge, Cambridge, England, United Kingdom
| | - Miles D. Woodcock-Girard
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Karolis Ramanauskas
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Drew A. Larson
- Department of Biology, Indiana University, Bloomington, IN, United States
| | - Gregory W. Stull
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Joseph F. Walker
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
29
|
Grosser MR, Sites SK, Murata MM, Lopez Y, Chamusco KC, Love Harriage K, Grosser JW, Graham JH, Gmitter FG, Chase CD. Plant mitochondrial introns as genetic markers - conservation and variation. FRONTIERS IN PLANT SCIENCE 2023; 14:1116851. [PMID: 37021319 PMCID: PMC10067590 DOI: 10.3389/fpls.2023.1116851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
Plant genomes are comprised of nuclear, plastid and mitochondrial components characterized by different patterns of inheritance and evolution. Genetic markers from the three genomes provide complementary tools for investigations of inheritance, genetic relationships and phenotypic contributions. Plant mitochondrial genomes are challenging for universal marker development because they are highly variable in terms of size, gene order and intergenic sequences and highly conserved with respect to protein-coding sequences. PCR amplification of introns with primers that anneal to conserved, flanking exons is effective for the development of polymorphic nuclear genome markers. The potential for plant mitochondrial intron polymorphisms to distinguish between congeneric species or intraspecific varieties has not been systematically investigated and is possibly constrained by requirements for intron secondary structure and interactions with co-evolved organelle intron splicing factors. To explore the potential for broadly applicable plant mitochondrial intron markers, PCR primer sets based upon conserved sequences flanking 11 introns common to seven angiosperm species were tested across a range of plant orders. PCR-amplified introns were screened for indel polymorphisms among a group of cross-compatible Citrus species and relatives; two Raphanus sativus mitotypes; representatives of the two Phaseolus vulgaris gene pools; and congeneric pairs of Cynodon, Cenchrus, Solanum, and Vaccinium species. All introns were successfully amplified from each plant entry. Length polymorphisms distinguishable by gel electrophoresis were common among genera but infrequent within genera. Sequencing of three introns amplified from 16 entries identified additional short indel polymorphisms and nucleotide substitutions that separated Citrus, Cynodon, Cenchrus and Vaccinium congeners, but failed to distinguish Solanum congeners or representatives of the Phaseolus vulgaris major gene pools. The ability of primer sets to amplify a wider range of plant species' introns and the presence of intron polymorphisms that distinguish congeners was confirmed by in silico analysis. While mitochondrial intron variation is limited in comparison to nuclear introns, these exon-based primer sets provide robust tools for the amplification of mitochondrial introns across a wide range of plant species wherein useful polymorphisms can be identified.
Collapse
Affiliation(s)
- Melinda R. Grosser
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Samantha K. Sites
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Mayara M. Murata
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Yolanda Lopez
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Karen C. Chamusco
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Kyra Love Harriage
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Jude W. Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - James H. Graham
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Fred G. Gmitter
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Christine D. Chase
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|
30
|
New Insights into Plastid and Mitochondria Evolution in Wild Peas (Pisum L.). DIVERSITY 2023. [DOI: 10.3390/d15020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Plastids and mitochondria are organelles of plant cells with small genomes, which may exhibit discordant microevolution as we earlier revealed in pea crop wild relatives. We sequenced 22 plastid and mitochondrial genomes of Pisum sativum subsp. elatius and Pisum fulvum using Illumina platform, so that the updated sample comprised 64 accessions. Most wild peas from continental southern Europe and a single specimen from Morocco were found to share the same organellar genome constitution; four others, presumably hybrid constitutions, were revealed in Mediterranean islands and Athos Peninsula. A mitochondrial genome closely related to that of Pisum abyssinicum, from Yemen and Ethiopia, was unexpectedly found in an accession of P. sativum subsp. elatius from Israel, their plastid genomes being unrelated. Phylogenetic reconstructions based on plastid and mitochondrial genomes revealed different sets of wild peas to be most related to cultivated P. sativum subsp. sativum, making its wild progenitor and its origin area enigmatic. An accession of P. fulvum representing ‘fulvum-b’ branch, according to a nuclear marker, appeared in the same branch as other fulvum accessions in organellar trees. The results stress the complicated evolution and structure of genetic diversity of pea crop wild relatives.
Collapse
|
31
|
Sharbrough J, Bankers L, Cook E, Fields PD, Jalinsky J, McElroy KE, Neiman M, Logsdon JM, Boore JL. Single-molecule Sequencing of an Animal Mitochondrial Genome Reveals Chloroplast-like Architecture and Repeat-mediated Recombination. Mol Biol Evol 2023; 40:6980790. [PMID: 36625177 PMCID: PMC9874032 DOI: 10.1093/molbev/msad007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Recent advances in long-read sequencing technology have allowed for single-molecule sequencing of entire mitochondrial genomes, opening the door for direct investigation of the mitochondrial genome architecture and recombination. We used PacBio sequencing to reassemble mitochondrial genomes from two species of New Zealand freshwater snails, Potamopyrgus antipodarum and Potamopyrgus estuarinus. These assemblies revealed a ∼1.7 kb structure within the mitochondrial genomes of both species that was previously undetected by an assembly of short reads and likely corresponding to a large noncoding region commonly present in the mitochondrial genomes. The overall architecture of these Potamopyrgus mitochondrial genomes is reminiscent of the chloroplast genomes of land plants, harboring a large single-copy (LSC) region and a small single-copy (SSC) region separated by a pair of inverted repeats (IRa and IRb). Individual sequencing reads that spanned across the Potamopyrgus IRa-SSC-IRb structure revealed the occurrence of a "flip-flop" recombination. We also detected evidence for two distinct IR haplotypes and recombination between them in wild-caught P. estuarinus, as well as extensive intermolecular recombination between single-nucleotide polymorphisms in the LSC region. The chloroplast-like architecture and repeat-mediated mitochondrial recombination we describe here raise fundamental questions regarding the origins and commonness of inverted repeats in cytoplasmic genomes and their role in mitochondrial genome evolution.
Collapse
Affiliation(s)
| | - Laura Bankers
- Department of Biology, University of Iowa, Iowa City, IA
| | - Emily Cook
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM 87801
| | - Peter D Fields
- Zoologisches Institut, University of Basel, Basel, Switzerland
| | | | - Kyle E McElroy
- Department of Biology, University of Iowa, Iowa City, IA,Department of Ecology, Evolution, and Organismal Biology, Iowa State University, IA
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, IA
| | - John M Logsdon
- Department of Biology, University of Iowa, Iowa City, IA
| | - Jeffrey L Boore
- Phenome Health and Institute for Systems Biology, Seattle, WA
| |
Collapse
|
32
|
Grover CE, Forsythe ES, Sharbrough J, Miller ER, Conover JL, DeTar RA, Chavarro C, Arick MA, Peterson DG, Leal-Bertioli SCM, Sloan DB, Wendel JF. Variation in cytonuclear expression accommodation among allopolyploid plants. Genetics 2022; 222:iyac118. [PMID: 35951749 PMCID: PMC9526054 DOI: 10.1093/genetics/iyac118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cytonuclear coevolution is a common feature among plants, which coordinates gene expression and protein products between the nucleus and organelles. Consequently, lineage-specific differences may result in incompatibilities between the nucleus and cytoplasm in hybrid taxa. Allopolyploidy is also a common phenomenon in plant evolution. The hybrid nature of allopolyploids may result in cytonuclear incompatibilities, but the massive nuclear redundancy created during polyploidy affords additional avenues for resolving cytonuclear conflict (i.e. cytonuclear accommodation). Here we evaluate expression changes in organelle-targeted nuclear genes for 6 allopolyploid lineages that represent 4 genera (i.e. Arabidopsis, Arachis, Chenopodium, and Gossypium) and encompass a range in polyploid ages. Because incompatibilities between the nucleus and cytoplasm could potentially result in biases toward the maternal homoeolog and/or maternal expression level, we evaluate patterns of homoeolog usage, expression bias, and expression-level dominance in cytonuclear genes relative to the background of noncytonuclear expression changes and to the diploid parents. Although we find subsets of cytonuclear genes in most lineages that match our expectations of maternal preference, these observations are not consistent among either allopolyploids or categories of organelle-targeted genes. Our results indicate that cytonuclear expression evolution may be subtle and variable among genera and genes, likely reflecting a diversity of mechanisms to resolve nuclear-cytoplasmic incompatibilities in allopolyploid species.
Collapse
Affiliation(s)
- Corrinne E Grover
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Evan S Forsythe
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Joel Sharbrough
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
| | - Emma R Miller
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Justin L Conover
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| | - Rachael A DeTar
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Carolina Chavarro
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
| | - Mark A Arick
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Soraya C M Leal-Bertioli
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Jonathan F Wendel
- Ecology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
33
|
Mendel's laws of heredity on his 200th birthday: What have we learned by considering exceptions? Heredity (Edinb) 2022; 129:1-3. [PMID: 35778507 DOI: 10.1038/s41437-022-00552-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/20/2022] Open
|