1
|
Xu S, Neupane S, Wang H, Pham TP, Snyman M, Huynh TV, Wang L. Efficient CRISPR genome editing and integrative genomic analyses reveal the mosaicism of Cas-induced mutations and pleiotropic effects of scarlet gene in an emerging model system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577787. [PMID: 38352317 PMCID: PMC10862705 DOI: 10.1101/2024.01.29.577787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Despite the revolutionary impacts of CRISPR-Cas gene editing systems, the effective and widespread use of CRISPR technologies in emerging model organisms still faces significant challenges. These include the inefficiency in generating heritable mutations at the organismal level, limited knowledge about the genomic consequences of gene editing, and an inadequate understanding of the inheritance patterns of CRISPR-Cas-induced mutations. This study addresses these issues by 1) developing an efficient microinjection delivery method for CRISPR editing in the microcrustacean Daphnia pulex; 2) assessing the editing efficiency of Cas9 and Cas12a nucleases, examining mutation inheritance patterns, and analyzing the local and global mutation spectrum in the scarlet mutants; and 3) investigating the transcriptomes of scarlet mutants to understand the pleiotropic effects of scarlet underlying their swimming behavior changes. Our reengineered CRISPR microinjection method results in efficient biallelic editing with both nucleases. While indels are dominant in Cas-induced mutations, a few on-site large deletions (>1kb) are observed, most likely caused by microhomology-mediated end joining repair. Knock-in of a stop codon cassette to the scarlet locus was successful, despite complex induced mutations surrounding the target site. Moreover, extensive germline mosaicism exists in some mutants, which unexpectedly produce different phenotypes/genotypes in their asexual progenies. Lastly, our transcriptomic analyses unveil significant gene expression changes associated with scarlet knock-out and altered swimming behavior in mutants, including several genes (e.g., NMDA1, ABAT, CNTNAP2) involved in human neurodegenerative diseases. This study expands our understanding of the dynamics of gene editing in the tractable model organism Daphnia and highlights its promising potential as a neurological disease model.
Collapse
Affiliation(s)
- Sen Xu
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Swatantra Neupane
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Hongjun Wang
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019, USA
| | - Thinh Phu Pham
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019, USA
| | - Marelize Snyman
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019, USA
| | - Trung V. Huynh
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Li Wang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| |
Collapse
|