1
|
Rissanen J, Nyckees D, Will T, Helanterä H, Freitak D. Formica fusca ants use aphid supplemented foods to alleviate effects during the acute phase of a fungal infection. Biol Lett 2023; 19:20230415. [PMID: 37964577 PMCID: PMC10646462 DOI: 10.1098/rsbl.2023.0415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
The modulation of nutritional intake by animals to combat pathogens is a behaviour that is receiving increasing attention. Ant studies using isolated compounds or nutrients in artificial diets have revealed a lot of the dynamics of the behaviour, but natural sources of medicine are yet to be confirmed. Here we explored whether Formica fusca ants exposed to a fungal pathogen can use an artificial diet containing foods spiked with different concentrations of crushed aphids for a medicinal benefit. We show that pathogen exposed colonies adjusted their diet to include more aphid supplemented foods during the acute phase of the infection, reducing the mortality caused by the disease. However, the benefit was only attained when having access to a varied diet, suggesting that while aphids contain nutrients or compounds beneficial against infection, it is a part of a complex nutritional system where costs and benefits of compounds and nutrients need to be moderated.
Collapse
Affiliation(s)
- Jason Rissanen
- Institute of Biology, University of Graz, Graz, Styria 8010, Austria
- Tvärminne Zoological Station, University of Helsinki, Hanko 10900, Finland
| | - Danaë Nyckees
- Laboratory of Entomology, Wageningen University, Wageningen 6700, The Netherlands
| | - Torsten Will
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Quedlinburg 06484, Germany
| | - Heikki Helanterä
- Tvärminne Zoological Station, University of Helsinki, Hanko 10900, Finland
- Ecology and Genetics Research Unit, University of Oulu, Oulu 90014, Finland
| | - Dalial Freitak
- Institute of Biology, University of Graz, Graz, Styria 8010, Austria
- Tvärminne Zoological Station, University of Helsinki, Hanko 10900, Finland
| |
Collapse
|
2
|
Shih PY, Sugio A, Simon JC. Molecular Mechanisms Underlying Host Plant Specificity in Aphids. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:431-450. [PMID: 36228134 DOI: 10.1146/annurev-ento-120220-020526] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aphids are serious pests of agricultural and ornamental plants and important model systems for hemipteran-plant interactions. The long evolutionary history of aphids with their host plants has resulted in a variety of systems that provide insight into the different adaptation strategies of aphids to plants and vice versa. In the past, various plant-aphid interactions have been documented, but lack of functional tools has limited molecular studies on the mechanisms of plant-aphid interactions. Recent technological advances have begun to reveal plant-aphid interactions at the molecular level and to increase our knowledge of the mechanisms of aphid adaptation or specialization to different host plants. In this article, we compile and analyze available information on plant-aphid interactions, discuss the limitations of current knowledge, and argue for new research directions. We advocate for more work that takes advantage of natural systems and recently established molecular techniques to obtain a comprehensive view of plant-aphid interaction mechanisms.
Collapse
Affiliation(s)
- Po-Yuan Shih
- INRAE (National Institute of Agriculture, Food and Environment), UMR IGEPP, Le Rheu, France; , ,
| | - Akiko Sugio
- INRAE (National Institute of Agriculture, Food and Environment), UMR IGEPP, Le Rheu, France; , ,
| | - Jean-Christophe Simon
- INRAE (National Institute of Agriculture, Food and Environment), UMR IGEPP, Le Rheu, France; , ,
| |
Collapse
|
3
|
Silva-Sanzana C, Zavala D, Moraga F, Herrera-Vásquez A, Blanco-Herrera F. Oligogalacturonides Enhance Resistance against Aphids through Pattern-Triggered Immunity and Activation of Salicylic Acid Signaling. Int J Mol Sci 2022; 23:ijms23179753. [PMID: 36077150 PMCID: PMC9456349 DOI: 10.3390/ijms23179753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The remarkable capacity of the generalist aphid Myzus persicae to resist most classes of pesticides, along with the environmental and human health risks associated with these agrochemicals, has necessitated the development of safer and greener solutions to control this agricultural pest. Oligogalacturonides (OGs) are pectin-derived molecules that can be isolated from fruit industry waste. OGs have been shown to efficiently stimulate plant defenses against pathogens such as Pseudomonas syringae and Botrytis cinerea. However, whether OGs confer resistance against phytophagous insects such as aphids remains unknown. Here, we treated Arabidopsis plants with OGs and recorded their effects on the feeding performance and population of M. persicae aphids. We also identified the defense mechanism triggered by OGs in plants through the analysis of gene expression and histological approaches. We found that OG treatments increased their resistance to M. persicae infestation by reducing the offspring number and feeding performance. Furthermore, this enhanced resistance was related to a substantial accumulation of callose and reactive oxygen species and activation of the salicylic acid signaling pathway.
Collapse
Affiliation(s)
- Christian Silva-Sanzana
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Millennium Science Initiative Program (ANID), Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370186, Chile
- Millennium Science Initiative Program (ANID), Millennium Institute for Integrative Biology (iBio), Santiago 8370186, Chile
| | - Diego Zavala
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Millennium Science Initiative Program (ANID), Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370186, Chile
- Millennium Science Initiative Program (ANID), Millennium Institute for Integrative Biology (iBio), Santiago 8370186, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8320000, Chile
| | - Felipe Moraga
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Millennium Science Initiative Program (ANID), Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370186, Chile
- Millennium Science Initiative Program (ANID), Millennium Institute for Integrative Biology (iBio), Santiago 8370186, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8320000, Chile
| | - Ariel Herrera-Vásquez
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Millennium Science Initiative Program (ANID), Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370186, Chile
- Millennium Science Initiative Program (ANID), Millennium Institute for Integrative Biology (iBio), Santiago 8370186, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8320000, Chile
| | - Francisca Blanco-Herrera
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Millennium Science Initiative Program (ANID), Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370186, Chile
- Millennium Science Initiative Program (ANID), Millennium Institute for Integrative Biology (iBio), Santiago 8370186, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago 8320000, Chile
- Correspondence: ; Tel.: +56-2-26618319
| |
Collapse
|
4
|
Kloth KJ, Dicke M. Rapid systemic responses to herbivory. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102242. [PMID: 35696775 DOI: 10.1016/j.pbi.2022.102242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Rapid systemic signals travel within the first seconds and minutes after herbivore infestation to mount defense responses in distal tissues. Recent studies have revealed that wound-induced hydraulic pressure changes play an important role in systemic electrical signaling and subsequent calcium and reactive oxygen species waves. These insights raise new questions about signal specificity, the role of insect feeding guild and feeding style and the impact on longer term plant defenses. Here, we integrate the current molecular understanding of wound-induced rapid systemic signaling in the framework of insect-plant interactions.
Collapse
Affiliation(s)
- Karen J Kloth
- Laboratory of Entomology, Wageningen University & Research, PO Box 16, 6700 AA Wageningen, the Netherlands.
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, PO Box 16, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
5
|
Tadmor E, Juravel K, Morin S, Santos-Garcia D. Evolved transcriptional responses and their trade-offs after long-term adaptation of Bemisia tabaci to a marginally-suitable host. Genome Biol Evol 2022; 14:6649882. [PMID: 35880721 PMCID: PMC9372648 DOI: 10.1093/gbe/evac118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 11/14/2022] Open
Abstract
Although generalist insect herbivores can migrate and rapidly adapt to a broad range of host plants, they can face significant difficulties when accidentally migrating to novel and marginally-suitable hosts. What happens, both in performance and gene expression regulation, if these marginally-suitable hosts must be used for multiple generations before migration to a suitable host can take place, largely remains unknown. In this study, we established multigenerational colonies of the whitefly Bemisia tabaci, a generalist phloem-feeding species, adapted to a marginally-suitable host (habanero pepper) or an optimal host (cotton). We used reciprocal host tests to estimate the differences in performance of the populations on both hosts under optimal (30 oC) and mild-stressful (24 oC) temperature conditions, and documented the associated transcriptomic changes. The habanero pepper-adapted population greatly improved its performance on habanero pepper but did not reach its performance level on cotton, the original host. It also showed reduced performance on cotton, relative to the non-adapted population, and an antagonistic effect of the lower-temperature stressor. The transcriptomic data revealed that most of the expression changes, associated with long-term adaptation to habanero pepper, can be categorized as "evolved" with no initial plastic response. Three molecular functions dominated: enhanced formation of cuticle structural constituents, enhanced activity of oxidation-reduction processes involved in neutralization of phytotoxins and reduced production of proteins from the cathepsin B family. Taken together, these findings indicate that generalist insects can adapt to novel host plants by modifying the expression of a relatively small set of specific molecular functions.
Collapse
Affiliation(s)
- Ella Tadmor
- Department of Entomology, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Ksenia Juravel
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shai Morin
- Department of Entomology, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Diego Santos-Garcia
- Laboratory of Biometry and Evolutionary Biology University Lyon 1 - UMR CNRS 5558, Villeurbanne, France
| |
Collapse
|
6
|
Xu J, Padilla CS, Li J, Wickramanayake J, Fischer HD, Goggin FL. Redox responses of Arabidopsis thaliana to the green peach aphid, Myzus persicae. MOLECULAR PLANT PATHOLOGY 2021; 22:727-736. [PMID: 33829627 PMCID: PMC8126190 DOI: 10.1111/mpp.13054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/26/2021] [Accepted: 02/24/2021] [Indexed: 05/29/2023]
Abstract
The green peach aphid (Myzus persicae) is a phloem-feeding insect that causes economic damage on a wide array of crops. Using a luminol-based assay, a superoxide-responsive reporter gene (Zat12::luciferase), and a probe specific to hydrogen peroxide (HyPer), we demonstrated that this aphid induces accumulation of reactive oxygen species (ROS) in Arabidopsis thaliana. Similar to the apoplastic oxidative burst induced by pathogens, this response to aphids was rapid and transient, with two peaks occurring within 1 and 4 hr after infestation. Aphid infestation also induced an oxidative response in the cytosol and peroxisomes, as measured using a redox-sensitive variant of green fluorescent protein (roGFP2). This intracellular response began within minutes of infestation but persisted 20 hr or more after inoculation, and the response of the peroxisomes appeared stronger than the response in the cytosol. Our results suggest that the oxidative response to aphids involves both apoplastic and intracellular sources of ROS, including ROS generation in the peroxisomes, and these different sources of ROS may potentially differ in their impacts on host suitability for aphids.
Collapse
Affiliation(s)
- Junhuan Xu
- Department of Entomology and Plant PathologyUniversity of Arkansas Division of AgricultureFayettevilleArkansasUSA
- Present address:
Department of Plant PathologyOhio State UniversityWoosterOhioUSA
| | - Carmen S. Padilla
- Department of Entomology and Plant PathologyUniversity of Arkansas Division of AgricultureFayettevilleArkansasUSA
- Present address:
Texas A&M AgriLife Research and Extension CenterWeslacoTexasUSA
| | - Jiamei Li
- Department of Entomology and Plant PathologyUniversity of Arkansas Division of AgricultureFayettevilleArkansasUSA
| | - Janithri Wickramanayake
- Department of Entomology and Plant PathologyUniversity of Arkansas Division of AgricultureFayettevilleArkansasUSA
| | - Hillary D. Fischer
- Department of Entomology and Plant PathologyUniversity of Arkansas Division of AgricultureFayettevilleArkansasUSA
| | - Fiona L. Goggin
- Department of Entomology and Plant PathologyUniversity of Arkansas Division of AgricultureFayettevilleArkansasUSA
| |
Collapse
|
7
|
Florencio-Ortiz V, Novák O, Casas JL. Phytohormone responses in pepper (Capsicum annuum L.) leaves under a high density of aphid infestation. PHYSIOLOGIA PLANTARUM 2020; 170:519-527. [PMID: 32794184 DOI: 10.1111/ppl.13188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
The time course response of selected phytohormones has been evaluated in sweet pepper plants (Capsicum annuum L.) submitted to a high density (200 aphids/plant) of aphid (Myzus persicae Sulzer) infestation. Abscisic acid (ABA), salicylic acid (SA), indole-3-acetic acid (IAA), and jasmonates (JAs), including jasmonic acid (JA), jasmonoyl-l-isoleucine (JA-Ile), and cis-OPDA have been simultaneously identified and quantitated by UHPLC-MS/MS in pepper leaf tissue harvested at 3, 8 hours post-infestation (hpi), 1, 2, 4 and 7 days post-infestation (dpi). Infested plants showed a reduction in stem length at 7 dpi and in the number of leaves and leaf width from 4 dpi onwards. JA and JA-Ile significantly increased very early (from 3 hpi) while SA only accumulated at 7 dpi. Despite the high density of infestation, the aphid-induced accumulation of JAs was much lower than the burst typically induced by chewing herbivores. On the other side, ABA peaked in aphid-infested plants at 2 and 4 dpi, while IAA content did not change significantly at any time point. Growth inhibition may be partially explained by the high levels of JAs found in aphid-infested plants. The possibility that the obtained results support the hypothesis of the aphid manipulation of plant metabolism is discussed.
Collapse
Affiliation(s)
- Victoria Florencio-Ortiz
- Unidad Asociada IPAB (UA-CSIC), Instituto Universitario de Investigación CIBIO (Centro Iberoamericano de la Biodiversidad), University of Alicante, Alicante, Spain
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Palacký University, Olomouc, CZ-78371, Czech Republic
| | - José L Casas
- Unidad Asociada IPAB (UA-CSIC), Instituto Universitario de Investigación CIBIO (Centro Iberoamericano de la Biodiversidad), University of Alicante, Alicante, Spain
| |
Collapse
|
8
|
Wang Q, Yuan E, Ling X, Zhu-Salzman K, Guo H, Ge F, Sun Y. An aphid facultative symbiont suppresses plant defence by manipulating aphid gene expression in salivary glands. PLANT, CELL & ENVIRONMENT 2020; 43:2311-2322. [PMID: 32596816 DOI: 10.1111/pce.13836] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 05/29/2023]
Abstract
Aphids often carry facultative symbionts to achieve diverse advantages. Serratia symbiotica, one of facultative endosymbionts, increases aphid tolerance to heat. However, whether it benefits aphid colonization on host plants is yet to be determined. In the current study, we found that Acyrthosiphon pisum harbouring S. symbiotica had longer feeding duration on Medicago truncatula than Serratia-free aphids. Contrastingly, Serratia-free aphids triggered higher accumulation of reactive oxygen species (ROS), jasmonic acid and salicylic acid responsive genes and cytosolic Ca2+ elevations than Serratia-infected aphids. Transcriptomic analysis of salivary glands indicated that a histidine-rich Ca2+ -binding protein-like gene (ApHRC) was expressed more highly in the salivary gland of Serratia-infected aphids than that of Serratia-free aphids. Once ApHRC was silenced, Serratia-infected aphids also displayed shorter phloem-feeding duration and caused Ca2+ elevation and ROS accumulation in plants. Our results suggest that ApHRC, a potential effector up-regulated by S. symbiotica in the salivary glands, impairs plant defence response by suppressing Ca2+ elevation and ROS accumulation, allowing colonization of aphids. This study has provided an insight into how facultative symbionts facilitate aphid colonization and adaptation to host plants.
Collapse
Affiliation(s)
- Qinyang Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Erliang Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Ling
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- Maoming Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Maoming, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- Maoming Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Maoming, China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|