1
|
Zhang Y, Jang H, Luo Z, Dong Y, Xu Y, Kantamneni Y, Schmitz RJ. Dynamic evolution of the heterochromatin sensing histone demethylase IBM1. PLoS Genet 2024; 20:e1011358. [PMID: 38991029 PMCID: PMC11265718 DOI: 10.1371/journal.pgen.1011358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/23/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Heterochromatin is critical for maintaining genome stability, especially in flowering plants, where it relies on a feedback loop involving the H3K9 methyltransferase, KRYPTONITE (KYP), and the DNA methyltransferase CHROMOMETHYLASE3 (CMT3). The H3K9 demethylase INCREASED IN BONSAI METHYLATION 1 (IBM1) counteracts the detrimental consequences of KYP-CMT3 activity in transcribed genes. IBM1 expression in Arabidopsis is uniquely regulated by methylation of the 7th intron, allowing it to monitor global H3K9me2 levels. We show the methylated intron is prevalent across flowering plants and its underlying sequence exhibits dynamic evolution. We also find extensive genetic and expression variations in KYP, CMT3, and IBM1 across flowering plants. We identify Arabidopsis accessions resembling weak ibm1 mutants and Brassicaceae species with reduced IBM1 expression or deletions. Evolution towards reduced IBM1 activity in some flowering plants could explain the frequent natural occurrence of diminished or lost CMT3 activity and loss of gene body DNA methylation, as cmt3 mutants in A. thaliana mitigate the deleterious effects of IBM1.
Collapse
Affiliation(s)
- Yinwen Zhang
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Hosung Jang
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Ziliang Luo
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Yinxin Dong
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Yangyang Xu
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Yamini Kantamneni
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Robert J. Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
2
|
Li H, Liu C, Kan J, Lin J, Li X. Integrated Methylome and Transcriptome Analysis between Wizened and Normal Flower Buds in Pyrus pyrifolia Cultivar 'Sucui 1'. Int J Mol Sci 2024; 25:7180. [PMID: 39000285 PMCID: PMC11241763 DOI: 10.3390/ijms25137180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Here, cytosine methylation in the whole genome of pear flower buds was mapped at a single-base resolution. There was 19.4% methylation across all sequenced C sites in the Pyrus pyrifolia cultivar 'Sucui 1' flower bud genome. Meantime, the CG, CHG, and CHH sequence contexts (where H = A, T or C) exhibited 47.4%, 33.3%, and 11.9% methylation, respectively. Methylation in different gene regions was revealed through combining methylome and transcriptome analysis, which presented various transcription trends. Genes with methylated promoters exhibited lower expression levels than genes with non-methylated promoters, while body-methylated genes displayed an obvious negative correlation with their transcription levels. The methylation profiles of auxin- and cytokinin-related genes were estimated. And some of them proved to be hypomethylated, with increased transcription levels, in wizened buds. More specifically, the expression of the genes PRXP73, CYP749A22, and CYP82A3 was upregulated as a result of methylation changes in their promoters. Finally, auxin and cytokinin concentrations were higher in wizened flower buds than in normal buds. The exogenous application of paclobutrazol (PP333) in the field influenced the DNA methylation status of some genes and changed their expression level, reducing the proportion of wizened flower buds in a concentration-dependent manner. Overall, our results demonstrated the relationship between DNA methylation and gene expression in wizened flower buds of P. pyrifolia cultivar 'Sucui 1', which was associated with changes in auxin and cytokinin concentrations.
Collapse
Affiliation(s)
| | | | | | | | - Xiaogang Li
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.L.); (C.L.); (J.K.); (J.L.)
| |
Collapse
|
3
|
Khodaeiaminjan M, Gomes C, Pagano A, Kruszka D, Sulima P, Przyborowski JA, Krajewski P, Paiva JAP. Impacts of in-vitro zebularine treatment on genome-wide DNA methylation and transcriptomic profiles in Salix purpurea L. PHYSIOLOGIA PLANTARUM 2024; 176:e14403. [PMID: 38923551 DOI: 10.1111/ppl.14403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Renewable energy resources such as biomass are crucial for a sustainable global society. Trees are a major source of lignocellulosic biomass, which can vary in response to different environmental factors owing to epigenetic regulation, such as DNA C-methylation. To investigate the effects of DNA methylation on plant development and wood formation, and its impacts on gene expression, with a focus on secondary cell wall (SCW)-associated genes, Salix purpurea plantlets were cloned from buds derived from a single hybrid tree for both treatment and control conditions. For the treatment condition, buds were exposed to 50 μM zebularine in vitro and a combined strategy of whole-genome bisulfite sequencing (WGBS) and RNA-seq was employed to examine the methylome and transcriptome profiles of different tissues collected at various time points under both conditions. Transcriptomic and methylome data revealed that most of the promoter and gene body demethylation had no marked effects on the expression profiles of genes. Nevertheless, gene expression tended to decrease with the increased methylation levels of genes with highly methylated promoters. Results indicated that demethylation is less evident in centromeric regions and sex chromosomes. Promoters of secondary cell wall-associated genes, such as 4-coumarate-CoA ligase-like and Rac-like GTP-binding protein RHO, were differentially methylated in the secondary xylem samples collected from two-month potted treated plants compared to control samples. Our results provide novel insights into DNA methylation and gene expression landscapes and a basis for investigating the epigenetic regulation of wood formation in S. purpurea as a model plant for bioenergy species.
Collapse
Affiliation(s)
- Mortaza Khodaeiaminjan
- Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Carolina Gomes
- Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Andrea Pagano
- Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Dariusz Kruszka
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Paweł Sulima
- Department of Genetics, Plant Breeding and Bioresource Engineering, University of Warmia and Mazury, Olsztyn, Poland
| | - Jerzy Andrzej Przyborowski
- Department of Genetics, Plant Breeding and Bioresource Engineering, University of Warmia and Mazury, Olsztyn, Poland
| | - Paweł Krajewski
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Jorge Almiro Pinto Paiva
- Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
4
|
Zhou P, Lei S, Zhang X, Wang Y, Guo R, Yan S, Jin G, Zhang X. Genome sequencing revealed the red-flower trait candidate gene of a peach landrace. HORTICULTURE RESEARCH 2023; 10:uhad210. [PMID: 38023475 PMCID: PMC10681006 DOI: 10.1093/hr/uhad210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Peach (Prunus persica) is an economically important fruit crop globally and an excellent material for genomic studies. While considerable progress has been made in unveiling trait-associated genes within cultivars and wild relatives, certain novel genes controlling valuable traits in peach landraces, such as the red-flowering gene, remained unclear. In this study, we sequenced and assembled the diploid genome of the red-flower landrace 'Yingzui' (abbreviated as 'RedY'). Multi-omics profiling of red petals of 'RedY' revealed the intensified red coloration associated with anthocyanins accumulation and concurrent decline in flavonols. This phenomenon is likely attributed to a natural variant of Flavonol Synthase (FLS) harboring a 9-bp exonic insertion. Intriguingly, the homozygous allelic configurations of this FLS variant were only observed in red-flowered peaches. Furthermore, the 9-bp sequence variation tightly associated with pink/red petal color in genome-wide association studies (GWAS) of collected peach germplasm resources. Functional analyses of the FLS variant, purified from procaryotic expression system, demonstrated its diminished enzymatic activity in flavonols biosynthesis, impeccably aligning with the cardinal trait of red flowers. Therefore, the natural FLS variant was proposed as the best candidate gene for red-flowering trait in peach. The pioneering unveiling of the red-flowered peach genome, coupled with the identification of the candidate gene, expanded the knowledge boundaries of the genetic basis of peach traits and provided valuable insights for future peach breeding efforts.
Collapse
Affiliation(s)
- Ping Zhou
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
- Research Centre for Engineering Technology of Fujian Deciduous Fruits, Fuzhou 350013, China
| | - Siru Lei
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaodan Zhang
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Yinghao Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Rui Guo
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
- Research Centre for Engineering Technology of Fujian Deciduous Fruits, Fuzhou 350013, China
| | - Shaobin Yan
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
- Research Centre for Engineering Technology of Fujian Deciduous Fruits, Fuzhou 350013, China
| | - Guang Jin
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
- Research Centre for Engineering Technology of Fujian Deciduous Fruits, Fuzhou 350013, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
5
|
He L, Fan Y, Zhang Z, Wei X, Yu J. Identifying Genes Associated with Female Flower Development of Phellodendron amurense Rupr. Using a Transcriptomics Approach. Genes (Basel) 2023; 14:661. [PMID: 36980934 PMCID: PMC10048520 DOI: 10.3390/genes14030661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Phellodendron amurense Rupr., a species of Rutaceae, is a nationally protected and valuable medicinal plant. It is generally considered to be dioecious. With the discovery of monoecious P. amurense, the phenomenon that its sex development is regulated by epigenetics has been revealed, but the way epigenetics affects the sex differentiation of P. amurense is still unclear. In this study, we investigated the effect of DNA methylation on the sexual development of P. amurense. The young inflorescences of male plants were treated with the demethylation agent 5-azaC, and the induced female flowers were obtained. The induced female flowers' morphological functions and transcriptome levels were close to those of normally developed plants. Genes associated with the development of female flowers were studied by comparing the differences in transcriptome levels between the male and female flowers. Referring to sex-related genes reported in other plants, 188 candidate genes related to the development of female flowers were obtained, including sex-regulating genes, genes related to the formation and development of sexual organs, genes related to biochemical pathways, and hormone-related genes. RPP0W, PAL3, MCM2, MCM6, SUP, PIN1, AINTEGUMENTA, AINTEGUMENTA-LIKE6, AGL11, SEUSS, SHI-RELATED SEQUENCE 5, and ESR2 were preliminarily considered the key genes for female flower development. This study has demonstrated that epigenetics was involved in the sex regulation of P. amurense, with DNA methylation as one of its regulatory modes. Moreover, some candidate genes related to the sexual differentiation of P. amurense were obtained with analysis. These results are of great significance for further exploring the mechanism of sex differentiation of P. amurense and studying of sex differentiation of plants.
Collapse
Affiliation(s)
| | | | - Zhao Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | | | | |
Collapse
|
6
|
Mondal S, Song H, Zhang L, Cao Y. Editorial: Multi-omics and computational biology in horticultural plants: From genotype to phenotype. FRONTIERS IN PLANT SCIENCE 2022; 13:1073266. [PMID: 36466270 PMCID: PMC9709487 DOI: 10.3389/fpls.2022.1073266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Affiliation(s)
- Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Hui Song
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunpeng Cao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
7
|
Zhou Y, Pang Z, Yuan Z, Fallah N, Jia H, Ming R. Sex-based metabolic and microbiota differences in roots and rhizosphere soils of dioecious papaya ( Carica papaya L.). FRONTIERS IN PLANT SCIENCE 2022; 13:991114. [PMID: 36311075 PMCID: PMC9612958 DOI: 10.3389/fpls.2022.991114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Dioecious plant species have a high genetic variation that is important for coping with or adapting to environmental stress through natural selection. Intensive studies have reported dimorphism morphism in morphology, physiology, as well as biotic and abiotic stress responses in dioecious plants. Here, we demonstrated the dimorphism of metabolic profile and the preference of some microorganisms in the roots and rhizosphere soils of male and female papaya. The metabolic composition of roots were significantly different between the males and females. Some sex hormones occurred in the differential metabolites in roots and rhizosphere soils. For example, testosterone was up-regulated in male papaya roots and rhizosphere soils, whereas norgestrel was up-regulated in the female papaya roots, indicating a possible balance in papaya roots to control the sexual differentiation. Plant hormones such as BRs, JAs, SA and GAs were also detected among the differential metabolites in the roots and rhizosphere soils of dioecious papaya. In addition, some metabolites that have medicinal values, such as ecliptasaponin A, crocin, berberine and sapindoside A were also expressed differentially between the two sexes. Numerous differential metabolites from the papaya roots were secreted in the soil, resulting in the differences in microbial community structure in the roots and rhizosphere soils. Some nitrogen-fixing bacteria such as Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Brevundimonas and Microvirga were enriched in the male papaya roots or rhizosphere soils. While Candidatus Solibacter and Tumebacillus, which utilize organic matters, were enriched in the roots or rhizosphere soils of the female papaya. Some differences in the fungi abundance were also observed in both male and female papaya roots. These findings uncovered the effect of sex types on the metabolic and microbiota differences in roots and rhizosphere soils in papaya and will lead to investigations of underlining genomic and molecular mechanisms.
Collapse
Affiliation(s)
- Yongmei Zhou
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ziqin Pang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhaonian Yuan
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Nyumah Fallah
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haifeng Jia
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
8
|
DNA Demethylation Induces Tree Peony Flowering with a Low Deformity Rate Compared to Gibberellin by Inducing PsFT Expression under Forcing Culture Conditions. Int J Mol Sci 2022; 23:ijms23126632. [PMID: 35743085 PMCID: PMC9223562 DOI: 10.3390/ijms23126632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
Gibberellin (GA) is frequently used in tree peony forcing culture, but inappropriate application often causes flower deformity. Here, 5-azacytidine (5-azaC), an efficient DNA demethylating reagent, induced tree peony flowering with a low deformity rate by rapidly inducing PsFT expression, whereas GA treatment affected various flowering pathway genes with strong pleiotropy. The 5-azaC treatment, but not GA, significantly reduced the methylation level in the PsFT promoter with the demethylation of five CG contexts in a 369 bp CG-rich region, and eight light-responsive related cis-elements were also predicted in this region, accompanied by enhanced leaf photosynthetic efficiency. Through GO analysis, all methylation-closer differentially expressed genes (DEGs) were located in the thylakoid, the main site for photosynthesis, and were mainly involved in response to stimulus and single-organism process, whereas GA-closer DEGs had a wider distribution inside and outside of cells, associated with 12 categories of processes and regulations. We further mapped five candidate DEGs with potential flowering regulation, including three kinases (SnRK1, WAK2, and 5PTase7) and two bioactive enzymes (cytochrome P450 and SBH1). In summary, 5-azaC and GA may have individual roles in inducing tree peony flowering, and 5-azaC could be a preferable regulation approach; DNA demethylation is suggested to be more focused on flowering regulation with PsFT playing a core role through promoter demethylation. In addition, 5-azaC may partially undertake or replace the light-signal function, combined with other factors, such as SnRK1, in regulating flowering. This work provides new ideas for improving tree peony forcing culture technology.
Collapse
|
9
|
Zluvova J, Kubat Z, Hobza R, Janousek B. Adaptive changes of the autosomal part of the genome in a dioecious clade of Silene. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210228. [PMID: 35306886 PMCID: PMC8935319 DOI: 10.1098/rstb.2021.0228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The genus Silene brings many opportunities for the study of various processes involved in the evolution of dioecy and young sex chromosomes. Here we focus on a dioecious clade in Silene subgenus Silene and closely related species. This study provides improved support for monophyly of this clade (based on inclusion of further dioecious species) and a new estimate of its age (ca 2.3 million years). We observed a rise in adaptive evolution in the autosomal and pseudoautosomal parts of the genome on the branch where dioecy originated. This increase is not a result of the accumulation of sexually antagonistic genes in the pseudoautosomal region. It is also not caused by the coevolution of genes acting in mitochondria (despite the possibility that dioecy along this branch could have evolved from a nucleo-cytoplasmic male sterility-based system). After considering other possibilities, the most parsimonious explanation for the increase seen in the number of positively selected codons is the adaptive evolution of genes involved in the adaptation of the autosomal part of the genome to dioecy, as described in Charnov's sex-allocation theory. As the observed coincidence cannot prove causality, studies in other dioecious clades are necessary to allow the formation of general conclusions. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.
Collapse
Affiliation(s)
- Jitka Zluvova
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, Brno CZ - 612 65, Czech Republic
| | - Zdenek Kubat
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, Brno CZ - 612 65, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, Brno CZ - 612 65, Czech Republic
| | - Bohuslav Janousek
- Department of Plant Developmental Genetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, Brno CZ - 612 65, Czech Republic
| |
Collapse
|
10
|
Han Y, Lu M, Yue S, Li K, Dong M, Liu L, Wang H, Shang F. Comparative methylomics and chromatin accessibility analysis in Osmanthus fragrans uncovers regulation of genic transcription and mechanisms of key floral scent production. HORTICULTURE RESEARCH 2022; 9:uhac096. [PMID: 35795393 PMCID: PMC9250655 DOI: 10.1093/hr/uhac096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/07/2022] [Indexed: 06/12/2023]
Abstract
Linalool and ionone are two important aromatic components in sweet osmanthus petals, and the regulatory mechanisms that produce these two components remain unclear. In this study, we employed whole-genome methylation sequencing and ATAC-seq technology to analyze the genomic DNA methylation status and chromatin accessibility of the sweet osmanthus cultivars 'Zaohuang' and 'Chenghong Dangui'. Results showed that the promoter region of TPS2, a key gene in the linalool synthesis pathway, was less methylated in 'Chenghong Dangui' than in 'Zaohuang'. The chromatin was more accessible in 'Chenghong Dangui' than in 'Zaohuang', which resulted in a much stronger expression of this gene in 'Chenghong Dangui' than in 'Zaohuang'. This eventually led to a high quantity of linalool and its oxides in the petals of 'Chenghong Dangui', but there were lower levels present in the petals of 'Zaohuang'. These results suggest that DNA methylation and chromatin accessibility play major roles in linalool synthesis in sweet osmanthus. The methylation level of the promoter region of CCD4, a key gene for ionone synthesis, was higher in 'Zaohuang' than in 'Chenghong Dangui'. The chromatin accessibility was lower in 'Zaohuang' than in 'Chenghong Dangui', although the expression of this gene was significantly higher in 'Zaohuang' than in 'Chenghong Dangui'. ChIP-seq analysis and a series of experiments showed that the differential expression of CCD4 and CCD1 in the two cultivars may predominantly be the result of regulation by ERF2 and other transcription factors. However, a 183-bp deletion involving the CCD4 promoter region in 'Chenghong Dangui' may be the main reason for the low expression of this gene in its petals. This study provides an important theoretical basis for improving selective breeding of key floral fragrance components in sweet osmanthus.
Collapse
Affiliation(s)
| | - Miaomiao Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shumin Yue
- State Key Laboratory of Crop Stress Adaptation and Improvement, Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ke Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Meifang Dong
- State Key Laboratory of Crop Stress Adaptation and Improvement, Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Luxian Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Hongyun Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Laboratory of Plant Germplasm and Genetic Engineering, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | | |
Collapse
|
11
|
Wang S, Yan J, Hu B, Wang R, Xu J. Advanced epigenomic engineering in crop quality improvement. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Zhou P, Zhang X, Ma X, Yue J, Liao Z, Ming R. Methylation related genes affect sex differentiation in dioecious and gynodioecious papaya. HORTICULTURE RESEARCH 2022; 9:uhab065. [PMID: 35048102 PMCID: PMC8935930 DOI: 10.1093/hr/uhab065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Morphological, genic and epigenetic differences often exist in separate sexes of dioecious and trioecious plants. However, the connections and relationships among them in different breeding systems are still unclear. Papaya has three sex types, which is genetically determined and epigenetically regulated, and was chosen as a model to study sex differentiation. Bisulfite sequencing of genomic DNA extracted from early-stage flowers revealed sex-specific genomic methylation landscapes and seasonally methylome reprogramming processes in dioecious and gynodioecious papaya grown in spring and summer. Extensive methylation of sex-determining region (SDR) was the distinguishing epigenetic characteristics of nascent XY sex chromosomes in papaya. Seasonal methylome reprogramming of early-stage flowers in both dioecy and gynodioecy systems were detected, resulting from transcriptional expression pattern alterations of methylation-modification-related and chromatin-remodeling-related genes, particularly from those genes involved in active demethylation. Genes involved in phytohormone signal transduction pathway in male flowers have played an important role in the formation of male-specific characteristics. These findings enhanced the understanding of the genetic and epigenetic contributions to sex differentiation and the complexity of sex chromosome evolution in trioecious plants.
Collapse
Affiliation(s)
- Ping Zhou
- Fruit Research Institute,Fujian Academy of Agricultural Sciences,Fuzhou 350013,Fujian, China
| | - Xiaodan Zhang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xinyi Ma
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jingjing Yue
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhenyang Liao
- FAFU and UIUC Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
13
|
Chen J, Tomes S, Gleave AP, Hall W, Luo Z, Xu J, Yao JL. Significant improvement of apple (Malus domestica Borkh.) transgenic plant production by pre-transformation with a Baby boom transcription factor. HORTICULTURE RESEARCH 2022; 9:uhab014. [PMID: 35039859 PMCID: PMC8795818 DOI: 10.1093/hr/uhab014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/18/2022] [Accepted: 10/16/2021] [Indexed: 05/24/2023]
Abstract
BABY BOOM (BBM) is a member of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) family and its expression has been shown to improve herbaceous plant transformation and regeneration. However, this improvement has not been shown clearly for tree species. This study demonstrated that the efficiency of transgenic apple (Malus domestica Borkh.) plant production was dramatically increased by ectopic expression of the MdBBM1 gene. "Royal Gala" apple plants were first transformed with a CaMV35S-MdBBM1 construct (MBM) under kanamycin selection. These MBM transgenic plants exhibited enhanced shoot regeneration from leaf explants on tissue culture media, with most plants displaying a close-to-normal phenotype compared with CaMV35S-GUS transgenic plants when grown under greenhouse conditions, the exception being that some plants had slightly curly leaves. Thin leaf sections revealed the MBM plants produced more cells than the GUS plants, indicating that ectopic-expression of MdBBM1 enhanced cell division. Transcriptome analysis showed that mRNA levels for cell division activators and repressors linked to hormone (auxin, cytokinin and brassinosteroid) signalling pathways were enhanced and reduced, respectively, in the MBM plants compared with the GUS plants. Plants of eight independent MBM lines were compared with the GUS plants by re-transforming them with an herbicide-resistant gene construct. The number of transgenic plants produced per 100 leaf explants was 0-3% for the GUS plants, 3-8% for five MBM lines, and 20-30% for three MBM lines. Our results provided a solution for overcoming the barriers to transgenic plant production in apple, and possibly in other trees.
Collapse
Affiliation(s)
- Jiajing Chen
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, China
| | - Sumathi Tomes
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Andrew P Gleave
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Wendy Hall
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Zhiwei Luo
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, 430070, China
| | - Jia-Long Yao
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, 32 Gangwan Road
Zhengzhou 450009, China
| |
Collapse
|
14
|
Chen JR, Ueno H, Matsumura H, Urasaki N, Lee CY, Chen FC, Chin SW, Liu CC, Chiu CT, Tarora K, Li JY, Lee CY, Ku HM. Genomic characterization of a rare Carica papaya X chromosome mutant reveals a candidate monodehydroascorbate reductase 4 gene involved in all-hermaphrodite phenomenon. Mol Genet Genomics 2021; 296:1323-1335. [PMID: 34609588 DOI: 10.1007/s00438-021-01822-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/11/2021] [Indexed: 11/27/2022]
Abstract
Sex form is one of the most important characteristics in papaya cultivation in which hermaphrodite is the preferable form. Self-pollination of H*-TSS No.7, an inbred line derived from a rare X chromosome mutant SR*, produced all-hermaphrodite progeny. The recessive lethal allele controlling the all-hermaphrodite phenomenon was proposed to be the recessive Germination suppressor (gs) locus. This study employed next-generation sequencing technology and genome comparison to identify the candidate Gs gene. One specific gene, monodehydroascorbate reductase 4 (MDAR4) harboring a unique polymorphic 3 bp deletion in H*-TSS No.7 was identified. The function of MDAR4 is known to be involved in the hydrogen peroxide (H2O2) scavenging pathway and is associated with seed germination. Furthermore, MDAR4 showed higher expression in the imbibed seeds than that in the dry seeds indicating its potential role in the seed germination. Perhaps this is the very first report providing the evidences that MDAR4 is the candidate of Gs locus in H*-TSS No.7. In addition, Gs allele-specific markers were developed which would be facilitated for breeding all-hermaphrodite lines.
Collapse
Affiliation(s)
- Jen-Ren Chen
- Taiwan Seed Improvement and Propagation Station, No 6 Xingzhong St, Xinshe Dist, Taichung, 426, Taiwan
| | - Hiroki Ueno
- Vegetable and Floriculture Science, The National Agriculture and Food Research Organization, 360 Kusawa, Ano, Tsu, Mie, 514-2392, Japan
| | - Hideo Matsumura
- Gene Research Center, Shinshu University, Tokida 3-15-1, Ueda, Nagano, 386-8567, Japan
| | - Naoya Urasaki
- Okinawa Prefectural Agriculture Research Center, Itoman, Okinawa, 901-0336, Japan
| | - Chen-Yu Lee
- Department of Plant Industry, National Pingtung University of Science and Technology, No 1, Shuefu Rd, Neipu, Pingtung, 912, Taiwan
| | - Fure-Chyi Chen
- Department of Plant Industry, National Pingtung University of Science and Technology, No 1, Shuefu Rd, Neipu, Pingtung, 912, Taiwan
| | - Shih-Wen Chin
- Department of Plant Industry, National Pingtung University of Science and Technology, No 1, Shuefu Rd, Neipu, Pingtung, 912, Taiwan
| | - Chun-Chi Liu
- Institute of Genomics and Bioinformatics, National Chung Hsing University, No 145 Xingda Rd, South Dist, Taichung, 402, Taiwan
| | - Chan-Tai Chiu
- Taiwan Seed Improvement and Propagation Station, No 6 Xingzhong St, Xinshe Dist, Taichung, 426, Taiwan
| | - Kazuhiko Tarora
- Okinawa Prefectural Agriculture Research Center, Itoman, Okinawa, 901-0336, Japan
| | - Jing-Yi Li
- Dashu District, Known-You Seed Co. Ltd, No 114-6, Zhuliao Road, Kaohsiung, 840, Taiwan
| | - Chieh Ying Lee
- Dashu District, Known-You Seed Co. Ltd, No 114-6, Zhuliao Road, Kaohsiung, 840, Taiwan
| | - Hsin-Mei Ku
- Agronomy Department, National Chung Hsing University, No 145 Xingda Rd, South Dist, Taichung, 402, Taiwan.
| |
Collapse
|
15
|
Li SF, Lv CC, Lan LN, Jiang KL, Zhang YL, Li N, Deng CL, Gao WJ. DNA methylation is involved in sexual differentiation and sex chromosome evolution in the dioecious plant garden asparagus. HORTICULTURE RESEARCH 2021; 8:198. [PMID: 34465747 PMCID: PMC8408194 DOI: 10.1038/s41438-021-00633-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 05/04/2023]
Abstract
DNA methylation is a crucial regulatory mechanism in many biological processes. However, limited studies have dissected the contribution of DNA methylation to sexual differentiation in dioecious plants. In this study, we investigated the variances in methylation and transcriptional patterns of male and female flowers of garden asparagus. Compared with male flowers, female flowers at the same stages showed higher levels of DNA methylation. Both male and female flowers gained DNA methylation globally from the premeiotic to meiotic stages. Detailed analysis revealed that the increased DNA methylation was largely due to increased CHH methylation. Correlation analysis of differentially expressed genes and differentially methylated regions suggested that DNA methylation might not have contributed to the expression variation of the sex-determining genes SOFF and TDF1 but probably played important roles in sexual differentiation and flower development of garden asparagus. The upregulated genes AoMS1, AoLAP3, AoAMS, and AoLAP5 with varied methylated CHH regions might have been involved in sexual differentiation and flower development of garden asparagus. Plant hormone signaling genes and transcription factor genes also participated in sexual differentiation and flower development with potential epigenetic regulation. In addition, the CG and CHG methylation levels in the Y chromosome were notably higher than those in the X chromosome, implying that DNA methylation might have been involved in Y chromosome evolution. These data provide insights into the epigenetic modification of sexual differentiation and flower development and improve our understanding of sex chromosome evolution in garden asparagus.
Collapse
Affiliation(s)
- Shu-Fen Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Can-Can Lv
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Li-Na Lan
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Kai-Lu Jiang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yu-Lan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Ning Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Chuan-Liang Deng
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Wu-Jun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|