1
|
Shi M, Savoi S, Sarah G, Soriano A, Weber A, Torregrosa L, Romieu C. Vitis rotundifolia Genes Introgressed with RUN1 and RPV1: Poor Recombination and Impact on V. vinifera Berry Transcriptome. PLANTS (BASEL, SWITZERLAND) 2024; 13:2095. [PMID: 39124212 PMCID: PMC11314213 DOI: 10.3390/plants13152095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
Thanks to several Vitis vinifera backcrosses with an initial V. vinifera L. × V. rotundifolia (previously Muscadinia rotundifolia) interspecific cross, the MrRUN1/MrRPV1 locus (resistance to downy and powdery mildews) was introgressed in genotypes phenotypically close to V. vinifera varieties. To check the consequences of introgressing parts of the V. rotundifolia genome on gene expression during fruit development, we conducted a comparative RNA-seq study on single berries from different V. vinifera cultivars and V. vinifera × V. rotundifolia hybrids, including 'G5' and two derivative microvine lines, 'MV102' (resistant) and 'MV32' (susceptible) segregating for the MrRUN1/RPV1 locus. RNA-Seq profiles were analyzed on a comprehensive set of single berries from the end of the herbaceous plateau to the ripe stage. Pair-end reads were aligned both on V. vinifera PN40024.V4 reference genome, V. rotundifolia cv 'Trayshed' and cv 'Carlos', and to the few resistance genes from the original V. rotundifolia cv '52' parent available at NCBI. Weighted Gene Co-expression Network Analysis (WGCNA) led to classifying the differentially expressed genes into 15 modules either preferentially correlated with resistance or berry phenology and composition. Resistance positively correlated transcripts predominantly mapped on the 4-5 Mb distal region of V. rotundifolia chromosome 12 beginning with the MrRUN1/MrRPV1 locus, while the negatively correlated ones mapped on the orthologous V. vinifera region, showing this large extremity of LG12 remained recalcitrant to internal recombination during the successive backcrosses. Some constitutively expressed V. rotundifolia genes were also observed at lower densities outside this region. Genes overexpressed in developing berries from resistant accessions, either introgressed from V. rotundifolia or triggered by these in the vinifera genome, spanned various functional groups, encompassing calcium signal transduction, hormone signaling, transcription factors, plant-pathogen-associated interactions, disease resistance proteins, ROS and phenylpropanoid biosynthesis. This transcriptomic insight provides a foundation for understanding the disease resistance inherent in these hybrid cultivars and suggests a constitutive expression of NIR NBS LRR triggering calcium signaling. Moreover, these results illustrate the magnitude of transcriptomic changes caused by the introgressed V. rotundifolia background in backcrossed hybrids, on a large number of functions largely exceeding the ones constitutively expressed in single resistant gene transformants.
Collapse
Affiliation(s)
- Mengyao Shi
- UMR AGAP Institute, University Montpellier, CIRAD, INRAE, Institute Agro, 34090 Montpellier, France; (M.S.); (G.S.); (A.S.); (A.W.)
| | - Stefania Savoi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy;
| | - Gautier Sarah
- UMR AGAP Institute, University Montpellier, CIRAD, INRAE, Institute Agro, 34090 Montpellier, France; (M.S.); (G.S.); (A.S.); (A.W.)
- UMT Geno-Vigne, IFV-INRAE-Institute Agro, 34060 Montpellier, France;
| | - Alexandre Soriano
- UMR AGAP Institute, University Montpellier, CIRAD, INRAE, Institute Agro, 34090 Montpellier, France; (M.S.); (G.S.); (A.S.); (A.W.)
| | - Audrey Weber
- UMR AGAP Institute, University Montpellier, CIRAD, INRAE, Institute Agro, 34090 Montpellier, France; (M.S.); (G.S.); (A.S.); (A.W.)
| | - Laurent Torregrosa
- UMT Geno-Vigne, IFV-INRAE-Institute Agro, 34060 Montpellier, France;
- LEPSE, University Montpellier, CIRAD, INRAE, Institute Agro, 34060 Montpellier, France
| | - Charles Romieu
- UMR AGAP Institute, University Montpellier, CIRAD, INRAE, Institute Agro, 34090 Montpellier, France; (M.S.); (G.S.); (A.S.); (A.W.)
- UMT Geno-Vigne, IFV-INRAE-Institute Agro, 34060 Montpellier, France;
| |
Collapse
|
2
|
Margaryan K, Töpfer R, Gasparyan B, Arakelyan A, Trapp O, Röckel F, Maul E. Wild grapes of Armenia: unexplored source of genetic diversity and disease resistance. FRONTIERS IN PLANT SCIENCE 2023; 14:1276764. [PMID: 38143573 PMCID: PMC10739323 DOI: 10.3389/fpls.2023.1276764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/16/2023] [Indexed: 12/26/2023]
Abstract
The present study is the first in-depth research evaluating the genetic diversity and potential resistance of Armenian wild grapes utilizing DNA-based markers to understand the genetic signature of this unexplored germplasm. In the proposed research, five geographical regions with known viticultural history were explored. A total of 148 unique wild genotypes were collected and included in the study with 48 wild individuals previously collected as seed. A total of 24 nSSR markers were utilized to establish a fingerprint database to infer information on the population genetic diversity and structure. Three nSSR markers linked to the Ren1 locus were analyzed to identify potential resistance against powdery mildew. According to molecular fingerprinting data, the Armenian V. sylvestris gene pool conserves a high genetic diversity, displaying 292 different alleles with 12.167 allele per loci. The clustering analyses and diversity parameters supported eight genetic groups with 5.6% admixed proportion. The study of genetic polymorphism at the Ren1 locus revealed that 28 wild genotypes carried three R-alleles and 34 wild genotypes carried two R-alleles associated with PM resistance among analyzed 107 wild individuals. This gene pool richness represents an immense reservoir of under-explored genetic diversity and breeding potential. Therefore, continued survey and research efforts are crucial for the conservation, sustainable management, and utilization of Armenian wild grape resources in the face of emerging challenges in viticulture.
Collapse
Affiliation(s)
- Kristine Margaryan
- Research Group of Plant Genomics, Institute of Molecular Biology of National Academy of Sciences Republic of Armenia (RA), Yerevan, Armenia
- Department of Genetics and Cytology, Yerevan State University, Yerevan, Armenia
| | - Reinhard Töpfer
- Julius Kuehn-Institute (JKI), Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
| | - Boris Gasparyan
- Institute of Archaeology and Ethnography, National Academy of Sciences Republic of Armenia (RA), Yerevan, Armenia
| | - Arsen Arakelyan
- Research Group of Plant Genomics, Institute of Molecular Biology of National Academy of Sciences Republic of Armenia (RA), Yerevan, Armenia
| | - Oliver Trapp
- Julius Kuehn-Institute (JKI), Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
| | - Franco Röckel
- Julius Kuehn-Institute (JKI), Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
| | - Erika Maul
- Julius Kuehn-Institute (JKI), Institute for Grapevine Breeding Geilweilerhof, Siebeldingen, Germany
| |
Collapse
|
3
|
Possamai T, Wiedemann-Merdinoglu S. Phenotyping for QTL identification: A case study of resistance to Plasmopara viticola and Erysiphe necator in grapevine. FRONTIERS IN PLANT SCIENCE 2022; 13:930954. [PMID: 36035702 PMCID: PMC9403010 DOI: 10.3389/fpls.2022.930954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 06/01/2023]
Abstract
Vitis vinifera is the most widely cultivated grapevine species. It is highly susceptible to Plasmopara viticola and Erysiphe necator, the causal agents of downy mildew (DM) and powdery mildew (PM), respectively. Current strategies to control DM and PM mainly rely on agrochemical applications that are potentially harmful to humans and the environment. Breeding for resistance to DM and PM in wine grape cultivars by introgressing resistance loci from wild Vitis spp. is a complementary and more sustainable solution to manage these two diseases. During the last two decades, 33 loci of resistance to P. viticola (Rpv) and 15 loci of resistance to E. necator (Ren and Run) have been identified. Phenotyping is salient for QTL characterization and understanding the genetic basis of resistant traits. However, phenotyping remains a major bottleneck for research on Rpv and Ren/Run loci and disease resistance evaluation. A thorough analysis of the literature on phenotyping methods used for DM and PM resistance evaluation highlighted phenotyping performed in the vineyard, greenhouse or laboratory with major sources of variation, such as environmental conditions, plant material (organ physiology and age), pathogen inoculum (genetic and origin), pathogen inoculation (natural or controlled), and disease assessment method (date, frequency, and method of scoring). All these factors affect resistance assessment and the quality of phenotyping data. We argue that the use of new technologies for disease symptom assessment, and the production and adoption of standardized experimental guidelines should enhance the accuracy and reliability of phenotyping data. This should contribute to a better replicability of resistance evaluation outputs, facilitate QTL identification, and contribute to streamline disease resistance breeding programs.
Collapse
Affiliation(s)
- Tyrone Possamai
- CREA—Research Centre for Viticulture and Enology, Conegliano, Italy
| | | |
Collapse
|
4
|
Malviya D, Thosar R, Kokare N, Pawar S, Singh UB, Saha S, Rai JP, Singh HV, Somkuwar RG, Saxena AK. A Comparative Analysis of Microbe-Based Technologies Developed at ICAR-NBAIM Against Erysiphe necator Causing Powdery Mildew Disease in Grapes ( Vitis vinifera L.). Front Microbiol 2022; 13:871901. [PMID: 35663883 PMCID: PMC9159358 DOI: 10.3389/fmicb.2022.871901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Globally, Erysiphe necator causing powdery mildew disease in grapevines (Vitis vinifera L.) is the second most important endemic disease, causing huge economic losses every year. At present, the management of powdery mildew in grapes is largely dependent upon the use of chemical fungicides. Grapes are being considered as one of the high pesticide-demanding crops. Looking at the residual impact of toxic chemical pesticides on the environment, animal, and human health, microbe-based strategies for control of powdery mildew is an emerging technique. It offers an environment-friendly, residue-free, and effective yet safer approach to control powdery mildew disease in grapes. The mode of action is relatively diverse as well as specific to different pathosystems. Hence, the aim of this study was to evaluate the microbe-based technologies, i.e., Eco-pesticide®, Bio-Pulse®, and Bio-Care 24® developed at the Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-NBAIM, Kushmaur, against grape powdery mildew and to integrate these technologies with a safer fungicide (sulfur) to achieve better disease control under organic systems of viticulture. The experiments were conducted at four different locations, namely, the vineyards of ICAR-NRCG, Rajya Draksha Bagayatdar Sangh (MRDBS), and two farmers' fields at Narayangaon and Junnar in the Pune district of Maharashtra. A significantly lower percent disease index (PDI) was recorded on the leaves of grape plants treated with Eco-Pesticide®/sulfur (22.37) followed by Bio-Pulse®/sulfur (22.62) and Bio-Care 24®/sulfur (24.62) at NRCG. A similar trend was observed with the lowest PDI on bunches of Eco-pesticide® /sulfur-treated plants (24.71) followed by Bio-Pulse®/sulfur (24.94) and Bio-Care®/sulfur (26.77). The application of microbial inoculants singly or in combination with sulfur has a significant positive impact on the qualitative parameters such as pH, total soluble solids (TSS), acidity, berry diameter, and berry length of the grapes at different locations. Among all the treatments, the Bio-Pulse®/sulfur treatment showed the highest yield per vine (15.02 kg), which was on par with the treatment Eco-Pesticide®/sulfur (14.94). When compared with the yield obtained from the untreated control, 2.5 to 3 times more yield was recorded in the plants treated with either of the biopesticides used in combination with sulfur. Even in the case of individual inoculation, the yield per vine was approximately two times higher than the untreated control and water-treated plants across the test locations. Results suggested that microbial technologies not only protect grapevines from powdery mildew but also enhance the quality parameters with increased yield across the test locations.
Collapse
Affiliation(s)
- Deepti Malviya
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Ratna Thosar
- ICAR-National Research Centre for Grapes, Pune, India
| | | | - Shital Pawar
- ICAR-National Research Centre for Grapes, Pune, India
| | - Udai B Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - Sujoy Saha
- ICAR-National Research Centre for Grapes, Pune, India
| | - Jai P Rai
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Harsh V Singh
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| | - R G Somkuwar
- ICAR-National Research Centre for Grapes, Pune, India
| | - Anil K Saxena
- Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, India
| |
Collapse
|
5
|
Identification of powdery mildew resistance in wild grapevine (Vitis vinifera subsp. sylvestris Gmel Hegi) from Croatia and Bosnia and Herzegovina. Sci Rep 2022; 12:2128. [PMID: 35136153 PMCID: PMC8826913 DOI: 10.1038/s41598-022-06037-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/20/2022] [Indexed: 12/23/2022] Open
Abstract
Wild grapevine (Vitis vinifera subsp. sylvestris) is widely recognized as an important source of resistance or tolerance genes for diseases and environmental stresses. Recent studies revealed partial resistance to powdery mildew (Erysiphe necator, PM) in V. sylvestris from Central Asia. Here, we report resistance to PM of V. sylvestris collected from different regions of Croatia and in seedling populations established from in situ V. sylvestris accessions. Ninety-one in situ individuals and 67 V. sylvestris seedlings were evaluated for PM resistance according to OIV 455 descriptor. Three SSR markers (SC47-18, SC8-071-0014, and UDV-124) linked to PM resistance locus Ren1 were used to decipher allelic structure. Nine seedlings showed resistance in in vivo evaluations while leaf disk assays revealed three PM-resistant accessions. One V. vinifera cultivar used as a control for PM evaluations also showed high phenotypic resistance. Based on the presence of one or two resistance alleles that are linked to the Ren1 locus, 32 resistant seedlings and 41 resistant in situ genotypes were identified in the investigated set. Eight seedlings showed consistent phenotypic PM resistance, of which seven carried one or two alleles at the tested markers. This study provides the first evidence of PM resistance present within the eastern Adriatic V. sylvestris germplasm.
Collapse
|
6
|
Possamai T, Wiedemann-Merdinoglu S, Lacombe MC, Dorne MA, Merdinoglu D, De Nardi B, Migliaro D, Velasco R, De Mori G, Cipriani G, Testolin R. Phenotyping and genetic analysis of the Caucasian grape resistance to Erysiphe necator. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225002010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Possamai T, Wiedemann-Merdinoglu S, Merdinoglu D, Migliaro D, De Mori G, Cipriani G, Velasco R, Testolin R. Construction of a high-density genetic map and detection of a major QTL of resistance to powdery mildew (Erysiphe necator Sch.) in Caucasian grapes (Vitis vinifera L.). BMC PLANT BIOLOGY 2021; 21:528. [PMID: 34763660 PMCID: PMC8582213 DOI: 10.1186/s12870-021-03174-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/09/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND Vitis vinifera L. is the most cultivated grapevine species worldwide. Erysiphe necator Sch., the causal agent of grape powdery mildew, is one of the main pathogens affecting viticulture. V. vinifera has little or no genetic resistances against E. necator and the grape industry is highly dependent on agrochemicals. Some Caucasian V. vinifera accessions have been reported to be resistant to E. necator and to have no genetic relationships to known sources of resistance to powdery mildew. The main purpose of this work was the study and mapping of the resistance to E. necator in the Caucasian grapes 'Shavtsitska' and 'Tskhvedianis tetra'. RESULTS The Caucasian varieties 'Shavtsitska' and 'Tskhvedianis tetra' showed a strong partial resistance to E. necator which segregated in two cross populations: the resistant genotypes delayed and limited the pathogen mycelium growth, sporulation intensity and number of conidia generated. A total of 184 seedlings of 'Shavtsitska' x 'Glera' population were genotyped through the Genotyping by Sequencing (GBS) technology and two high-density linkage maps were developed for the cross parents. The QTL analysis revealed a major resistance locus, explaining up to 80.15% of the phenotypic variance, on 'Shavtsitska' linkage group 13, which was associated with a reduced pathogen infection as well as an enhanced plant necrotic response. The genotyping of 105 Caucasian accessions with SSR markers flanking the QTL revealed that the resistant haplotype of 'Shavtsitska' was shared by 'Tskhvedianis tetra' and a total of 25 Caucasian grape varieties, suggesting a widespread presence of this resistance in the surveyed germplasm. The uncovered QTL was mapped in the region where the Ren1 locus of resistance to E. necator, identified in the V. vinifera 'Kishmish vatkana' and related grapes of Central Asia, is located. The genetic analysis conducted revealed that the Caucasian grapes in this study exhibit a resistant haplotype different from that of Central Asian grape accessions. CONCLUSIONS The QTL isolated in 'Shavtsitska' and present in the Caucasian V. vinifera varieties could be a new candidate gene of resistance to E. necator to use in breeding programmes. It co-localizes with the Ren1 locus but shows a different haplotype from that of grapevines of Central Asia. We therefore consider that the Caucasian resistance locus, named Ren1.2, contains a member of a cluster of R-genes, of which the region is rich, and to be linked with, or possibly allelic, to Ren1.
Collapse
Affiliation(s)
- Tyrone Possamai
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100, Udine, Italy.
- CREA - Research Centre for Viticulture and Enology, viale XXVIII Aprile 26, 31015, Conegliano, TV, Italy.
| | | | - Didier Merdinoglu
- INRAE, Université de Strasbourg, SVQV UMR-A 1131, 28 rue de Herrlisheim, 68000, Colmar, France
| | - Daniele Migliaro
- CREA - Research Centre for Viticulture and Enology, viale XXVIII Aprile 26, 31015, Conegliano, TV, Italy
| | - Gloria De Mori
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100, Udine, Italy
| | - Guido Cipriani
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100, Udine, Italy
| | - Riccardo Velasco
- CREA - Research Centre for Viticulture and Enology, viale XXVIII Aprile 26, 31015, Conegliano, TV, Italy
| | - Raffaele Testolin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100, Udine, Italy
- Institute of Applied Genomics, Science & Technology Park "Luigi Danieli", via Jacopo Linussio 51, 33100, Udine, Italy
| |
Collapse
|
8
|
Song X, Yang Q, Bai Y, Gong K, Wu T, Yu T, Pei Q, Duan W, Huang Z, Wang Z, Liu Z, Kang X, Zhao W, Ma X. Comprehensive analysis of SSRs and database construction using all complete gene-coding sequences in major horticultural and representative plants. HORTICULTURE RESEARCH 2021; 8:122. [PMID: 34059664 PMCID: PMC8167114 DOI: 10.1038/s41438-021-00562-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/10/2021] [Accepted: 03/14/2021] [Indexed: 05/05/2023]
Abstract
Simple sequence repeats (SSRs) are one of the most important genetic markers and widely exist in most species. Here, we identified 249,822 SSRs from 3,951,919 genes in 112 plants. Then, we conducted a comprehensive analysis of these SSRs and constructed a plant SSR database (PSSRD). Interestingly, more SSRs were found in lower plants than in higher plants, showing that lower plants needed to adapt to early extreme environments. Four specific enriched functional terms in the lower plant Chlamydomonas reinhardtii were detected when it was compared with seven other higher plants. In addition, Guanylate_cyc existed in more genes of lower plants than of higher plants. In our PSSRD, we constructed an interactive plotting function in the chart interface, and users can easily view the detailed information of SSRs. All SSR information, including sequences, primers, and annotations, can be downloaded from our database. Moreover, we developed Web SSR Finder and Batch SSR Finder tools, which can be easily used for identifying SSRs. Our database was developed using PHP, HTML, JavaScript, and MySQL, which are freely available at http://www.pssrd.info/ . We conducted an analysis of the Myb gene families and flowering genes as two applications of the PSSRD. Further analysis indicated that whole-genome duplication and whole-genome triplication played a major role in the expansion of the Myb gene families. These SSR markers in our database will greatly facilitate comparative genomics and functional genomics studies in the future.
Collapse
Affiliation(s)
- Xiaoming Song
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, 610054, Chengdu, China.
- Food Science and Technology Department, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| | - Qihang Yang
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Yun Bai
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Ke Gong
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Tong Wu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Tong Yu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Qiaoying Pei
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Weike Duan
- College of Life Sciences and Food Engineering, Huaiyin Institute of Technology, 223003, Huai'an, China
| | - Zhinan Huang
- College of Life Sciences and Food Engineering, Huaiyin Institute of Technology, 223003, Huai'an, China
| | - Zhiyuan Wang
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Zhuo Liu
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Xi Kang
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Wei Zhao
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Xiao Ma
- School of Life Sciences/Library, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
| |
Collapse
|
9
|
Gur L, Reuveni M, Cohen Y, Cadle-Davidson L, Kisselstein B, Ovadia S, Frenkel O. Population structure of Erysiphe necator on domesticated and wild vines in the Middle East raises questions on the origin of the grapevine powdery mildew pathogen. Environ Microbiol 2021; 23:6019-6037. [PMID: 33459475 DOI: 10.1111/1462-2920.15401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/28/2022]
Abstract
Plant pathogens usually originate and diversify in geographical regions where hosts and pathogens co-evolve. Erysiphe necator, the causal agent of grape powdery mildew, is a destructive pathogen of grapevines worldwide. Although Eastern US is considered the centre of origin and diversity of E. necator, previous reports on resistant native wild and domesticated Asian grapevines suggest Asia as another possible origin of the pathogen. By using multi-locus sequencing, microsatellites and a novel application of amplicon sequencing (AmpSeq), we show that the population of E. necator in Israel is composed of three genetic groups: Groups A and B that are common worldwide, and a new group IL, which is genetically differentiated from any known group in Europe and Eastern US. Group IL showed distinguished ecological characteristics: it was dominant on wild and traditional vines (95%); its abundance increased along the season; and was more aggressive than A and B isolates on both wild and domesticated vines. The low genetic diversity within group IL suggests that it has invaded Israel from another origin. Therefore, we suggest that the Israeli E. necator population was founded by at least two invasions, of which one could be from a non-East American source, possibly from Asian origin.
Collapse
Affiliation(s)
- Lior Gur
- Shamir Research Institute, University of Haifa, Katzrin, Israel.,Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), The Volcani Center, Rishon Lezion, Israel
| | - Moshe Reuveni
- Shamir Research Institute, University of Haifa, Katzrin, Israel
| | - Yigal Cohen
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Lance Cadle-Davidson
- USDA Agricultural Research Service, Geneva, NY, USA.,School of Integrative Plant Sciences, Cornell AgriTech, Geneva, NY, USA
| | - Breanne Kisselstein
- USDA Agricultural Research Service, Geneva, NY, USA.,School of Integrative Plant Sciences, Cornell AgriTech, Geneva, NY, USA
| | | | - Omer Frenkel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), The Volcani Center, Rishon Lezion, Israel
| |
Collapse
|
10
|
Ilnitskaya E, Makarkina M, Petrov V. Potential of genetic resistance of new table grape hybrids to fungal pathogens. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213402001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Downy mildew (Plasmopara viticola) and powdery mildew (Erysiphe necator) are the most common and economically significant fungal diseases in vineyards. The task of this work is to study the genotypes of new promising hybrid forms of table grapes for the presence of resistance genes to downy mildew (Rpv10 and Rpv3) and powdery mildew (Ren9) using DNA-markers. The study was carried out on table grape hybrids under the working names Agat dubovskiy, Akelo, Arabella, Artek, Dubovskiy rozovyi, Gamlet, Ispolin, Kishmish dubovskiy, Kurazh, Pestryi, Valensiya and registered variety Liviya. The studied genes were analyzed using markers UDV305 and UDV737 (Rpv3), GF09-46 (Rpv10), CenGen6 (Ren9). The following cultivars were used as reference genotypes: Saperavi severnyi (carries Rpv10 gene) and Regent (Rpv3 and Ren9). It was established that Rpv3 gene is carried by hybrids Kishmish dubovskiy, Agat dubovskiy, Kurazh, Valensiya, Akelo, Gamlet, Dubovskiy rozovyi, Pestryi. Ren9 gene was found in Artek, Agat dubovskiy, Kurazh, Ispolin, Valensiya, Arabella, Gamlet, Dubovskiy rozovyi, Pestryi. The Rpv10 gene was not detected in any of the analyzed grapevine samples. genotypes Agat dubovskiy, Kurazh, Gamlet, Dubovskiy rozovyi, Pestryi, Valensiya carry Rpv3 and Ren9 genes simultaneously. These grapevines have an elegant bunch and large berries that are attractive to consumers.
Collapse
|