1
|
Hu M, Fang S, Wei B, Hu Q, Cai M, Zeng T, Gu L, Wang H, Du X, Zhu B, Ou J. Characteristics and Cytological Analysis of Several Novel Allopolyploids and Aneuploids between Brassica oleracea and Raphanus sativus. Int J Mol Sci 2024; 25:8368. [PMID: 39125948 PMCID: PMC11313488 DOI: 10.3390/ijms25158368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Polyploids are essential in plant evolution and species formation, providing a rich genetic reservoir and increasing species diversity. Complex polyploids with higher ploidy levels often have a dosage effect on the phenotype, which can be highly detrimental to gametes, making them rare. In this study, offspring plants resulting from an autoallotetraploid (RRRC) derived from the interspecific hybridization between allotetraploid Raphanobrassica (RRCC, 2n = 36) and diploid radish (RR, 2n = 18) were obtained. Fluorescence in situ hybridization (FISH) using C-genome-specific repeats as probes revealed two main genome configurations in these offspring plants: RRRCC (2n = 43, 44, 45) and RRRRCC (2n = 54, 55), showing more complex genome configurations and higher ploidy levels compared to the parental plants. These offspring plants exhibited extensive variation in phenotypic characteristics, including leaf type and flower type and color, as well as seed and pollen fertility. Analysis of chromosome behavior showed that homoeologous chromosome pairing events are widely observed at the diakinesis stage in the pollen mother cells (PMCs) of these allopolyploids, with a range of 58.73% to 78.33%. Moreover, the unreduced C subgenome at meiosis anaphase II in PMCs was observed, which provides compelling evidence for the formation of complex allopolyploid offspring. These complex allopolyploids serve as valuable genetic resources for further analysis and contribute to our understanding of the mechanisms underlying the formation of complex allopolyploids.
Collapse
Affiliation(s)
- Mingyang Hu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Shiting Fang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Bo Wei
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Qi Hu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Mengxian Cai
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (M.H.); (S.F.); (B.W.); (Q.H.); (M.C.); (T.Z.); (L.G.); (H.W.); (X.D.)
| | - Jing Ou
- College of Forestry, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Zhou W, Zhang L, He J, Chen W, Zhao F, Fu C, Li M. Transcriptome Shock in Developing Embryos of a Brassica napus and Brassica rapa Hybrid. Int J Mol Sci 2023; 24:16238. [PMID: 38003428 PMCID: PMC10671433 DOI: 10.3390/ijms242216238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Interspecific crosses that fuse the genomes of two different species may result in overall gene expression changes in the hybrid progeny, called 'transcriptome shock'. To better understand the expression pattern after genome merging during the early stages of allopolyploid formation, we performed RNA sequencing analysis on developing embryos of Brassica rapa, B. napus, and their synthesized allotriploid hybrids. Here, we show that the transcriptome shock occurs in the developing seeds of the hybrids. Of the homoeologous gene pairs, 17.1% exhibit expression bias, with an overall expression bias toward B. rapa. The expression level dominance also biases toward B. rapa, mainly induced by the expression change in homoeologous genes from B. napus. Functional enrichment analysis revealed significant differences in differentially expressed genes (DEGs) related to photosynthesis, hormone synthesis, and other pathways. Further study showed that significant changes in the expression levels of the key transcription factors (TFs) could regulate the overall interaction network in the developing embryo, which might be an essential cause of phenotype change. In conclusion, the present results have revealed the global changes in gene expression patterns in developing seeds of the hybrid between B. rapa and B. napus, and provided novel insights into the occurrence of transcriptome shock for harnessing heterosis.
Collapse
Affiliation(s)
- Weixian Zhou
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Libin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Wang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Feifan Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Chunhua Fu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; (W.Z.); (L.Z.); (J.H.); (W.C.); (F.Z.); (C.F.)
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| |
Collapse
|
3
|
Zhao Z, Wang Y, Peng Z, Luo Z, Zhao M, Wang J. Allelic expression of AhNSP2-B07 due to parent of origin affects peanut nodulation. FRONTIERS IN PLANT SCIENCE 2023; 14:1193465. [PMID: 37426991 PMCID: PMC10325728 DOI: 10.3389/fpls.2023.1193465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/19/2023] [Indexed: 07/11/2023]
Abstract
Legumes are well-known for establishing a symbiotic relationship with rhizobia in root nodules to fix nitrogen from the atmosphere. The nodulation signaling pathway 2 (NSP2) gene plays a critical role in the symbiotic signaling pathway. In cultivated peanut, an allotetraploid (2n = 4x = 40, AABB) legume crop, natural polymorphisms in a pair of NSP2 homoeologs (Na and Nb) located on chromosomes A08 and B07, respectively, can cause loss of nodulation. Interestingly, some heterozygous (NBnb) progeny produced nodules, while some others do not, suggesting non-Mendelian inheritance in the segregating population at the Nb locus. In this study, we investigated the non-Mendelian inheritance at the NB locus. Selfing populations were developed to validate the genotypical and phenotypical segregating ratios. Allelic expression was detected in roots, ovaries, and pollens of heterozygous plants. Bisulfite PCR and sequencing of the Nb gene in gametic tissue were performed to detect the DNA methylation variations of this gene in different gametic tissues. The results showed that only one allele at the Nb locus expressed in peanut roots during symbiosis. In the heterozygous (Nbnb) plants, if dominant allele expressed, the plants produced nodules, if recessive allele expressed, then no nodules were produced. qRT-PCR experiments revealed that the expression of Nb gene in the ovary was extremely low, about seven times lower than that in pollen, regardless of genotypes or phenotypes of the plants at this locus. The results indicated that Nb gene expression in peanut depends on the parent of origin and is imprinted in female gametes. However, no significant differences of DNA methylation level were detected between these two gametic tissues by bisulfite PCR and sequencing. The results suggested that the remarkable low expression of Nb in female gametes may not be caused by DNA methylation. This study provided a unique genetic basis of a key gene involved in peanut symbiosis, which could facilitate understanding the regulation of gene expression in symbiosis in polyploid legumes.
Collapse
Affiliation(s)
- Zifan Zhao
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Yichun Wang
- Agronomy Department, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Ze Peng
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ziliang Luo
- Agronomy Department, University of Florida, Gainesville, FL, United States
| | - Meixia Zhao
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| |
Collapse
|
4
|
Yu J, Lei S, Fang S, Tai N, Yu W, Yang Z, Gu L, Wang H, Du X, Zhu B, Cai M. Identification, Characterization, and Cytological Analysis of Several Unexpected Hybrids Derived from Reciprocal Crosses between Raphanobrassica and Its Diploid Parents. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091875. [PMID: 37176933 PMCID: PMC10181067 DOI: 10.3390/plants12091875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
Interspecific hybridization and accompanying backcross between crops and relatives have been recognized as a powerful method to broaden genetic diversity and transfer desirable adaptive traits. Crosses between radish (Raphanus sativus, RR, 2n = 18) and Brassica oleracea (CC, 2n = 18), which formed allotetraploid Raphanobrassica (RRCC, 2n = 36), initiated the construction of resynthetic allopolyploids. However, these progenies from the backcrosses between Raphanobrassica and the two diploid parents have not been well deciphered. Herein, thousands of backcrosses using both Raphanobrassica and the two diploid parents as pollen donors were employed. Several hybrids with expected (2n = 27) and unexpected chromosome numbers (2n = 26 and 2n = 36) were obtained. Fluorescence in situ hybridization (FISH) analysis with R-genome-specific sequences as probes demonstrated that the genome structures of the two expected hybrids were RRC and CCR, and the genome structures of the three unexpected hybrids were RRRC, CCCR, and RRC' (harbouring an incomplete C genome). The unexpected hybrids with extra R or C genomes showed similar phenotypic characteristics to their expected hybrids. FISH analysis with C-genome-specific sequences as probes demonstrated that the unexpected allotetraploid hybrids exhibited significantly more intergenomic chromosome pairings than the expected hybrids. The expected and unexpected hybrids provide not only novel germplasm resources for the breeding of radish and B. oleracea but also very important genetic material for genome dosage analysis.
Collapse
Affiliation(s)
- Jie Yu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Shaolin Lei
- Guizhou Institute of Oil Crops, Guizhou Academy of Agricultural Sciences, Guiyang 550009, China
| | - Shiting Fang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Niufang Tai
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Wei Yu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Ziwei Yang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Mengxian Cai
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
5
|
He J, Zhang K, Yan S, Tang M, Zhou W, Yin Y, Chen K, Zhang C, Li M. Genome-scale targeted mutagenesis in Brassica napus using a pooled CRISPR library. Genome Res 2023; 33:798-809. [PMID: 37290935 PMCID: PMC10317123 DOI: 10.1101/gr.277650.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/19/2023] [Indexed: 06/10/2023]
Abstract
The recently constructed mutant libraries of diploid crops by the CRISPR-Cas9 system have provided abundant resources for functional genomics and crop breeding. However, because of the genome complexity, it is a big challenge to accomplish large-scale targeted mutagenesis in polyploid plants. Here, we demonstrate the feasibility of using a pooled CRISPR library to achieve genome-scale targeted editing in an allotetraploid crop of Brassica napus A total of 18,414 sgRNAs were designed to target 10,480 genes of interest, and afterward, 1104 regenerated transgenic plants harboring 1088 sgRNAs were obtained. Editing interrogation results revealed that 93 of the 178 genes were identified as mutated, thus representing an editing efficiency of 52.2%. Furthermore, we have discovered that Cas9-mediated DNA cleavages tend to occur at all the target sites guided by the same individual sgRNA, a novel finding in polyploid plants. Finally, we show the strong capability of reverse genetic screening for various traits with the postgenotyped plants. Several genes, which might dominate the fatty acid profile and seed oil content and have yet to be reported, were unveiled from the forward genetic studies. Our research provides valuable resources for functional genomics, elite crop breeding, and a good reference for high-throughput targeted mutagenesis in other polyploid plants.
Collapse
Affiliation(s)
- Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Kai Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Shuxiang Yan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Mi Tang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Weixian Zhou
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| |
Collapse
|
6
|
Orantes-Bonilla M, Wang H, Lee HT, Golicz AA, Hu D, Li W, Zou J, Snowdon RJ. Transgressive and parental dominant gene expression and cytosine methylation during seed development in Brassica napus hybrids. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:113. [PMID: 37071201 PMCID: PMC10113308 DOI: 10.1007/s00122-023-04345-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/12/2023] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE Transcriptomic and epigenomic profiling of gene expression and small RNAs during seed and seedling development reveals expression and methylation dominance levels with implications on early stage heterosis in oilseed rape. The enhanced performance of hybrids through heterosis remains a key aspect in plant breeding; however, the underlying mechanisms are still not fully elucidated. To investigate the potential role of transcriptomic and epigenomic patterns in early expression of hybrid vigor, we investigated gene expression, small RNA abundance and genome-wide methylation in hybrids from two distant Brassica napus ecotypes during seed and seedling developmental stages using next-generation sequencing. A total of 31117, 344, 36229 and 7399 differentially expressed genes, microRNAs, small interfering RNAs and differentially methylated regions were identified, respectively. Approximately 70% of the differentially expressed or methylated features displayed parental dominance levels where the hybrid followed the same patterns as the parents. Via gene ontology enrichment and microRNA-target association analyses during seed development, we found copies of reproductive, developmental and meiotic genes with transgressive and paternal dominance patterns. Interestingly, maternal dominance was more prominent in hypermethylated and downregulated features during seed formation, contrasting to the general maternal gamete demethylation reported during gametogenesis in angiosperms. Associations between methylation and gene expression allowed identification of putative epialleles with diverse pivotal biological functions during seed formation. Furthermore, most differentially methylated regions, differentially expressed siRNAs and transposable elements were in regions that flanked genes without differential expression. This suggests that differential expression and methylation of epigenomic features may help maintain expression of pivotal genes in a hybrid context. Differential expression and methylation patterns during seed formation in an F1 hybrid provide novel insights into genes and mechanisms with potential roles in early heterosis.
Collapse
Affiliation(s)
- Mauricio Orantes-Bonilla
- Department of Plant Breeding, Land Use and Nutrition, IFZ Research Centre for Biosystems, Justus Liebig University, Giessen, Germany
| | - Hao Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Huey Tyng Lee
- Department of Plant Breeding, Land Use and Nutrition, IFZ Research Centre for Biosystems, Justus Liebig University, Giessen, Germany
| | - Agnieszka A Golicz
- Department of Plant Breeding, Land Use and Nutrition, IFZ Research Centre for Biosystems, Justus Liebig University, Giessen, Germany
| | - Dandan Hu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Wenwen Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Rod J Snowdon
- Department of Plant Breeding, Land Use and Nutrition, IFZ Research Centre for Biosystems, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
7
|
Kudryavtseva N, Ermolaev A, Pivovarov A, Simanovsky S, Odintsov S, Khrustaleva L. The Control of the Crossover Localization in Allium. Int J Mol Sci 2023; 24:ijms24087066. [PMID: 37108228 PMCID: PMC10138942 DOI: 10.3390/ijms24087066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Meiotic crossovers/chiasmata are not randomly distributed and strictly controlled. The mechanisms behind crossover (CO) patterning remain largely unknown. In Allium cepa, as in the vast majority of plants and animals, COs predominantly occur in the distal 2/3 of the chromosome arm, while in Allium fistulosum they are strictly localized in the proximal region. We investigated the factors that may contribute to the pattern of COs in A. cepa, A. fistulosum and their F1 diploid (2n = 2x = 8C + 8F) and F1 triploid (2n = 3x = 16F + 8C) hybrids. The genome structure of F1 hybrids was confirmed using genomic in situ hybridization (GISH). The analysis of bivalents in the pollen mother cells (PMCs) of the F1 triploid hybrid showed a significant shift in the localization of COs to the distal and interstitial regions. In F1 diploid hybrid, the COs localization was predominantly the same as that of the A. cepa parent. We found no differences in the assembly and disassembly of ASY1 and ZYP1 in PMCs between A. cepa and A. fistulosum, while F1 diploid hybrid showed a delay in chromosome pairing and a partial absence of synapsis in paired chromosomes. Immunolabeling of MLH1 (class I COs) and MUS81 (class II COs) proteins showed a significant difference in the class I/II CO ratio between A. fistulosum (50%:50%) and A. cepa (73%:27%). The MLH1:MUS81 ratio at the homeologous synapsis of F1 diploid hybrid (70%:30%) was the most similar to that of the A. cepa parent. F1 triploid hybrid at the A. fistulosum homologous synapsis showed a significant increase in MLH1:MUS81 ratio (60%:40%) compared to the A. fistulosum parent. The results suggest possible genetic control of CO localization. Other factors affecting the distribution of COs are discussed.
Collapse
Affiliation(s)
- Natalia Kudryavtseva
- All-Russian Research Institute of Agricultural Biotechnology, 42 Timiryazevskaya Str., Moscow 127550, Russia
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127550, Russia
| | - Aleksey Ermolaev
- All-Russian Research Institute of Agricultural Biotechnology, 42 Timiryazevskaya Str., Moscow 127550, Russia
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127550, Russia
| | - Anton Pivovarov
- All-Russian Research Institute of Agricultural Biotechnology, 42 Timiryazevskaya Str., Moscow 127550, Russia
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127550, Russia
| | - Sergey Simanovsky
- All-Russian Research Institute of Agricultural Biotechnology, 42 Timiryazevskaya Str., Moscow 127550, Russia
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninsky Prosp., Moscow 119071, Russia
| | - Sergey Odintsov
- All-Russian Research Institute of Agricultural Biotechnology, 42 Timiryazevskaya Str., Moscow 127550, Russia
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127550, Russia
| | - Ludmila Khrustaleva
- All-Russian Research Institute of Agricultural Biotechnology, 42 Timiryazevskaya Str., Moscow 127550, Russia
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127550, Russia
| |
Collapse
|
8
|
Quan C, Li Y, Chen G, Tian X, Jia Z, Tu J, Shen J, Yi B, Fu T, Ma C, Dai C. The dynamics of lncRNAs transcription in interspecific F 1 allotriploid hybrids between Brassica species. Genomics 2022; 114:110505. [PMID: 36265744 DOI: 10.1016/j.ygeno.2022.110505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/05/2022] [Accepted: 10/15/2022] [Indexed: 01/15/2023]
Abstract
Interspecific hybridization is the intrinsic forces behind genome evolution. Long non-coding RNAs (lncRNAs) are important for plant biological processes regulation. However, it is unclear that these non-coding fractions are impacted by interspecific hybridization. Here we examined the profiles of lncRNAs by comparing them with coding genes in Brassica napus, three accessions of Brassica rapa, and their F1 hybrids. 6206 high-confidential lncRNAs were identified in F 1 hybrids and their parentals, and the lncRNAs transcriptome in the F1 hybrids was reprogrammed by the genome shock. Notably, genome-wide unbalanced of lncRNAs were observed between An and Ar subgenomes, ELD (Expression Level Dominance) was biased toward the An -genome in F1 hybrids, and ELD of non-conserved lncRNAs was more than conserved lncRNAs. Our findings demonstrate that the reprogramed lncRNAs acts as important role in enhancing plant plasticity, leading to the acquisition of desirable traits in polyploid Brassica species.
Collapse
Affiliation(s)
- Chengtao Quan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yuanyuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Guoting Chen
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xia Tian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Zhibao Jia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|