1
|
Abdelhamed W, El-Kassas M. Rare liver diseases in Egypt: Clinical and epidemiological characterization. Arab J Gastroenterol 2024; 25:75-83. [PMID: 38228442 DOI: 10.1016/j.ajg.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/04/2023] [Accepted: 12/16/2023] [Indexed: 01/18/2024]
Abstract
Illnesses that afflict a tiny number of individuals are referred to as rare diseases (RDs), sometimes called orphan diseases. The local healthcare systems are constantly under financial, psychological, and medical strain due to low incidence rates, unusual presentations, flawed diagnostic standards, and a lack of treatment alternatives for these RDs. The effective management of the once widely spread viral hepatitis B and C has altered the spectrum of liver diseases in Egypt during the last several years. The detection of uncommon disorders such as autoimmune, cholestatic, and hereditary liver diseases has also been made easier by the increasing knowledge and greater accessibility of specific laboratory testing. Finally, despite Egypt's large population, there are more uncommon liver disorders than previously thought. This review article discusses the clinical and epidemiological characteristics of a few uncommon liver disorders and the information currently accessible concerning these illnesses in Egypt.
Collapse
Affiliation(s)
- Walaa Abdelhamed
- Endemic Medicine Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt.
| |
Collapse
|
2
|
Peters B, Dattner T, Schlieben LD, Sun T, Staufner C, Lenz D. Disorders of vesicular trafficking presenting with recurrent acute liver failure: NBAS, RINT1, and SCYL1 deficiency. J Inherit Metab Dis 2024. [PMID: 38279772 DOI: 10.1002/jimd.12707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/28/2024]
Abstract
Among genetic disorders of vesicular trafficking, there are three causing recurrent acute liver failure (RALF): NBAS, RINT1, and SCYL1-associated disease. These three disorders are characterized by liver crises triggered by febrile infections and account for a relevant proportion of RALF causes. While the frequency and severity of liver crises in NBAS and RINT1-associated disease decrease with age, patients with SCYL1 variants present with a progressive, cholestatic course. In all three diseases, there is a multisystemic, partially overlapping phenotype with variable expression, including liver, skeletal, and nervous systems, all organ systems with high secretory activity. There are no specific biomarkers for these diseases, and whole exome sequencing should be performed in patients with RALF of unknown etiology. NBAS, SCYL1, and RINT1 are involved in antegrade and retrograde vesicular trafficking. Pathomechanisms remain unclarified, but there is evidence of a decrease in concentration and stability of the protein primarily affected by the respective gene defect and its interaction partners, potentially causing impairment of vesicular transport. The impairment of protein secretion by compromised antegrade transport provides a possible explanation for different organ manifestations such as bone alteration due to lack of collagens or diabetes mellitus when insulin secretion is affected. Dysfunction of retrograde transport impairs membrane recycling and autophagy. The impairment of vesicular trafficking results in increased endoplasmic reticulum stress, which, in hepatocytes, can progress to hepatocytolysis. While there is no curative therapy, an early and consequent implementation of an emergency protocol seems crucial for optimal therapeutic management.
Collapse
Affiliation(s)
- Bianca Peters
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Tal Dattner
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Lea D Schlieben
- School of Medicine, Institute of Human Genetics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Centre, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tian Sun
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Christian Staufner
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| | - Dominic Lenz
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
3
|
Peters B, Wiemers F, Lenz D, Kölker S, Hoffmann GF, Köhler S, Staufner C. Pregnancy, delivery, and postpartum period in infantile liver failure syndrome type 2 due to variants in NBAS. JIMD Rep 2023; 64:246-251. [PMID: 37151364 PMCID: PMC10159861 DOI: 10.1002/jmd2.12362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Biallelic pathogenic variants in the neuroblastoma amplified sequence (NBAS) gene affecting the Sec39 domain are associated with a predominant hepatic phenotype named infantile liver failure syndrome type 2 (ILFS2). Individuals are at risk of developing life-threatening acute liver failure episodes, most likely triggered by febrile infections. Pregnancy, delivery, and the postpartum period are well known triggers of decompensation in different inherited metabolic diseases and therefore entail a potential risk also for individuals with ILFS2. We studied pregnancy, birth, and postpartum period in a woman with ILFS2 (homozygous for the NBAS variant c.2708 T > G, p.(Leu903Arg)). During two pregnancies there were no complications associated with the underlying genetic condition. Two healthy boys were born by cesarean section. To reduce the risk of fever and febrile infections, we avoided prolonged labor, epidural analgesia, and breastfeeding. Maternal body temperature and liver function were closely monitored. In case of elevated body temperature, antipyretic treatment (acetaminophen, metamizole) was given without delay. Alanine and aspartate aminotransferases as well as liver function remained normal throughout the observation period. Hence, pregnancy and childbirth are feasible in women with ILFS2 under careful monitoring.
Collapse
Affiliation(s)
- Bianca Peters
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity of HeidelbergHeidelbergGermany
| | - Felix Wiemers
- Center of Obstetrics and GynecologyUniversity of MarburgMarburgGermany
| | - Dominic Lenz
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity of HeidelbergHeidelbergGermany
| | - Stefan Kölker
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity of HeidelbergHeidelbergGermany
| | - Georg F. Hoffmann
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity of HeidelbergHeidelbergGermany
| | - Siegmund Köhler
- Center of Obstetrics and GynecologyUniversity of MarburgMarburgGermany
| | - Christian Staufner
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity of HeidelbergHeidelbergGermany
| |
Collapse
|
4
|
Ji J, Yang M, Jia J, Wu Q, Cong R, Cui H, Zhu B, Chu X. A novel variant in NBAS identified from an infant with fever-triggered recurrent acute liver failure disrupts the function of the gene. Hum Genome Var 2023; 10:13. [PMID: 37055399 PMCID: PMC10102179 DOI: 10.1038/s41439-023-00241-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 04/15/2023] Open
Abstract
Mutations in the neuroblastoma amplified sequence (NBAS) gene correlate with infantile acute liver failure (ALF). Herein, we identified a novel NBAS mutation in a female infant diagnosed with recurrent ALF. Whole-exome and Sanger sequencing revealed that the proband carried a compound heterozygous mutation (c.938_939delGC and c.1342 T > C in NBAS). NBAS c.938_939delGC was presumed to encode a truncated protein without normal function, whereas NBAS c.1342 T > C encoded NBAS harboring the conserved Cys448 residue mutated to Arg448 (p.C448R). The proportion of CD4 + T cells decreased in the patient's peripheral CD45 + cells, whereas that of CD8 + T cells increased. Moreover, upon transfecting the same amount of DNA expression vector (ectopic expression) encoding wild-type NBAS and p.C448R NBAS, the group transfected with the p.C448R NBAS-expressing vector expressed less NBAS mRNA and protein. Furthermore, ectopic expression of the same amount of p.C448R NBAS protein as the wild-type resulted in more intracellular reactive oxygen species and the induction of apoptosis and expression of marker proteins correlating with endoplasmic reticulum stress in more cultured cells. This study indicated that p.C448R NBAS has a function different from that of wild-type NBAS and that the p.C448R NBAS mutation potentially affects T-cell function and correlates with ALF.
Collapse
Affiliation(s)
- Juhua Ji
- Department of Pediatrics, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China
| | - Mingming Yang
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, 226001, Nantong, Jiangsu, China
| | - JunJun Jia
- Qinshen Traditional Chinese Medicine (TCM) Outpatient Department, 20052, Shanghai, China
| | - Qi Wu
- Department of Emergency, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China
| | - Ruochen Cong
- Department of Radiology, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China
| | - Hengxiang Cui
- Medical Research Center, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China.
| | - Baofeng Zhu
- Department of Emergency, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China.
| | - Xin Chu
- Department of Emergency, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China.
| |
Collapse
|
5
|
Akesson LS, Rius R, Brown NJ, Rosenbaum J, Donoghue S, Stormon M, Chai C, Bordador E, Guo Y, Hakonarson H, Compton AG, Thorburn DR, Amarasekera S, Marum J, Monaco A, Lee C, Chong B, Lunke S, Stark Z, Christodoulou J. Distinct diagnostic trajectories in NBAS-associated acute liver failure highlights the need for timely functional studies. JIMD Rep 2022; 63:240-249. [PMID: 35433172 PMCID: PMC8995841 DOI: 10.1002/jmd2.12280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/22/2022] Open
Abstract
Variants of uncertain significance (VUS) are commonly found following genomic sequencing, particularly in ethnically diverse populations that are underrepresented in large population databases. Functional characterization of VUS may assist in variant reclassification, however these studies are not readily available and often rely on research funding and good will. We present four individuals from three families at different stages of their diagnostic trajectory with recurrent acute liver failure (RALF) and biallelic NBAS variants, confirmed by either trio analysis or cDNA studies. Functional characterization was undertaken, measuring NBAS and p31 levels by Western blotting, demonstrating reduced NBAS levels in two of three families, and reduced p31 levels in all three families. These results provided functional characterization of the molecular impact of a missense VUS, allowing reclassification of the variant and molecular confirmation of NBAS-associated RALF. Importantly, p31 was decreased in all individuals, including an individual with two missense variants where NBAS protein levels were preserved. These results highlight the importance of access to timely functional studies after identification of putative variants, and the importance of considering a range of assays to validate variants whose pathogenicity is uncertain. We suggest that funding models for genomic sequencing should consider incorporating capabilities for adjunct RNA, protein, biochemical, and other specialized tests to increase the diagnostic yield which will lead to improved medical care, increased equity, and access to molecular diagnoses for all patients.
Collapse
Affiliation(s)
- Lauren S. Akesson
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- SA PathologySA HealthAdelaideSAAustralia
- School of Biomedicine, Faculty of Medicine, Dentistry and Health SciencesUniversity of AdelaideAdelaideAustraliaAustralia
| | - Rocio Rius
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Brain and Mitochondrial Research GroupMurdoch Children's Research Institute, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Natasha J. Brown
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
| | - Jeremy Rosenbaum
- Department of GastroenterologyRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Sarah Donoghue
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of Metabolic MedicineRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Michael Stormon
- Department of GastroenterologyChildren's Hospital WestmeadSydneyNew South WalesAustralia
- Discipline of Child & Adolescent Health, Sydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
| | - Charmaine Chai
- Department of GastroenterologyChildren's Hospital WestmeadSydneyNew South WalesAustralia
| | - Esmeralda Bordador
- Department of Metabolic MedicineRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Yiran Guo
- Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Center for Data‐Driven Discovery in BiomedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Hakon Hakonarson
- Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Pediatrics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Alison G. Compton
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Brain and Mitochondrial Research GroupMurdoch Children's Research Institute, Royal Children's HospitalMelbourneVictoriaAustralia
| | - David R. Thorburn
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Brain and Mitochondrial Research GroupMurdoch Children's Research Institute, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Sumudu Amarasekera
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Brain and Mitochondrial Research GroupMurdoch Children's Research Institute, Royal Children's HospitalMelbourneVictoriaAustralia
| | - Justine Marum
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Alisha Monaco
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Crystle Lee
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Belinda Chong
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of PathologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
| | - John Christodoulou
- Victorian Clinical Genetics Services, Murdoch Children's Research InstituteRoyal Children's HospitalMelbourneVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Brain and Mitochondrial Research GroupMurdoch Children's Research Institute, Royal Children's HospitalMelbourneVictoriaAustralia
- Discipline of Child & Adolescent Health, Sydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
6
|
Geem D, Jiang W, Rytting HB, Chandrakasan S, Salem A, Stevens JP, Karpen SJ, Magliocca JF, Romero R, Rodriguez DS. Resolution of recurrent pediatric acute liver failure with liver transplantation in a patient with NBAS mutation. Pediatr Transplant 2021; 25:e14084. [PMID: 34288298 PMCID: PMC8515489 DOI: 10.1111/petr.14084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/17/2021] [Accepted: 06/26/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Pediatric acute liver failure (PALF) remains an enigmatic process of rapid end-organ dysfunction associated with a variety of pathologic conditions though the predominant cause is indeterminate. A growing body of research has identified mutations in the NBAS gene to be associated with recurrent acute liver failure and multi-systemic disease including short stature, skeletal dysplasia, facial dysmorphism, immunologic abnormalities, and Pelger-Huët anomaly. METHODS AND RESULTS Here, we describe a 4-year-old girl who presented with dehydration in the setting of acute gastroenteritis and fever but went on to develop PALF on day 2 of hospitalization. She clinically recovered with supportive measures, but after discharge, had at least 2 additional episodes of PALF. Ultimately, she underwent liver transplant and her recurrent episodes of PALF did not recur throughout a 6-year follow-up period. Whole-exome sequencing post-liver transplant initially revealed two variants of uncertain significance in the NBAS gene. Parental studies confirmed the c.1549C > T(p.R517C; now likely pathogenic) variant from her mother and a novel c.4646T > C(p.L1549P) variant from her father. In silico analyses predicted these variants to have a deleterious effect on protein function. Consistent with previously characterized NBAS mutation-associated disease (NMAD), our patient demonstrated the following features: progeroid facial features, hypoplasia of the 12th ribs, Pelger-Huët anomaly on peripheral blood smear, and abnormal B and NK cell function. CONCLUSION Altogether, we describe a novel pathogenic variant in the NBAS gene of a patient with NMAD and report the resolution of recurrent PALF secondary to NMAD following liver transplantation.
Collapse
Affiliation(s)
- Duke Geem
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Heather B. Rytting
- Department of Pathology, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Shanmuganathan Chandrakasan
- Division of Bone Marrow Transplant, Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Anand Salem
- Department of Pediatrics, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - James P. Stevens
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Saul J. Karpen
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Joseph F. Magliocca
- Department of Surgery, Transplant, Emory University School of Medicine, Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Rene Romero
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Dellys Soler Rodriguez
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
7
|
Cotrina-Vinagre FJ, Rodríguez-García ME, Martín-Hernández E, Durán-Aparicio C, Merino-López A, Medina-Benítez E, Martínez-Azorín F. Characterization of a complex phenotype (fever-dependent recurrent acute liver failure and osteogenesis imperfecta) due to NBAS and P4HB variants. Mol Genet Metab 2021; 133:201-210. [PMID: 33707149 DOI: 10.1016/j.ymgme.2021.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 01/26/2023]
Abstract
We report the clinical, biochemical and genetic findings from a Spanish boy of Caucasian origin who presented with fever-dependent RALF (recurrent acute liver failure) and osteogenesis imperfecta (OI). Whole-exome sequencing (WES) uncovered two compound heterozygous variants in NBAS (c.[1265 T > C];[1549C > T]:p.[(Leu422Pro)];[(Arg517Cys)]), and a heterozygous variant in P4HB (c.[194A > G];[194=]:p.[(Lys65Arg)];[(Lys65=)]) that was transmitted from the clinically unaffected mother who was mosaic carrier of the variant. Variants in NBAS protein have been associated with ILFS2 (infantile liver failure syndrome-2), SOPH syndrome (short stature, optic nerve atrophy, and Pelger-Huët anomaly syndrome), and multisystem diseases. Several patients showed clinical manifestations affecting the skeletal system, such as osteoporosis, pathologic fractures and OI. Experiments in the patient's fibroblasts demonstrated that mutated NBAS protein is overexpressed and thermally unstable, and reduces the expression of MGP, a regulator of bone homeostasis. Variant in PDI (protein encoded by P4HB) has been associated with CLCRP1 (Cole-Carpenter syndrome-1), a type of severe OI. An increase of COL1A2 protein retention was observed in the patient's fibroblasts. In order to study if the variant in P4HB was involved in the alteration in collagen trafficking, overexpression experiments of PDI were carried out. These experiments showed that overexpression of mutated PDI protein produces an increase in COL1A2 retention. In conclusion, these results corroborate that the variants in NBAS are responsible for the liver phenotype, and demonstrate that the variant in P4HB is involved in the bone phenotype, probably in synergy with NBAS variants.
Collapse
Affiliation(s)
- Francisco Javier Cotrina-Vinagre
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN), Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041 Madrid, Spain
| | - María Elena Rodríguez-García
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN), Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, E-28041 Madrid, Spain
| | - Elena Martín-Hernández
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN), Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, E-28041 Madrid, Spain; Unidad Pediátrica de Enfermedades Raras, Enfermedades Mitocondriales y Metabólicas Hereditarias, Hospital 12 de Octubre, E-28041, Madrid, Spain
| | - Cristina Durán-Aparicio
- Departamento de Pediatría, Unidad de Gastroenterología y Hepatología Pediátricas, Hospital 12 de Octubre, E-28041, Madrid, Spain
| | - Abraham Merino-López
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN), Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041 Madrid, Spain
| | - Enrique Medina-Benítez
- Departamento de Pediatría, Unidad de Gastroenterología y Hepatología Pediátricas, Hospital 12 de Octubre, E-28041, Madrid, Spain
| | - Francisco Martínez-Azorín
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN), Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, E-28041 Madrid, Spain.
| |
Collapse
|
8
|
Ritelli M, Palagano E, Cinquina V, Beccagutti F, Chiarelli N, Strina D, Hall IF, Villa A, Sobacchi C, Colombi M. Genome-first approach for the characterization of a complex phenotype with combined NBAS and CUL4B deficiency. Bone 2020; 140:115571. [PMID: 32768688 DOI: 10.1016/j.bone.2020.115571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/14/2020] [Accepted: 07/31/2020] [Indexed: 11/24/2022]
Abstract
Biallelic variants in neuroblastoma-amplified sequence (NBAS) cause an extremely broad spectrum of phenotypes. Clinical features range from isolated recurrent episodes of liver failure to multisystemic syndrome including short stature, skeletal osteopenia and dysplasia, optic atrophy, and a variable immunological, cutaneous, muscular, and neurological abnormalities. Hemizygous variants in CUL4B cause syndromic X-linked intellectual disability characterized by limitations in intellectual functions, developmental delays in gait, cognitive, and speech functioning, and other features including short stature, dysmorphism, and cerebral malformations. In this study, we report on a 4.5-month-old preterm infant with a complex phenotype mainly characterized by placental-related severe intrauterine growth restriction, post-natal growth failure with spontaneous bone fractures, which led to a suspicion of osteogenesis imperfecta, and lethal bronchopulmonary dysplasia with pulmonary hypertension. Whole exome sequencing identified compound heterozygosity for a known frameshift and a novel missense variant in NBAS and hemizygosity for a known CUL4B nonsense mutation. In vitro functional studies on the novel NBAS missense substitution demonstrated altered Golgi-to-endoplasmic reticulum retrograde vesicular trafficking and reduced collagen secretion, likely explaining part of the patient's phenotype. We also provided a comprehensive overview of the phenotypic features of NBAS and CUL4B deficiency, thus updating the recently emerging NBAS genotype-phenotype correlations. Our findings highlight the power of a genome-first approach for an early diagnosis of complex phenotypes.
Collapse
Affiliation(s)
- Marco Ritelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Eleonora Palagano
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, 20138 Milan, Italy; Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20089 Rozzano, Italy
| | - Valeria Cinquina
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Federica Beccagutti
- Fondazione Poliambulanza, Department of Neonatal Intensive Care, 25124 Brescia, Italy
| | - Nicola Chiarelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Dario Strina
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, 20138 Milan, Italy; Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20089 Rozzano, Italy
| | | | - Anna Villa
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, 20138 Milan, Italy; San Raffaele Telethon Institute for Gene Therapy SR-Tiget, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Cristina Sobacchi
- Consiglio Nazionale delle Ricerche-Istituto di Ricerca Genetica e Biomedica (CNR-IRGB), Milan Unit, 20138 Milan, Italy; Humanitas Clinical and Research Center-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20089 Rozzano, Italy.
| | - Marina Colombi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
9
|
Li ZD, Abuduxikuer K, Zhang J, Yang Y, Qiu YL, Huang Y, Xie XB, Lu Y, Wang JS. NBAS disease: 14 new patients, a recurrent mutation, and genotype-phenotype correlation among 24 Chinese patients. Hepatol Res 2020; 50:1306-1315. [PMID: 32812336 DOI: 10.1111/hepr.13559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/12/2020] [Accepted: 08/10/2020] [Indexed: 12/27/2022]
Abstract
AIM Neuroblastoma amplified sequence (NBAS)-associated disease has a wide phenotypic spectrum, including infantile liver failure syndrome type 2 (ILFS2, OMIM #616483), short stature with optic nerve atrophy and Pelger-Huët anomaly (SOPH) syndrome (OMIM #614800), and a combined phenotype overlapping ILFS2 and SOPH syndrome. The mutation spectra of NBAS and its genotype-phenotype correlation among Chinese were not clear. METHODS Clinical and genetic data were retrospectively collected from the medical charts of patients with biallelic NBAS mutations, as well as from Chinese patients in previously published reports. RESULTS Fourteen new patients were identified, including 10 novel mutations: c.648-1G>A, c.2563_c.2577+5del/p.His855_Gln859del, c.3115C>T/p.Gln1039Ter, c.3284G>A/p.Trp1095Ter, c.2570C>T/p.Ala857Val, c.6859G>T/p.Asp2287Tyr, c.1028G>A/p.Ser343Asn, c.1177_1182delinsAGATAGA/p.Val393ArgfsTer2, c.3432_3435dupCAGT/p.Ala1146GlnfsTer14, and c.680_690dupACTGTTTCAGC/p.Phe231ThrfsTer35. All 14 patients presented as fever-triggered liver injury, including nine patients that satisfied the criteria of acute liver failure (ALF) in whom c.3596G>A/p.Cys1199Tyr occurred five times. Nine patients had extrahepatic manifestations including short stature, skeletal abnormalities, intellectual disability, ophthalmic abnormalities, low levels of serum immunoglobulins, facial dysmorphism, and cardiac abnormalities. Ten other Chinese patients were collected through a review of published works. Genotype-phenotype analysis in 24 Chinese patients revealed that the percentage of ALF patients with variants in the Sec39 domain was significantly higher than that in the C-terminal (100% vs. 12.5%, P = 0.000), and the percentage of multi-organ/system involvement in patients with variants in the Sec39 domain was significantly lower than that in the C-terminal (40% vs. 100%, P = 0.0128). CONCLUSIONS We reported 14 new patients, 10 novel mutations, and a unique recurrent mutation. Correlation analysis indicated that the domain of missense and non-frameshift insertion/deletion mutations in NBAS protein is related to phenotype among Chinese patients.
Collapse
Affiliation(s)
- Zhong Die Li
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Kuerbanjiang Abuduxikuer
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Jing Zhang
- Department of Pediatrics, Jinshan Hospital, Fudan University, Shanghai, China
| | - Ye Yang
- Department of Pediatrics, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yi-Ling Qiu
- Department of Pediatrics, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yuge Huang
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xin-Bao Xie
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Yi Lu
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Jian-She Wang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Birth Defects, Shanghai, China
| |
Collapse
|
10
|
Li W, Zhu Y, Guo Q, Wan C. Infantile fever-triggered acute liver failure caused by novel neuroblastoma amplified sequence mutations: a case report. BMC Gastroenterol 2020; 20:308. [PMID: 32957979 PMCID: PMC7507814 DOI: 10.1186/s12876-020-01451-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 09/11/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Infantile liver failure syndrome-2 (ILFS2) is caused by neuroblastoma amplified sequence (NBAS) mutation. The disease is characterized by recurrent episodes of acute liver failure (ALF) or by liver crisis triggered by recurrent episodes of fever and complete recovery. CASE PRESENTATION Here, we describe the case of a Chinese girl with typical clinical manifestation of ILFS2 without exhibition of extrahepatic involvement. The patient harbored novel compound heterozygous mutations in the NBAS region (c.3386C > T (p.Ser1129Phe), c.1A > C (p.Met1Leu) and c.875G > A (p.Gly292Glu)), mutations which have not been previously reported. After administration of antipyretics and intravenous glucose and electrolyte administration, the patient recovered fully. CONCLUSION Through the present study, we recommend that ILFS2 should be taken into consideration during the differential diagnosis of children with recurrent, fever-triggered ALF. While the definitive diagnosis of ILFS2 remains dependent on genetic sequencing and discovery of NBAS, early antipyretic treatment is recommended to prevent liver crisis.
Collapse
Affiliation(s)
- Weiran Li
- Department of Paediatrics, West China Second University Hospital, Sichuan University, No 20, 3rd section of Renmin South Road, Chengdu, 610041 PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, PR China
| | - Yu Zhu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, No 20, 3rd section of Renmin South Road, Chengdu, 610041 PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, PR China
| | - Qin Guo
- Department of Paediatrics, West China Second University Hospital, Sichuan University, No 20, 3rd section of Renmin South Road, Chengdu, 610041 PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, PR China
| | - Chaomin Wan
- Department of Paediatrics, West China Second University Hospital, Sichuan University, No 20, 3rd section of Renmin South Road, Chengdu, 610041 PR China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, PR China
| |
Collapse
|
11
|
Lacassie Y, Johnson B, Lay-Son G, Quintana R, King A, Cortes F, Alvarez C, Gomez R, Vargas A, Chalew S, King A, Guardia S, Sorensen RU, Aradhya S. Severe SOPH syndrome due to a novel NBAS mutation in a 27-year-old woman-Review of this pleiotropic, autosomal recessive disorder: Mystery solved after two decades. Am J Med Genet A 2020; 182:1767-1775. [PMID: 32297715 DOI: 10.1002/ajmg.a.61597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/16/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022]
Abstract
Autosomal recessive SOPH syndrome was first described in the Yakuts population of Asia by Maksimova et al. in 2010. It arises from biallelic pathogenic variants in the NBAS gene and is characterized by severe postnatal growth retardation, senile facial appearance, small hands and feet, optic atrophy with loss of visual acuity and color vision, and normal intelligence (OMIM #614800). The presence of Pelger-Hüet anomaly in this disorder led to its name as an acronym for Short stature, Optic nerve atrophy, and Pelger-Hüet anomaly. Recent publications have further contributed to the characterization of this syndrome through additional phenotype-genotype correlations. We review the clinical features described in these publications and report on a 27-year-old woman with dwarfism with osteolysis and multiple skeletal problems, minor anomalies, immunodeficiency, diabetes mellitus, and multiple secondary medical problems. Her condition was considered an unknown autosomal recessive disorder for many years until exome sequencing provided the diagnosis by revealing a founder disease-causing variant that was compound heterozygous with a novel pathogenic variant in NBAS. Based on the major clinical features of this individual and others reported earlier, a revision of the acronym is warranted to facilitate clinical recognition.
Collapse
Affiliation(s)
- Yves Lacassie
- Department of Pediatrics, Division of Genetics, LSU Health Sciences Center and Children's Hospital, New Orleans, Louisiana, USA
| | | | - Guillermo Lay-Son
- Servicio de Genética, Clínica Alemana y División de Pediatría, Escuela de Medicina Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Andrew King
- Department of Orthopedics, LSU Health Sciences Center and Children's Hospital, New Orleans, Louisiana, USA
| | - Fanny Cortes
- Unidad de Genética, INTA, Universidad de Chile, Santiago, Chile
| | - Cecilia Alvarez
- Departamento de Pediatría Clínica Alemana and Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Ricardo Gomez
- Department of Pediatrics, Division of Endocrinology, LSU Health Sciences Center and Children's Hospital, New Orleans, Louisiana, USA
| | - Alfonso Vargas
- Department of Pediatrics, Division of Endocrinology, LSU Health Sciences Center and Children's Hospital, New Orleans, Louisiana, USA
| | - Stuart Chalew
- Department of Pediatrics, Division of Endocrinology, LSU Health Sciences Center and Children's Hospital, New Orleans, Louisiana, USA
| | - Alejandra King
- Departamento de Pediatría Clínica Alemana and Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Sylvia Guardia
- Departamento de Pediatría Clínica Alemana and Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Ricardo U Sorensen
- Department of Pediatrics, Division of Immunology, LSU Health Sciences Center and Children's Hospital, New Orleans, Louisiana and Honorary Professor Universidad de la Frontera, Temuco, Chile
| | | |
Collapse
|
12
|
Chavany J, Cano A, Roquelaure B, Bourgeois P, Boubnova J, Gaignard P, Hoebeke C, Reynaud R, Rhomer B, Slama A, Badens C, Chabrol B, Fabre A. Mutations in NBAS and SCYL1, genetic causes of recurrent liver failure in children: Three case reports and a literature review. Arch Pediatr 2020; 27:155-159. [DOI: 10.1016/j.arcped.2020.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 12/15/2019] [Accepted: 01/25/2020] [Indexed: 12/14/2022]
|
13
|
Khoreva A, Pomerantseva E, Belova N, Povolotskaya I, Konovalov F, Kaimonov V, Gavrina A, Zimin S, Pershin D, Davydova N, Burlakov V, Viktorova E, Roppelt A, Kalinina E, Novichkova G, Shcherbina A. Complex Multisystem Phenotype With Immunodeficiency Associated With NBAS Mutations: Reports of Three Patients and Review of the Literature. Front Pediatr 2020; 8:577. [PMID: 33042920 PMCID: PMC7522312 DOI: 10.3389/fped.2020.00577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/06/2020] [Indexed: 11/20/2022] Open
Abstract
Objectives: Mutations in the neuroblastoma-amplified sequence (NBAS) gene were originally described in patients with skeletal dysplasia or isolated liver disease of variable severity. Subsequent publications reported a more complex phenotype. Among multisystemic clinical symptoms, we were particularly interested in the immunological consequences of the NBAS deficiency. Methods: Clinical and laboratory data of 3 patients ages 13, 6, and 5 in whom bi-allelic NBAS mutations had been detected via next-generation sequencing were characterized. Literature review of 23 publications describing 74 patients was performed. Results: We report three Russian patients with compound heterozygous mutations of the NBAS gene who had combined immunodeficiency characterized by hypogammaglobulinemia, low T-cells, and near-absent B-cells, along with liver disease, skeletal dysplasia, optic-nerve atrophy, and dysmorphic features. Analysis of the data of 74 previously reported patients who carried various NBAS mutations demonstrated that although the most severe form of liver disease seems to require disruption of the N-terminal or middle part of NBAS, mutations of variable localizations in the gene have been associated with some form of liver disease, as well as immunological disorders. Conclusions: NBAS deficiency has a broad phenotype, and referral to an immunologist should be made in order to screen for immunodeficiency.
Collapse
Affiliation(s)
- Anna Khoreva
- Dmitry Rogachev National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | | | - Inna Povolotskaya
- Genetics and Reproductive Medicine Center "GENETICO" Ltd., Moscow, Russia.,Veltischev Research and Clinical Institute of Pediatrics, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Vladimir Kaimonov
- Genetics and Reproductive Medicine Center "GENETICO" Ltd., Moscow, Russia
| | - Alena Gavrina
- Center of Inborn Pathology, GMS Clinic, Moscow, Russia
| | | | - Dmitrii Pershin
- Dmitry Rogachev National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | - Vasilii Burlakov
- Dmitry Rogachev National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ekaterina Viktorova
- Dmitry Rogachev National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna Roppelt
- Dmitry Rogachev National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ekaterina Kalinina
- Dmitry Rogachev National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Galina Novichkova
- Dmitry Rogachev National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anna Shcherbina
- Dmitry Rogachev National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
14
|
Staufner C, Peters B, Wagner M, Alameer S, Barić I, Broué P, Bulut D, Church JA, Crushell E, Dalgıç B, Das AM, Dick A, Dikow N, Dionisi-Vici C, Distelmaier F, Bozbulut NE, Feillet F, Gonzales E, Hadzic N, Hauck F, Hegarty R, Hempel M, Herget T, Klein C, Konstantopoulou V, Kopajtich R, Kuster A, Laass MW, Lainka E, Larson-Nath C, Leibner A, Lurz E, Mayr JA, McKiernan P, Mention K, Moog U, Mungan NO, Riedhammer KM, Santer R, Palafoll IV, Vockley J, Westphal DS, Wiedemann A, Wortmann SB, Diwan GD, Russell RB, Prokisch H, Garbade SF, Kölker S, Hoffmann GF, Lenz D. Defining clinical subgroups and genotype–phenotype correlations in NBAS-associated disease across 110 patients. Genet Med 2019; 22:610-621. [DOI: 10.1038/s41436-019-0698-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022] Open
|
15
|
Ricci S, Lodi L, Serranti D, Moroni M, Belli G, Mancano G, La Barbera A, Forzano G, Mangone G, Indolfi G, Azzari C. Immunological Features of Neuroblastoma Amplified Sequence Deficiency: Report of the First Case Identified Through Newborn Screening for Primary Immunodeficiency and Review of the Literature. Front Immunol 2019; 10:1955. [PMID: 31507590 PMCID: PMC6718460 DOI: 10.3389/fimmu.2019.01955] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/02/2019] [Indexed: 01/30/2023] Open
Abstract
This is the first case of NBAS disease detected by NBS for primary immunodeficiency. NBS with KRECs is revealing unknown potentialities detecting conditions that benefit from early recognition like NBAS deficiency. Immune phenotyping should be mandatory in patients with NBAS deficiency since they can exhibit severe immunodeficiency with hypogammaglobulinemia as the most frequent finding. Fever during infections is a known trigger of acute liver failure in this syndrome, so immune dysfunction, should never go unnoticed in NBAS deficiency in order to start adequate therapy and prophylaxis.
Collapse
Affiliation(s)
- Silvia Ricci
- Section of Pediatrics, Division of Immunology, Department of Health Sciences, Meyer Children's University Hospital, Florence, Italy
| | - Lorenzo Lodi
- Section of Pediatrics, Division of Immunology, Department of Health Sciences, Meyer Children's University Hospital, Florence, Italy
| | - Daniele Serranti
- Pediatric and Liver Unit, Meyer Children's University Hospital, Florence, Italy
| | - Marco Moroni
- Neonatal Intensive Care Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Gilda Belli
- Neonatal Intensive Care Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Giorgia Mancano
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Andrea La Barbera
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Giulia Forzano
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Giusi Mangone
- Section of Pediatrics, Division of Immunology, Department of Health Sciences, Meyer Children's University Hospital, Florence, Italy
| | - Giuseppe Indolfi
- Pediatric and Liver Unit, Meyer Children's University Hospital, Florence, Italy
| | - Chiara Azzari
- Section of Pediatrics, Division of Immunology, Department of Health Sciences, Meyer Children's University Hospital, Florence, Italy
| |
Collapse
|