1
|
Keane AJ, Sanz-Nogués C, Jayasooriya D, Creane M, Chen X, Lyons CJ, Sikri I, Goljanek-Whysall K, O'Brien T. miR-1, miR-133a, miR-29b and skeletal muscle fibrosis in chronic limb-threatening ischaemia. Sci Rep 2024; 14:29393. [PMID: 39592654 PMCID: PMC11599917 DOI: 10.1038/s41598-024-76415-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/14/2024] [Indexed: 11/28/2024] Open
Abstract
Chronic limb-threatening ischaemia (CLTI), the most severe manifestation of peripheral arterial disease (PAD), is associated with a poor prognosis and high amputation rates. Despite novel therapeutic approaches being investigated, no significant clinical benefits have been observed yet. Understanding the molecular pathways of skeletal muscle dysfunction in CLTI is crucial for designing successful treatments. This study aimed to identify miRNAs dysregulated in muscle biopsies from PAD cohorts. Using MIcroRNA ENrichment TURned NETwork (MIENTURNET) on a publicly accessible RNA-sequencing dataset of PAD cohorts, we identified a list of miRNAs that were over-represented among the upregulated differentially expressed genes (DEGs) in CLTI. Next, we validated the altered expression of these miRNAs and their targets in mice with hindlimb ischaemia (HLI). Our results showed a significant downregulation of miR-1, miR-133a, and miR-29b levels in the ischaemic limbs versus the contralateral non-ischaemic limb. A miRNA target protein-protein interaction network identified extracellular matrix components, including collagen-1a1, -3a1, and -4a1, fibronectin-1, fibrin-1, matrix metalloproteinase-2 and -14, and Sparc, which were upregulated in the ischaemic muscle of mice. This is the first study to identify miR-1, miR-133a, and miR-29b as potential contributors to fibrosis and vascular pathology in CLTI muscle, which supports their potential as novel therapeutic agents for this condition.
Collapse
Affiliation(s)
- Alan J Keane
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Clara Sanz-Nogués
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland.
- CÚRAM SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland.
| | - Dulan Jayasooriya
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Michael Creane
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Xizhe Chen
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Caomhán J Lyons
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Isha Sikri
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Katarzyna Goljanek-Whysall
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
- CÚRAM SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Ragavendran C. Comment on, "Electric scooter-related CT-Positive brain injuries: a five-year single-center experience". Neurosurg Rev 2024; 47:748. [PMID: 39377804 DOI: 10.1007/s10143-024-03004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/12/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Affiliation(s)
- Chinnasamy Ragavendran
- Department of Cariology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai, 600 077, India.
| |
Collapse
|
3
|
Usman Pp AS, Sekar D. microRNA-based electrochemical biosensor for early detection of pulmonary arterial hypertension. Hypertens Res 2024; 47:2000-2002. [PMID: 38769136 DOI: 10.1038/s41440-024-01719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/07/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024]
Affiliation(s)
- Ashikha Shirin Usman Pp
- RNA Biology Lab, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, India
| | - Durairaj Sekar
- RNA Biology Lab, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, India.
| |
Collapse
|
4
|
Neralla M, M H, Preethi A, Selvakumar SC, Sekar D. Expression levels of microRNA-7110 in oral squamous cell carcinoma. Minerva Dent Oral Sci 2024; 73:155-160. [PMID: 37475590 DOI: 10.23736/s2724-6329.23.04801-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a leading cause of cancer-related deaths worldwide, and it is responsible for more than 95% of head and neck cancers. Despite advancements in research and treatment, patient's survival has not significantly increased in recent years. On the other hand, microRNAs (miRNAs) are a major class of small non-coding RNAs that regulate gene expression of the target mRNAs. Thus, understanding the mechanisms behind OSCC formation and progression may lead to the identification of potential diagnostic biomarkers and therapeutic molecules for the treatment of OSCC. The aim of the current study was to analyze expression levels of miR-7110 in OSCC tissues and adjacent normal tissues as it could provide insights into its potential role in OSCC development or progression as a valuable biomarker. METHODS A total of 20 OSCC and adjacent normal tissues were collected from the Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals (Chennai, India). The tissues were processed for hematoxylin and eosin staining and expression studies. The data were shown as mean±standard deviation and P<0.05 was considered statistically significant. RESULTS Our histopathological observations revealed an invasive malignant epithelial neoplasm with malignant epithelial cells exhibiting features of severe epithelial dysplasia invading the connective tissue stroma as islands, strands and cords with varying degrees of differentiation. Our results have also revealed that the expression levels of miR-7110 were found to be significantly higher in OSCC samples when compared to the normal tissue. CONCLUSIONS We can preliminarily conclude that based on the increased expression of miR-7110 in OSCC tissue samples, they can be used as an early diagnostic or prognostic biomarker and/or a therapeutic target for the treatment of OSCC even though more focused research in that direction is needed.
Collapse
Affiliation(s)
- Mahathi Neralla
- Department of Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai, India -
| | - Harini M
- Department of Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| | - Auxzilia Preethi
- RNA Biology Lab, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| | - Sushmaa C Selvakumar
- RNA Biology Lab, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| | - Durairaj Sekar
- RNA Biology Lab, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai, India
| |
Collapse
|
5
|
Zhang X, Wang L, Li M, Dong S. Predictive value of miR-7110-5p and miR-223-3p as biomarkers for sepsis secondary to pneumonia. Technol Health Care 2024; 32:2931-2939. [PMID: 38759032 DOI: 10.3233/thc-231137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
BACKGROUND Investigating the secondary sepsis of pneumonia is of great significance for rapid diagnosis and early treatment of sepsis. OBJECTIVE This study aimed to investigate the predictive value of micro ribonucleic acids (miRNA) 7110-5p and miR-223-3p in sepsis secondary to pneumonia. A miRNA microarray was used to analyze the differences in miRNA expression between patients with pneumonia and those with sepsis secondary to pneumonia. METHODS The study included a total of 50 patients with pneumonia and 42 patients with sepsis secondary to pneumonia. Quantitative polymerase chain reaction analysis was conducted to measure the circulating miRNA expression levels in patients and assess their correlations with clinical characteristics and prognosis. In this study, nine miRNAs - hsa-miR-4689-5p, hsa-miR-4621-5p, hsa-miR-6740-5p, hsa-miR-7110-5p, hsa-miR-765, hsa-miR-940, hsa-miR-213-5p, hsa-miR-223-3p, and hsa-miR-122 - met the screening criteria of having a fold change ⩾ 2 or < 0.5; p< 0.01 indicated significant differences in the results. RESULTS The expression levels of miR-7110-5p and miR-223-3p differed between the two patient groups, being up-regulated in the plasma of patients with sepsis secondary to pneumonia. miR-7110-5p and miR-223-3p showed higher expression levels in both patients with pneumonia and sepsis compared to healthy controls. Moreover, the receiver operating characteristic curve revealed that the areas under the curve for predicting pneumonia using miR-7110-5p were 0.781 while those for predicting sepsis secondary to pneumonia were 0.862. For miR-223-3p, the corresponding values for predicting pneumonia and sepsis secondary to pneumonia were 0.879 and 0.924, respectively. However, there were no significant differences in the levels of miR-7110-5p and miR-223-3p between the plasma of survived and deceased patients with sepsis. CONCLUSIONS MiR-7110-5p and miR-223-3p have the potential to serve as biological indicators for predicting sepsis secondary to pneumonia.
Collapse
Affiliation(s)
- Xinliang Zhang
- Department of Emergency Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lin Wang
- Department of Trauma Emergency, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Mei Li
- Department of Emergency Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shimin Dong
- Department of Emergency Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
6
|
Karabaeva RZ, Vochshenkova TA, Zare A, Jafari N, Baneshi H, Mussin NM, Albayev RK, Kaliyev AA, Baspakova A, Tamadon A. Genetic and epigenetic factors of arterial hypertension: a bibliometric- and in-silico-based analyses. Front Mol Biosci 2023; 10:1221337. [PMID: 37900914 PMCID: PMC10602687 DOI: 10.3389/fmolb.2023.1221337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction: Arterial hypertension (AH) is a pervasive global health concern with multifaceted origins encompassing both genetic and environmental components. Previous research has firmly established the association between AH and diverse genetic factors. Consequently, scientists have conducted extensive genetic investigations in recent years to unravel the intricate pathophysiology of AH. Methods: In this study, we conducted a comprehensive bibliometric analysis employing VOSviewer software to identify the most noteworthy genetic factors that have been the focal point of numerous investigations within the AH field in recent years. Our analysis revealed genes and microRNAs intricately linked to AH, underscoring their pivotal roles in this condition. Additionally, we performed molecular docking analyses to ascertain microRNAs with the highest binding affinity to these identified genes. Furthermore, we constructed a network to elucidate the in-silico-based functional interactions between the identified microRNAs and genes, shedding light on their potential roles in AH pathogenesis. Results: Notably, this pioneering in silico examination of genetic factors associated with AH promises novel insights into our understanding of this complex condition. Our findings prominently highlight miR-7110-5p, miR-7110-3p, miR-663, miR-328-3p, and miR-140-5p as microRNAs exhibiting a remarkable affinity for target genes. These microRNAs hold promise as valuable diagnostic and therapeutic factors, offering new avenues for the diagnosis and treatment of AH in the foreseeable future. Conclusion: In summary, this research underscores the critical importance of genetic factors in AH and, through in silico analyses, identifies specific microRNAs with significant potential for further investigation and clinical applications in AH management.
Collapse
Affiliation(s)
- Raushan Zh Karabaeva
- Gerontology Center, Medical Center of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
- Therapeutic Department, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Tamara A. Vochshenkova
- Gerontology Center, Medical Center of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
- Therapeutic Department, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | | | | | | | | | - Rustam Kuanyshbekovich Albayev
- Gerontology Center, Medical Center of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
| | | | - Akmaral Baspakova
- Department for Scientific Work, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Amin Tamadon
- PerciaVista R&D Co., Shiraz, Iran
- Department for Scientific Work, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| |
Collapse
|
7
|
Preethi KA, Selvakumar SC, Sekar D. In Silico Identification of Human miR-26a-1 from Hypertension Genome
Sequence. CURRENT SIGNAL TRANSDUCTION THERAPY 2023; 18. [DOI: 10.2174/1574362417666220827114844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 03/30/2022] [Accepted: 06/02/2022] [Indexed: 02/17/2025]
Abstract
Background:
Hypertension is a global public health issue that is becoming more prevalent.
It is a non-communicable disease and a great public health problem affecting almost half of
the world’s adult population. Being multifactorial, hypertension is a key risk factor for stroke, coronary
artery disease, heart failure, and chronic renal failure. However, the cellular and molecular
mechanisms that regulate it remain mostly unknown. According to numerous studies, microRNAs
(miRNAs) have been implicated in a range of cellular processes in the development of illnesses.
The current study aims to identify miRNAs in hypertension from genome sequences found in public
genomic databases.
Materials and Methods:
In this study, we have used bioinformatic approaches to identify miR-26a-
1 for hypertension using the NCBI database, miRBase and target scan. Finally, the RNA fold was
used to create the secondary structure of miR-26a-1.
Results and Discussion:
Careful evaluation of secondary structure result showed that hsa-miR-
26a-1 has a minimum free energy of - 37.30 kcal. The correlation between miR-26a-1 and hypertension
genome sequence was identified.
Conclusion:
These computational approaches have concluded that miR-26a-1 can be used as a diagnosis,
prognosis and effective therapeutic target for treating hypertension. Thus, further research
could enlighten the role of miR-26a-1 in hypertension.
Collapse
Affiliation(s)
- K. Auxzilia Preethi
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and
Technical Sciences (SIMATS), Saveetha University, Chennai-77, India
| | - Sushmaa Chandralekha Selvakumar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and
Technical Sciences (SIMATS), Saveetha University, Chennai-77, India
| | - Durairaj Sekar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and
Technical Sciences (SIMATS), Saveetha University, Chennai-77, India
| |
Collapse
|
8
|
Sun Z, Liu Y, Hu R, Wang T, Li Y, Liu N. Metformin inhibits pulmonary artery smooth muscle cell proliferation by upregulating p21 via NONRATT015587.2. Int J Mol Med 2022; 49:49. [PMID: 35147202 PMCID: PMC8904078 DOI: 10.3892/ijmm.2022.5104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/19/2022] [Indexed: 11/05/2022] Open
Abstract
Pulmonary artery hypertension (PAH) is a complex and progressive disease characterized by pulmonary vascular remodeling. Our previous study confirmed that NONRATT015587.2 could promote the proliferation of PASMCs and pulmonary vascular remodeling. However, the exact mechanism by which NONRATT015587.2 promotes PASMC proliferation is unclear. Bioinformatics analysis revealed that p21 is located at the downstream target of NONRATT015587.2. NONRATT015587.2 expression and localization were analyzed by PCR and fluorescence in situ hybridization. Proliferation was detected by Cell Counting Kit-8, flow cytometry and western blotting. In the current study, a monocrotaline (MCT)-induced PAH rat model and cultured pulmonary artery smooth muscle cells (PASMCs) were used in vitro to elucidate the exact mechanism of NONRATT015587.2 in pulmonary vascular remodeling, alongside the effect following metformin (MET) treatment on vascular remodeling and smooth muscle cell proliferation. The results demonstrated that NONRATT015587.2 expression was upregulated in the MCT group and reduced in the MET + MCT group. In addition, NONRATT015587.2 could promote the proliferation of PASMCs. The expression levels of p21 were reduced in the MCT group, but increased in the MCT + MET group. Additionally, the expression of NONRATT015587.2 was upregulated in platelet-derived growth factor-BB (PDGF-BB)-induced PASMCs, whereas that of p21 was downregulated. Following MET treatment, the expression of NONRATT015587.2 was downregulated and that of p21 was upregulated, which inhibited the proliferation of PASMCs. After overexpression of NONRATT015587.2 in vitro, the proliferation effect of PASMCs was consistent with exogenous PDGF-BB treatment, and MET reversed this effect. NONRATT015587.2 silencing inhibited the proliferation of PASMCs. In addition, p21 silencing reversed the inhibitory effect of NONRATT015587.2 silencing on the proliferation of PASMCs. However, the proliferation of PASMCs was inhibited following MET treatment when NONRATT015587.2 and p21 were silenced at the same time. Thus, NONRATT015587.2 promoted the proliferation of PASMCs by targeting p21, and MET inhibited the proliferation of PASMCs by upregulating p21 mediated via NONRATT015587.2.
Collapse
Affiliation(s)
- Zengxian Sun
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Yun Liu
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Rong Hu
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Tianyan Wang
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Yanli Li
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222061, P.R. China
| | - Naifeng Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
9
|
Li ZK, Gao LF, Zhu XA, Xiang DK. LncRNA HOXA-AS3 Promotes the Progression of Pulmonary Arterial Hypertension through Mediation of miR-675-3p/PDE5A Axis. Biochem Genet 2021; 59:1158-1172. [PMID: 33687636 DOI: 10.1007/s10528-021-10053-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/19/2021] [Indexed: 11/25/2022]
Abstract
Pulmonary arterial hypertension (PAH) seriously threatens the elder people. Long non-coding RNAs (lncRNAs) are involved in multiple diseases. However, the study of the lncRNAs in the occurrence of PAH is just beginning. For this, we sought to explore the biological function of lncRNA HOXA cluster antisense RNA 3 (HOXA-AS3) in PAH. Hypoxia (HYP) was used to mimic in vitro model of PAH. Gene and protein expressions in cells were detected by q-PCR and Western blotting, respectively. In addition, cell proliferation and viability were tested by CCK-8 and MTT assay. Cell apoptosis was measured by flow cytometry. Wound healing was used to detect cell migration. Furthermore, the connection of HOXA-AS3, miR-675-3p, and phosphodiesterase 5A (PDE5A) was verified by dual-luciferase report assay. HOXA-AS3 and PDE5A were upregulated in human pulmonary artery smooth muscle cells (HPASMCs) in the presence of HYP, while miR-675-3p was downregulated. Moreover, knockdown of HOXA-AS3 suppressed the growth and migration of HPASMCs, but induced the apoptosis. Overexpression of miR-675-3p achieved the same effect. MiR-675-3p inhibitor or overexpression of PDE5A notably reversed the inhibitory effect of HOXA-AS3 knockdown on PAH. Finally, HOXA-AS3 could sponge miR-675-3p, and PDE5A was directly targeted by miR-675-3p. HOXA-AS3 increased the development of PAH via regulation of miR-675-3p/PDE5 axis, which could be the potential biomarker for treatment of PAH.
Collapse
Affiliation(s)
- Zhong-Kui Li
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, 550002, Guizhou Province, People's Republic of China
| | - Lu-Fang Gao
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, 550002, Guizhou Province, People's Republic of China
| | - Xi-An Zhu
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, 550002, Guizhou Province, People's Republic of China
| | - Dao-Kang Xiang
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, 550002, Guizhou Province, People's Republic of China.
| |
Collapse
|
10
|
Selvaraj S, Lakshmanan G, Kalimuthu K, Sekar D. Role of microRNAs and their involvement in preeclampsia. Epigenomics 2020; 12:1765-1767. [PMID: 33078625 DOI: 10.2217/epi-2020-0281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Srivathchava Selvaraj
- Dental Research Cell & Biomedical Research Unit (DRC-BRULAC), Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Science (SIMATS), Saveetha University, Chennai 600077, India.,Department of Anatomy, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Science (SIMATS), Saveetha University, Chennai 600077, India
| | - Ganesh Lakshmanan
- Department of Anatomy, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Science (SIMATS), Saveetha University, Chennai 600077, India
| | - Kohila Kalimuthu
- Department of Obstetrics & Gynaecology, Saveetha Medical College & Hospital, Saveetha Institute of Medical & Technical Science (SIMATS), Saveetha University, Chennai 600077, India
| | - Durairaj Sekar
- Dental Research Cell & Biomedical Research Unit (DRC-BRULAC), Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Science (SIMATS), Saveetha University, Chennai 600077, India
| |
Collapse
|
11
|
Affiliation(s)
- Durairaj Sekar
- Dental Research Cell (DRC-BRULAC), Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Science (SIMATS), Saveetha University, Chennai 600077, India
| |
Collapse
|
12
|
Hsu JY, Major JL, Riching AS, Sen R, Pires da Silva J, Bagchi RA. Beyond the genome: challenges and potential for epigenetics-driven therapeutic approaches in pulmonary arterial hypertension. Biochem Cell Biol 2020; 98:631-646. [PMID: 32706995 DOI: 10.1139/bcb-2020-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease of the cardiopulmonary system caused by the narrowing of the pulmonary arteries, leading to increased vascular resistance and pressure. This leads to right ventricle remodeling, dysfunction, and eventually, death. While conventional therapies have largely focused on targeting vasodilation, other pathological features of PAH including aberrant inflammation, mitochondrial dynamics, cell proliferation, and migration have not been well explored. Thus, despite some recent improvements in PAH treatment, the life expectancy and quality of life for patients with PAH remains poor. Showing many similarities to cancers, PAH is characterized by increased pulmonary arterial smooth muscle cell proliferation, decreased apoptotic signaling pathways, and changes in metabolism. The recent successes of therapies targeting epigenetic modifiers for the treatment of cancer has prompted epigenetic research in PAH, revealing many new potential therapeutic targets. In this minireview we discuss the emergence of epigenetic dysregulation in PAH and highlight epigenetic-targeting compounds that may be effective for the treatment of PAH.
Collapse
Affiliation(s)
- Jessica Y Hsu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jennifer L Major
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrew S Riching
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rwik Sen
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Julie Pires da Silva
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rushita A Bagchi
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
13
|
Decoding the functional role of long noncoding RNAs (lncRNAs) in hypertension progression. Hypertens Res 2020; 43:724-725. [PMID: 32235913 DOI: 10.1038/s41440-020-0430-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 11/08/2022]
|