1
|
Liu R, Xu J, Jiang Y, Hong W, Li S, Fu Z, Cao W, Li B, Ran P, Peng G. Platelet-derived growth factor-BB induces pulmonary venous smooth muscle cells proliferation by upregulating calcium sensing receptor under hypoxic conditions. Cytotechnology 2021; 73:189-201. [PMID: 33927476 DOI: 10.1007/s10616-021-00456-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/04/2021] [Indexed: 10/22/2022] Open
Abstract
Pulmonary hypertension (PH) is characterized by pulmonary vascular remodeling, which exists in both pulmonary arteries and pulmonary veins. Pulmonary vascular remodeling stems from excessive proliferation of pulmonary vascular myocytes. Platelet-derived growth factor-BB (PDGF-BB) is a vital vascular regulator whose level increases in PH human lungs. Although the mechanisms by which pulmonary arterial smooth muscle cells respond to PDGF-BB have been studied extensively, the effects of PDGF-BB on pulmonary venous smooth muscle cells (PVSMCs) remain unknown. We herein examined the involvement of calcium sensing receptor (CaSR) in PDGF-BB-induced PVSMCs proliferation under hypoxic conditions. In PVSMCs isolated from rat intrapulmonary veins, PDGF-BB increased the cell number and DNA synthesis under normoxic and hypoxic conditions, which was accompanied by upregulated CaSR expression. The influences of PDGF-BB on proliferation and CaSR expression in hypoxic PVSMCs were greater than that in normoxic PVSMCs. In hypoxic PVSMCs superfused with Ca2+-free solution, restoration of extracellular Ca2+ induced an increase of [Ca2+]i, which was significantly smaller than that in PDGF-BB-treated hypoxic PVSMCs. The positive CaSR modulator spermine enhanced, whereas the negative CaSR modulator NPS2143 attenuated, the extracellular Ca2+-induced [Ca2+]i increase in PDGF-BB-treated hypoxic PVSMCs. Furthermore, the spermine enhanced, whereas the NPS2143 inhibited, PDGF-BB-induced proliferation in hypoxic PVSMCs. Silencing CaSR with siRNA attenuated the extracellular Ca2+-induced [Ca2+]i increase in PDGF-BB-treated hypoxic PVSMCs and inhibited PDGF-BB-induced proliferation in hypoxic PVSMCs. In conclusion, these results demonstrated that CaSR mediating PDGF-BB-induced excessive PVSMCs proliferation is an important mechanism involved in the initiation and progression of PVSMCs proliferation under hypoxic conditions.
Collapse
Affiliation(s)
- Rongmin Liu
- Guangzhou Institute for Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120 China
| | - Juan Xu
- Guangzhou Institute for Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120 China
| | - Yongliang Jiang
- Respiratory Medicine, Hunan Provincial People's Hospital, Changsha, China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shaoxing Li
- Guangzhou Institute for Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120 China
| | - Zhenli Fu
- Guangzhou Institute for Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120 China
| | - Weitao Cao
- Guangzhou Institute for Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120 China
| | - Bing Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Pixin Ran
- Guangzhou Institute for Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120 China
| | - Gongyong Peng
- Guangzhou Institute for Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, 510120 China
| |
Collapse
|