1
|
Li W, Chen W, Wu D, Zhang Z, Liu P, Li Z, Yang Y. Mechanistic insights into antihypertensive activity of mushroom-derived protein-peptides via metabolomic and proteomic approaches. Int J Biol Macromol 2024; 283:137189. [PMID: 39515700 DOI: 10.1016/j.ijbiomac.2024.137189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Stropharia rugosoannulata mushroom peptides have well-defined sequences, specific structures, and excellent antihypertensive activity. In this study, metabolomic and proteomic analyses revealed the antihypertensive mechanism of mushroom-derived protein-peptides, GQEDYDRLRPL (GL-11P) and KSWDDFFTR (KR-9P), to demonstrate their potential antihypertensive buck-regulation systems and pathways. Protein-peptides were predominantly down-regulated expression of endogenous metabolites in antihypertensive regulation, and bile acid analogs were key endogenous differentially expressed metabolic markers. Antihypertensive treatment with protein-peptides activated the immune and signal transduction systems, affected extracellular regions, metal ion binding, and receptor binding ability. The ECM-receptor interaction pathway, with differentially expressed proteins in antihypertensive treatment, distinguished the protein-peptides from blank control and was also a critical pathway that distinguished the two protein-peptides. Up-regulatory pathways of protein expression dominated by GL-11P's antihypertensive regulation, while down-regulatory pathways of protein expression dominated by KR-9P's antihypertensive regulation. Protein-peptides exerted antihypertensive regulatory effects by enhancing immune responses, up-regulating protein and enzyme binding capacity, and down-regulating inflammatory mediator release. Differentially expressed protein interactions produced in protein-peptides antihypertensive therapy mostly up-regulated the Reactome pathway and were dominated by immune system regulation. This study provided data support for utilizing mushroom-derived protein-peptides in antihypertensive therapy, and enriched the theoretical basis of protein-peptides' antihypertensive regulation mechanisms.
Collapse
Affiliation(s)
- Wen Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, Shanghai Guosen Bio-tech Co. Ltd., Shanghai 201403, China.
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, Shanghai Guosen Bio-tech Co. Ltd., Shanghai 201403, China
| | - Di Wu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, Shanghai Guosen Bio-tech Co. Ltd., Shanghai 201403, China
| | - Zhong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, Shanghai Guosen Bio-tech Co. Ltd., Shanghai 201403, China
| | - Peng Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, Shanghai Guosen Bio-tech Co. Ltd., Shanghai 201403, China
| | - Zhengpeng Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, Shanghai Guosen Bio-tech Co. Ltd., Shanghai 201403, China
| | - Yan Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, Shanghai Guosen Bio-tech Co. Ltd., Shanghai 201403, China.
| |
Collapse
|
2
|
Metabolomic profiling in kidney cells treated with a sodium glucose-cotransporter 2 inhibitor. Sci Rep 2023; 13:2026. [PMID: 36739309 PMCID: PMC9899225 DOI: 10.1038/s41598-023-28850-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/25/2023] [Indexed: 02/06/2023] Open
Abstract
We aimed to determine the metabolomic profile of kidney cells under high glucose conditions and following sodium-glucose cotransporter 2 (SGLT2) inhibitor treatment. Targeted metabolomics using the Absolute IDQ-p180 kit was applied to quantify metabolites in kidney cells stimulated with high glucose (25 and 50 mM) and treated with SGLT2 inhibitor, dapagliflozin (2 µM). Primary cultured human tubular epithelial cells and podocytes were used to identify the metabolomic profile in high glucose conditions following dapagliflozin treatment. The levels of asparagine, PC ae C34:1, and PC ae C36:2 were elevated in tubular epithelial cells stimulated with 50 mM glucose and were significantly decreased after 2 µM dapagliflozin treatment. The level of PC aa C32:0 was significantly decreased after 50 mM glucose treatment compared with the control, and its level was significantly increased after dapagliflozin treatment in podocytes. The metabolism of glutathione, asparagine and proline was significantly changed in tubular epithelial cells under high-glucose stimulation. And the pathway analysis showed that aminoacyl-tRNA biosynthesis, arginine and proline metabolism, glutathione metabolism, valine, leucine and isoleucine biosynthesis, phenylalanine, tyrosine, and tryptophan biosynthesis, beta-alanine metabolism, phenylalanine metabolism, arginine biosynthesis, alanine, aspartate and glutamate metabolism, glycine, serine and threonine metabolism were altered in tubular epithelial cells after dapagliflozin treatment following 50 mM glucose compared to those treated with 50 mM glucose.
Collapse
|
3
|
Mehanna M, McDonough CW, Smith SM, Gong Y, Gums JG, Chapman AB, Johnson JA, Cooper-DeHoff RM. Influence of Genetic West African Ancestry on Metabolomics among Hypertensive Patients. Metabolites 2022; 12:metabo12090783. [PMID: 36144188 PMCID: PMC9506508 DOI: 10.3390/metabo12090783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 12/02/2022] Open
Abstract
Patients with higher genetic West African ancestry (GWAA) have hypertension (HTN) that is more difficult to treat and have higher rates of cardiovascular diseases (CVD) and differential responses to antihypertensive drugs than those with lower GWAA. The mechanisms underlying these disparities are poorly understood. Using data from 84 ancestry-informative markers in US participants from the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) and PEAR-2 trials, the GWAA proportion was estimated. Using multivariable linear regression, the baseline levels of 886 metabolites were compared between PEAR participants with GWAA < 45% and those with GWAA ≥ 45% to identify differential metabolites and metabolic clusters. Metabolites with a false discovery rate (FDR) < 0.2 were used to create metabolic clusters, and a cluster analysis was conducted. Differential clusters were then tested for replication in PEAR-2 participants. We identified 353 differential metabolites (FDR < 0.2) between PEAR participants with GWAA < 45% (n = 383) and those with GWAA ≥ 45% (n = 250), which were used to create 24 metabolic clusters. Of those, 13 were significantly different between groups (Bonferroni p < 0.002). Four clusters, plasmalogen and lysoplasmalogen, sphingolipid metabolism and ceramide, cofactors and vitamins, and the urea cycle, were replicated in PEAR-2 (Bonferroni p < 0.0038) and have been previously linked to HTN and CVD. Our findings may give insights into the mechanisms underlying HTN racial disparities.
Collapse
Affiliation(s)
- Mai Mehanna
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Caitrin W. McDonough
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Steven M. Smith
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Department of Pharmaceutical Outcomes & Policy, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Yan Gong
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - John G. Gums
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Arlene B. Chapman
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Julie A. Johnson
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Rhonda M. Cooper-DeHoff
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Correspondence: ; Tel.: +1-(352)-273-6184
| |
Collapse
|
4
|
Do not take a chance! We do not tell fortunes. Hypertens Res 2022; 45:541-542. [PMID: 35031775 DOI: 10.1038/s41440-021-00848-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 11/08/2022]
|