1
|
Mariotto LF, Lofeu L, Kohlsdorf T. Developmental Plasticity in Growth and Performance Blur Taxonomic Boundaries in South American True Toads (Rhinella). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2025; 344:80-93. [PMID: 39718098 DOI: 10.1002/jez.b.23283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/07/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024]
Abstract
Developmental plasticity can affect traits directly related to survival, and some changes may promote or impair population persistence in changing environments. At the same time, it can also originate new complex phenotypes, surpassing species-specific boundaries. Therefore, plastic responses have the potential to participate in processes of micro and macroevolution. In this study, we evaluate plastic responses to different thermal regimes during development in traits related to survival and also used for taxonomic classification of two true-toad species, Rhinella icterica and Rhinella ornata. We raised tadpoles representing distinct operational taxonomic units (OTUs) at different temperatures, and the resulting phenotypic patterns suggest canalization in R. icterica and complex variation revealed by plasticity among R. ornata OTUs. Plastic responses to thermal regimes produced differences among the OTUs in traits associated with specific survival strategies of Rhinella species. Some changes surpassed taxonomic boundaries and rescued lineage-specific phenotypic patterns, establishing unusual phenotypic combinations for these species. Our results illustrate the contribution of developmental plasticity for processes involving phenotypic differentiation among species in traits directly related to survival.
Collapse
Affiliation(s)
- Lucas Ferriolli Mariotto
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Ciências Naturais, Universidade Regional de Blumenau, Blumenau, Brazil
| | - Leandro Lofeu
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Tiana Kohlsdorf
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Monteiro JPP, Dos Santos CCM, de Queiroz JPM, das Chagas RA, Loureiro SN, Nauar AR, Souza-Ferreira MLC, Cardoso AL, Martins C, Petrović TG, Prokić MD, Oliveira-Bahia VRL, Amado LL. Natural modulation of redox status throughout the ontogeny of Amazon frog Physalaemus ephippifer (Anura, Leptodactylidae). Sci Rep 2024; 14:20655. [PMID: 39232193 PMCID: PMC11375210 DOI: 10.1038/s41598-024-71022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
During their development, amphibians undergo various physiological processes that may affect their susceptibility to environmental pollutants. Naturally occurring fluctuations caused by developmental events are often overlooked in ecotoxicological studies. Our aim is to investigate how biomarkers of oxidative stress are modulated at different stages of larval development in the Amazonian amphibian species, Physalaemus ephippifer. The premetamorphosis, prometamorphosis and metamorphic climax stages were used to analyze total antioxidant capacity (ACAP), glutathione S-transferase (GST) activity, lipid peroxidation (LPO) levels and the expression of genes nrf2, gst, gsr (glutathione reductase) and gclc (glycine-cysteine ligase, catalytic subunit). Although there was no difference in ACAP and the genes expression among the studied stages, individuals from the premetamorphosis and prometamorphosis showed higher GST activity than ones under the climax. LPO levels were highest in individuals from the metamorphic climax. The present study suggests that the oxidative status changes during ontogeny of P. ephippifer tadpoles, especially during the metamorphic climax, the most demanding developmental phase. Variations in the redox balance at different developmental stages may lead to a divergent response to pollution. Therefore, we recommend that studies using anuran larvae as biomonitors consider possible physiological differences during ontogeny in their respective analyses.
Collapse
Affiliation(s)
- João Pedro Pantoja Monteiro
- Laboratório de Pesquisas em Monitoramento Ambiental Marinho e Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Rua Augusto Corrêa 01, Belém, PA, 66075-110, Brazil
- Programa de Pós-Graduação em Ecologia Aquática e Pesca (UFPA), Belém, Brazil
- Laboratório Multidisciplinar de Morfofisiologia Animal, Instituto de Ciências Biológicas (UFPA), Belém, Brazil
| | - Carla Carolina Miranda Dos Santos
- Laboratório de Pesquisas em Monitoramento Ambiental Marinho e Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Rua Augusto Corrêa 01, Belém, PA, 66075-110, Brazil
- Programa de Pós-Graduação em Farmacologia e Bioquímica (UFPA), Belém, Brazil
| | - João Paulo Moura de Queiroz
- Laboratório de Pesquisas em Monitoramento Ambiental Marinho e Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Rua Augusto Corrêa 01, Belém, PA, 66075-110, Brazil
- Programa de Pós-Graduação em Ecologia Aquática e Pesca (UFPA), Belém, Brazil
| | - Rafael Anaisce das Chagas
- Laboratório de Pesquisas em Monitoramento Ambiental Marinho e Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Rua Augusto Corrêa 01, Belém, PA, 66075-110, Brazil
- Centro Nacional de Pesquisa e Conservação da Biodiversidade Marinha Do Norte - CEPNOR/ICMBio, Belém, PA, Brazil
| | - Sarita Nunes Loureiro
- Laboratório de Pesquisas em Monitoramento Ambiental Marinho e Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Rua Augusto Corrêa 01, Belém, PA, 66075-110, Brazil
- Programa de Pós-Graduação em Oceanografia (UFPA), Belém, Brazil
| | - Alana Rodrigues Nauar
- Laboratório de Pesquisas em Monitoramento Ambiental Marinho e Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Rua Augusto Corrêa 01, Belém, PA, 66075-110, Brazil
- Programa de Pós-Graduação em Farmacologia e Bioquímica (UFPA), Belém, Brazil
| | - Maria Luiza Cunha Souza-Ferreira
- Laboratório de Pesquisas em Monitoramento Ambiental Marinho e Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Rua Augusto Corrêa 01, Belém, PA, 66075-110, Brazil
- Programa de Pós-Graduação em Ecologia Aquática e Pesca (UFPA), Belém, Brazil
- Laboratório Multidisciplinar de Morfofisiologia Animal, Instituto de Ciências Biológicas (UFPA), Belém, Brazil
| | - Adauto Lima Cardoso
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, São Paulo, Brazil
| | - Cesar Martins
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, São Paulo, Brazil
| | - Tamara G Petrović
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108, Belgrade, Serbia
| | - Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108, Belgrade, Serbia
| | | | - Lílian Lund Amado
- Laboratório de Pesquisas em Monitoramento Ambiental Marinho e Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Rua Augusto Corrêa 01, Belém, PA, 66075-110, Brazil.
- Programa de Pós-Graduação em Ecologia Aquática e Pesca (UFPA), Belém, Brazil.
- Programa de Pós-Graduação em Farmacologia e Bioquímica (UFPA), Belém, Brazil.
- Programa de Pós-Graduação em Oceanografia (UFPA), Belém, Brazil.
| |
Collapse
|
3
|
Eterovick PC, Schmidt R, Sabino-Pinto J, Yang C, Künzel S, Ruthsatz K. The microbiome at the interface between environmental stress and animal health: an example from the most threatened vertebrate group. Proc Biol Sci 2024; 291:20240917. [PMID: 39291456 PMCID: PMC11409201 DOI: 10.1098/rspb.2024.0917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/05/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024] Open
Abstract
Nitrate pollution and global warming are ubiquitous stressors likely to interact and affect the health and survival of wildlife, particularly aquatic ectotherms. Animal health is largely influenced by its microbiome (commensal/symbiotic microorganisms), which responds to such stressors. We used a crossed experimental design including three nitrate levels and five temperature regimes to investigate their interactive and individual effects on an aquatic ectotherm, the European common frog. We associated health biomarkers in larvae with changes in gut bacteria diversity and composition. Larvae experienced higher stress levels and lower body condition under high temperatures and nitrate exposure. Developmental rate increased with temperature but decreased with nitrate pollution. Alterations in bacteria composition but not diversity are likely to correlate with the observed outcomes in larvae health. Leucine degradation decreased at higher temperatures corroborating accelerated development, nitrate degradation increased with nitrate level corroborating reduced body condition and an increase in lysine biosynthesis may have helped larvae deal with the combined effects of both stressors. These results reinforce the importance of associating traditional health biomarkers with underlying microbiome changes. Therefore, we urge studies to investigate the effects of environmental stressors on microbiome composition and consequences for host health in a world threatened by biodiversity loss.
Collapse
Affiliation(s)
- Paula Cabral Eterovick
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106, Braunschweig, Germany
| | - Robin Schmidt
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106, Braunschweig, Germany
| | - Joana Sabino-Pinto
- GELIFES—Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747, AG Groningen, The Netherlands
| | - Chen Yang
- Department of Biostatistics, Southern Medical University, 510515, Guangzhou, People’s Republic of China
| | - Sven Künzel
- Max-Planck-Institut für Evolutionsbiologie, 24306, Plön, Germany
| | - Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106, Braunschweig, Germany
| |
Collapse
|
4
|
Kijanović A, Vukov T, Mirč M, Mitrović A, Prokić MD, Petrović TG, Radovanović TB, Gavrilović BR, Despotović SG, Gavrić JP, Tomašević Kolarov N. The role of phenotypic plasticity and corticosterone in coping with pond drying conditions in yellow-bellied toad (Bombina variegata, Linnaeus 1758) tadpoles. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:753-765. [PMID: 38651613 DOI: 10.1002/jez.2819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Amphibian larvae inhabiting temporary ponds often exhibit the capacity to accelerate development and undergo metamorphosis in challenging conditions like desiccation. However, not all species exhibit this ability, the yellow-bellied toad (Bombina variegata) is one such example. The underlying mechanisms behind the inability to accelerate development under desiccation remain largely unexplored. The hypothalamic-pituitary-interrenal (HPI) axis and corticosterone (CORT), which act synergistically with thyroid hormone, are thought to facilitate metamorphosis in response to desiccation stress. In this study, we aimed to investigate whether modification in the HPI axis, particularly CORT levels, contributes to the absence of adaptive plasticity in B. variegata under desiccation stress. The study design included four treatments: high water level, high water level with exogenous CORT, low water level, and low water level with metyrapone (a CORT synthesis inhibitor). The main objective was to evaluate the effects of these treatments on whole-body corticosterone levels, life history, morphological traits, and oxidative stress parameters during the prometamorphic and metamorphic climax developmental stages. While low water level had no effect on total corticosterone levels, larval period, body condition index, and metamorphic body shape, it negatively affected metamorph size, mass, and growth rate. Our findings suggest that constant exposure to desiccation stress over generations may have led to modifications in the HPI axis activity in B. variegata, resulting in adaptation to changes in water level, evident through the absence of stress response. Consequently, CORT may not be a relevant stress indicator in desiccation conditions for this species.
Collapse
Affiliation(s)
- Ana Kijanović
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tanja Vukov
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marko Mirč
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Mitrović
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara G Petrović
- Department of Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tijana B Radovanović
- Department of Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branka R Gavrilović
- Department of Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Svetlana G Despotović
- Department of Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena P Gavrić
- Department of Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nataša Tomašević Kolarov
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Ruthsatz K, Dahlke F, Alter K, Wohlrab S, Eterovick PC, Lyra ML, Gippner S, Cooke SJ, Peck MA. Acclimation capacity to global warming of amphibians and freshwater fishes: Drivers, patterns, and data limitations. GLOBAL CHANGE BIOLOGY 2024; 30:e17318. [PMID: 38771091 DOI: 10.1111/gcb.17318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Amphibians and fishes play a central role in shaping the structure and function of freshwater environments. These organisms have a limited capacity to disperse across different habitats and the thermal buffer offered by freshwater systems is small. Understanding determinants and patterns of their physiological sensitivity across life history is, therefore, imperative to predicting the impacts of climate change in freshwater systems. Based on a systematic literature review including 345 experiments with 998 estimates on 96 amphibian (Anura/Caudata) and 93 freshwater fish species (Teleostei), we conducted a quantitative synthesis to explore phylogenetic, ontogenetic, and biogeographic (thermal adaptation) patterns in upper thermal tolerance (CTmax) and thermal acclimation capacity (acclimation response ratio, ARR) as well as the influence of the methodology used to assess these thermal traits using a conditional inference tree analysis. We found globally consistent patterns in CTmax and ARR, with phylogeny (taxa/order), experimental methodology, climatic origin, and life stage as significant determinants of thermal traits. The analysis demonstrated that CTmax does not primarily depend on the climatic origin but on experimental acclimation temperature and duration, and life stage. Higher acclimation temperatures and longer acclimation times led to higher CTmax values, whereby Anuran larvae revealed a higher CTmax than older life stages. The ARR of freshwater fishes was more than twice that of amphibians. Differences in ARR between life stages were not significant. In addition to phylogenetic differences, we found that ARR also depended on acclimation duration, ramping rate, and adaptation to local temperature variability. However, the amount of data on early life stages is too small, methodologically inconsistent, and phylogenetically unbalanced to identify potential life cycle bottlenecks in thermal traits. We, therefore, propose methods to improve the robustness and comparability of CTmax/ARR data across species and life stages, which is crucial for the conservation of freshwater biodiversity under climate change.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Institute of Animal Cell and Systems Biology, Universität Hamburg, Hamburg, Germany
| | - Flemming Dahlke
- Ecology of Living Marine Resources, Universität Hamburg, Hamburg, Germany
| | - Katharina Alter
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Sylke Wohlrab
- Alfred Wegner Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
| | - Paula C Eterovick
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Mariana L Lyra
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Research on Biodiversity Dynamics and Climate Change, State University of São Paulo-UNESP, Rio Claro, Brazil
| | - Sven Gippner
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Myron A Peck
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
- Marine Animal Ecology Group, Department of Animal Sciences, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
6
|
Nixon KJA, Parzer HF. Got milkweed? Genetic assimilation as potential source for the evolution of nonmigratory monarch butterfly wing shape. Evol Dev 2024; 26:e12463. [PMID: 37971877 DOI: 10.1111/ede.12463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/09/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
Monarch butterflies (Danaus plexippus) are well studied for their annual long-distance migration from as far north as Canada to their overwintering grounds in Central Mexico. At the end of the cold season, monarchs start to repopulate North America through short-distance migration over the course of multiple generations. Interestingly, some populations in various tropical and subtropical islands do not migrate and exhibit heritable differences in wing shape and size, most likely an adaptation to island life. Less is known about forewing differences between long- and short-distance migrants in relation to island populations. Given their different migratory behaviors, we hypothesized that these differences would be reflected in wing morphology. To test this, we analyzed forewing shape and size of three different groups: nonmigratory, lesser migratory (migrate short-distances), and migratory (migrate long-distances) individuals. Significant differences in shape appear in all groups using geometric morphometrics. As variation found between migratory and lesser migrants has been shown to be caused by phenotypic plasticity, and lesser migrants develop intermediate forewing shapes between migratory and nonmigratory individuals, we suggest that genetic assimilation might be an important mechanism to explain the heritable variation found between migratory and nonmigratory populations. Additionally, our research confirms previous studies which show that forewing size is significantly smaller in nonmigratory populations when compared to both migratory phenotypes. Finally, we found sexual dimorphism in forewing shape in all three groups, but for size in nonmigratory populations only. This might have been caused by reduced constraints on forewing size in nonmigratory populations.
Collapse
Affiliation(s)
- Kyra J A Nixon
- Department of Biological Sciences, Fairleigh Dickinson University, Madison, New Jersey, USA
| | - Harald F Parzer
- Department of Biological Sciences, Fairleigh Dickinson University, Madison, New Jersey, USA
| |
Collapse
|
7
|
Burraco P, Torres-Montoro JC, Gomez-Mestre I. Larval plastic responses to warming and desiccation delay gonadal maturation in postmetamorphic spadefoot toads. Evolution 2023; 77:2687-2695. [PMID: 37793129 DOI: 10.1093/evolut/qpad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023]
Abstract
Developmental plasticity allows organisms to adjust life-history traits to varying environmental conditions, which can have concomitant effects across life stages. Many amphibians are suitable model systems to study plasticity because their larvae can adjust growth and differentiation under fluctuating environments. It is unknown, however, whether somatic and gonadal differentiation are equally affected by environmentally induced plasticity or whether their decoupling alters gonadal maturation postmetamorphosis, which may affect fitness. We tested if developmental acceleration in response to warming and desiccation risk results in shifts in gonadal maturation during metamorphosis and postmetamorphic growth in western spadefoot toads (Pelobates cultripes). We found additive effects of increased temperature and desiccation risk on development and growth at metamorphosis, which largely constrained gonadal maturation in metamorphic and postmetamorphic individuals of both sexes. Furthermore, the conditions experienced by larvae incurred sex-specific carryover effects on the gonadal maturation of juveniles 5 months after metamorphosis. In females, high temperature delayed ovarian maturation regardless of the water level. In males, exposure to high temperature and high water levels slightly delayed the testes' maturation. These results highlight the relevance of larval plasticity in the gonadal maturation of species undergoing metamorphosis, which may have implications for population demographics and the evolution of life histories.
Collapse
Affiliation(s)
- Pablo Burraco
- Ecology, Evolution and Development Group, Department of Wetland Ecology, Doñana Biological Station (CSIC), Sevilla, Spain
| | - Juan Carlos Torres-Montoro
- Ecology, Evolution and Development Group, Department of Wetland Ecology, Doñana Biological Station (CSIC), Sevilla, Spain
| | - Ivan Gomez-Mestre
- Ecology, Evolution and Development Group, Department of Wetland Ecology, Doñana Biological Station (CSIC), Sevilla, Spain
| |
Collapse
|
8
|
Nadolski EM, Moczek AP. Promises and limits of an agency perspective in evolutionary developmental biology. Evol Dev 2023; 25:371-392. [PMID: 37038309 DOI: 10.1111/ede.12432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/23/2023] [Accepted: 03/02/2023] [Indexed: 04/12/2023]
Abstract
An agent-based perspective in the study of complex systems is well established in diverse disciplines, yet is only beginning to be applied to evolutionary developmental biology. In this essay, we begin by defining agency and associated terminology formally. We then explore the assumptions and predictions of an agency perspective, apply these to select processes and key concept areas relevant to practitioners of evolutionary developmental biology, and consider the potential epistemic roles that an agency perspective might play in evo devo. Throughout, we discuss evidence supportive of agential dynamics in biological systems relevant to evo devo and explore where agency thinking may enrich the explanatory reach of research efforts in evolutionary developmental biology.
Collapse
Affiliation(s)
- Erica M Nadolski
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
9
|
Méndez-Narváez J, Warkentin KM. Early onset of urea synthesis and ammonia detoxification pathways in three terrestrially developing frogs. J Comp Physiol B 2023; 193:523-543. [PMID: 37639061 DOI: 10.1007/s00360-023-01506-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/29/2023]
Abstract
Frogs evolved terrestrial development multiple times, necessitating mechanisms to avoid ammonia toxicity at early stages. Urea synthesis from ammonia is a key adaptation that reduces water dependence after metamorphosis. We tested for early expression and plasticity of enzymatic mechanisms of ammonia detoxification in three terrestrial-breeding frogs: foam-nest-dwelling larvae of Leptodactylus fragilis (Lf) and arboreal embryos of Hyalinobatrachium fleischmanni (Hf) and Agalychnis callidryas (Ac). Activity of two ornithine-urea cycle (OUC) enzymes, arginase and CPSase, and levels of their products urea and CP in tissues were high in Lf regardless of nest hydration, but reduced in experimental low- vs. high-ammonia environments. High OUC activity in wet and dry nests, comparable to that under experimental high ammonia, suggests terrestrial Lf larvae maintain high capacity for urea excretion regardless of their immediate risk of ammonia toxicity. This may aid survival through unpredictably long waiting periods before rain enables their transition to water. Moderate levels of urea and CP were present in Hf and Ac tissues and enzymatic activities were lower than in Lf. In both species, embryos in drying clutches can hatch and enter the water early, behaviorally avoiding ammonia toxicity. Moreover, glutamine synthetase was active in early stages of all three species, condensing ammonia and glutamate to glutamine as another mechanism of detoxification. Enzyme activity appeared highest in Lf, although substrate and product levels were higher in Ac and Lf. Our results reveal that multiple biochemical mechanisms of ammonia detoxification occur in early life stages of anuran lineages that evolved terrestrial development.
Collapse
Affiliation(s)
- Javier Méndez-Narváez
- Calima, Fundación para la Investigación de la Biodiversidad y Conservación en el Trópico, Cali, Colombia.
- Department of Biology, Boston University, Boston, MA, USA.
| | - Karen M Warkentin
- Department of Biology, Boston University, Boston, MA, USA
- Smithsonian Tropical Research Institute, Panamá, Republic of Panama
| |
Collapse
|
10
|
Ruthsatz K, Rico-Millan R, Eterovick PC, Gomez-Mestre I. Exploring water-borne corticosterone collection as a non-invasive tool in amphibian conservation physiology: benefits, limitations and future perspectives. CONSERVATION PHYSIOLOGY 2023; 11:coad070. [PMID: 37663928 PMCID: PMC10472495 DOI: 10.1093/conphys/coad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/03/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Global change exposes wildlife to a variety of environmental stressors and is affecting biodiversity worldwide, with amphibian population declines being at the forefront of the global biodiversity crisis. The use of non-invasive methods to determine the physiological state in response to environmental stressors is therefore an important advance in the field of conservation physiology. The glucocorticoid hormone corticosterone (CORT) is one useful biomarker to assess physiological stress in amphibians, and sampling water-borne (WB) CORT is a novel, non-invasive collection technique. Here, we tested whether WB CORT can serve as a valid proxy of organismal levels of CORT in larvae of the common frog (Rana temporaria). We evaluated the association between tissue and WB CORT levels sampled from the same individuals across ontogenetic stages, ranging from newly hatched larvae to froglets at 10 days after metamorphosis. We also investigated how both tissue and WB CORT change throughout ontogeny. We found that WB CORT is a valid method in pro-metamorphic larvae as values for both methods were highly correlated. In contrast, there was no correlation between tissue and WB CORT in newly hatched, pre-metamorphic larvae, metamorphs or post-metamorphic froglets probably due to ontogenetic changes in respiratory and skin morphology and physiology affecting the transdermal CORT release. Both collection methods consistently revealed a non-linear pattern of ontogenetic change in CORT with a peak at metamorphic climax. Thus, our results indicate that WB CORT sampling is a promising, non-invasive conservation tool for studies on late-stage amphibian larvae. However, we suggest considering that different contexts might affect the reliability of WB CORT and consequently urge future studies to validate this method whenever it is used in new approaches. We conclude proposing some recommendations and perspectives on the use of WB CORT that will aid in broadening its application as a non-invasive tool in amphibian conservation physiology.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Rafael Rico-Millan
- Ecology, Evolution, and Development Group, Doñana Biological Station – CSIC, Calle Américo Vespucio 26, 41092 Seville, Spain
| | - Paula Cabral Eterovick
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Ivan Gomez-Mestre
- Ecology, Evolution, and Development Group, Doñana Biological Station – CSIC, Calle Américo Vespucio 26, 41092 Seville, Spain
| |
Collapse
|
11
|
Ruthsatz K, Schwarz A, Gomez-Mestre I, Meyer R, Domscheit M, Bartels F, Schaeffer SM, Engelkes K. Life in plastic, it's not fantastic: Sublethal effects of polyethylene microplastics ingestion throughout amphibian metamorphosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163779. [PMID: 37146798 DOI: 10.1016/j.scitotenv.2023.163779] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/11/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023]
Abstract
Microplastics (MP) are an abundant, long-lasting, and widespread type of environmental pollution that is of increasing concern as it might pose a serious threat to ecosystems and species. However, these threats are still largely unknown for amphibians. Here, we used the African clawed frog (Xenopus laevis) as a model species to investigate whether polyethylene MP ingestion affects amphibian growth and development and leads to metabolic changes across two consecutive life stages (larvae and juveniles). Furthermore, we examined whether MP effects were more pronounced at higher rearing temperatures. Larval growth, development, and body condition were recorded, and standard metabolic rate (SMR) and levels of stress hormone (corticosterone, CORT) were measured. We determined variation in size, morphology, and hepatosomatic index in juveniles to identify any potential consequences of MP ingestion across metamorphosis. In both life stages, MP accumulation in the body was assessed. MP ingestion was found to result in sublethal effects on larval growth, development, and metabolism, to lead to allometric carry-over effects on juvenile morphology, and to accumulate in the specimens at both life stages. In larvae, SMR and developmental rate increased in response to MP ingestion; there additionally was a significant interaction of MP ingestion and temperature on development. CORT levels were higher in larvae that ingested MP, except at higher temperature. In juveniles, body was wider, and extremities were longer in animals exposed to MP during the larval stage; a high rearing temperature in combination with MP ingestion counteracted this effect. Our results provide first insights into the effects of MP on amphibians throughout metamorphosis and demonstrate that juvenile amphibians may act as a pathway for MP from freshwater to terrestrial environments. To allow for generalizations across amphibian species, future experiments need to consider the field prevalence and abundance of different MP in amphibians at various life stages.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany.
| | - Anja Schwarz
- Institute of Geosystems and Bioindication, Technische Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
| | - Ivan Gomez-Mestre
- Ecology, Evolution, and Development Group, Department Ecology and Evolution, Doñana Biological Station, CSIC, 41092 Seville, Spain
| | - Ruth Meyer
- Institute of Geosystems and Bioindication, Technische Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
| | - Marie Domscheit
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Fabian Bartels
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Sarah-Maria Schaeffer
- Institute of Geosystems and Bioindication, Technische Universität Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
| | - Karolin Engelkes
- Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany; Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| |
Collapse
|
12
|
Üveges B, Kalina C, Szabó K, Móricz ÁM, Holly D, Gabor CR, Hettyey A, Bókony V. Does the Glucocorticoid Stress Response Make Toads More Toxic? An Experimental Study on the Regulation of Bufadienolide Toxin Synthesis. Integr Org Biol 2023; 5:obad021. [PMID: 37435008 PMCID: PMC10331804 DOI: 10.1093/iob/obad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/15/2023] [Accepted: 06/02/2023] [Indexed: 07/13/2023] Open
Abstract
Chemical defense is a crucial component of fitness in many organisms, yet the physiological regulation of defensive toxin synthesis is poorly understood, especially in vertebrates. Bufadienolides, the main defensive compounds of toads, are toxic to many predators and other natural enemies, and their synthesis can be upregulated by stressors, including predation risk, high conspecific density, and pollutants. Thus, higher toxin content may be the consequence of a general endocrine stress response in toads. Therefore, we hypothesized that bufadienolide synthesis may be stimulated by elevated levels of corticosterone (CORT), the main glucocorticoid hormone of amphibians, or by upstream regulators that stimulate CORT production. To test these alternatives, we treated common toad tadpoles with exogenous CORT (exoCORT) or metyrapone (MTP, a CORT-synthesis inhibitor that stimulates upstream regulators of CORT by negative feedback) in the presence or absence of predation cues for 2 or 6 days, and subsequently measured their CORT release rates and bufadienolide content. We found that CORT release rates were elevated by exoCORT, and to a lesser extent also by MTP, regardless of treatment length. Bufadienolide content was significantly decreased by treatment with exoCORT for 6 days but was unaffected by exposure to exoCORT for 2 days or to MTP for either 6 or 2 days. The presence or absence of predation cues affected neither CORT release rate nor bufadienolide content. Our results suggest that changes in bufadienolide synthesis in response to environmental challenges are not driven by CORT but may rather be regulated by upstream hormones of the stress response.
Collapse
Affiliation(s)
- B Üveges
- Department of Evolutionary Ecology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, 1022 Budapest, Hungary
- Molecular Ecology and Evolution at Bangor, School of Natural Sciences, Bangor University, Environment Centre Wales, Bangor LL57 2UW, UK
| | - C Kalina
- Department of Evolutionary Ecology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, 1022 Budapest, Hungary
- Department of Ecology, Institute of Biology, University of Veterinary Medicine, István u. 2, 1078 Budapest, Hungary
| | - K Szabó
- Division of Clinical Immunology, Department for Internal Medicine, Faculty of Medicine, University of Debrecen, Móricz Zsigmond út 22, 4032 Debrecen, Hungary
| | - Á M Móricz
- Department of Pathophysiology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, 1022 Budapest, Hungary
| | - D Holly
- Department of Evolutionary Ecology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, 1022 Budapest, Hungary
| | - C R Gabor
- Department of Evolutionary Ecology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, 1022 Budapest, Hungary
- Department of Biology, College of Science and Engineering, Texas State University, 601 University Dr., San Marcos, TX 78666, USA
| | - A Hettyey
- Department of Evolutionary Ecology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, 1022 Budapest, Hungary
| | - V Bókony
- Department of Evolutionary Ecology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó út 15, 1022 Budapest, Hungary
- Department of Ecology, Institute of Biology, University of Veterinary Medicine, István u. 2, 1078 Budapest, Hungary
| |
Collapse
|
13
|
Yoon KJ, Cunningham CB, Bretman A, Duncan EJ. One genome, multiple phenotypes: decoding the evolution and mechanisms of environmentally induced developmental plasticity in insects. Biochem Soc Trans 2023; 51:675-689. [PMID: 36929376 PMCID: PMC10246940 DOI: 10.1042/bst20210995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023]
Abstract
Plasticity in developmental processes gives rise to remarkable environmentally induced phenotypes. Some of the most striking and well-studied examples of developmental plasticity are seen in insects. For example, beetle horn size responds to nutritional state, butterfly eyespots are enlarged in response to temperature and humidity, and environmental cues also give rise to the queen and worker castes of eusocial insects. These phenotypes arise from essentially identical genomes in response to an environmental cue during development. Developmental plasticity is taxonomically widespread, affects individual fitness, and may act as a rapid-response mechanism allowing individuals to adapt to changing environments. Despite the importance and prevalence of developmental plasticity, there remains scant mechanistic understanding of how it works or evolves. In this review, we use key examples to discuss what is known about developmental plasticity in insects and identify fundamental gaps in the current knowledge. We highlight the importance of working towards a fully integrated understanding of developmental plasticity in a diverse range of species. Furthermore, we advocate for the use of comparative studies in an evo-devo framework to address how developmental plasticity works and how it evolves.
Collapse
Affiliation(s)
- Kane J. Yoon
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, U.K
| | | | - Amanda Bretman
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, U.K
| | - Elizabeth J. Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, U.K
| |
Collapse
|
14
|
Kijanović A, Vukov T, Mirč M, Krizmanić I, Tomašević Kolarov N. Inability of yellow‐bellied toad to accelerate metamorphosis in desiccation conditions. J Zool (1987) 2023. [DOI: 10.1111/jzo.13056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- A. Kijanović
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia University of Belgrade Belgrade Serbia
| | - T. Vukov
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia University of Belgrade Belgrade Serbia
| | - M. Mirč
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia University of Belgrade Belgrade Serbia
| | - I. Krizmanić
- Faculty of Biology, Institute of Zoology University of Belgrade Belgrade Serbia
| | - N. Tomašević Kolarov
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia University of Belgrade Belgrade Serbia
| |
Collapse
|
15
|
Ruthsatz K, Eterovick PC, Bartels F, Mausbach J. Contributions of water-borne corticosterone as one non-invasive biomarker in assessing nitrate pollution stress in tadpoles of Rana temporaria. Gen Comp Endocrinol 2023; 331:114164. [PMID: 36400158 DOI: 10.1016/j.ygcen.2022.114164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022]
Abstract
Among a multitude of stressors to which wildlife is exposed, environmental pollution is a pervasive one that poses a serious threat. The permeable skin of amphibians is likely to increase direct contact of the body with pollutants, making them a group worth studying to access environmental quality. Consequently, finding reliable and complementary biomarkers that will present detectable and predictable changes in response to pollutants is essential to identify pollution sublethal effects on amphibians and to investigate whether these are in part responsible for population declines. The glucocorticoid hormone corticosterone (CORT), involved in many metabolic functions, is often used to measure the physiological stress response to environmental stressors in amphibians. In this study, we evaluated whether water-borne CORT can serve as a non-invasive biomarker for nitrate pollution stress in the European common frog (Rana temporaria) by comparing the effect of nitrate exposure on hormone release rates and on other physiological downstream biomarkers, i.e., ultimate physiological effects of the stressor. Specifically, we investigated the effect of different nitrate concentrations (0, 10, 50, and 100 mg/L) on water-borne CORT release rates, age, size, and body condition. Exposure to nitrate pollution significantly increased age at metamorphosis and water-borne CORT release rates, and led to reduced mass and body condition, but only at higher nitrate concentrations (i.e., 50 and 100 mg/L). Considering this similar sensitivity to other acknowledged biomarkers, water-borne CORT was a reliable biomarker of physiological stress in R. temporaria exposed to nitrate pollution stress in a controlled single-stressor laboratory approach. Thus, water-borne CORT is a promising method to be included in more holistic approaches. We recommend that such approaches keep testing multiple biomarker combinations, as species are exposed to several stressors likely to interact and produce varied outcomes in different biomarkers in their natural habitats.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany.
| | - Paula C Eterovick
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Fabian Bartels
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Jelena Mausbach
- Eawag & ETH Zurich,Überlandstrasse 133, 8600 Dübendorf, Switzerland
| |
Collapse
|
16
|
Liedtke HC, Cruz F, Gómez-Garrido J, Fuentes Palacios D, Marcet-Houben M, Gut M, Alioto T, Gabaldón T, Gomez-Mestre I. Chromosome-level assembly, annotation and phylome of Pelobates cultripes, the western spadefoot toad. DNA Res 2022; 29:6588074. [PMID: 35583263 PMCID: PMC9164646 DOI: 10.1093/dnares/dsac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/12/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Genomic resources for amphibians are still hugely under-represented in vertebrate genomic research, despite being a group of major interest for ecology, evolution and conservation. Amphibians constitute a highly threatened group of vertebrates, present a vast diversity in reproductive modes, are extremely diverse in morphology, occupy most ecoregions of the world, and present the widest range in genome sizes of any major group of vertebrates. We combined Illumina, Nanopore and Hi-C sequencing technologies to assemble a chromosome-level genome sequence for an anuran with a moderate genome size (assembly span 3.09 Gb); Pelobates cultripes, the western spadefoot toad. The genome has an N50 length of 330 Mb with 98.6% of the total sequence length assembled into 14 super scaffolds, and 87.7% complete BUSCO genes. We use published transcriptomic data to provide annotations, identifying 32,684 protein-coding genes. We also reconstruct the P. cultripes phylome and identify 2,527 gene expansions. We contribute the first draft of the genome of the western spadefoot toad, P. cultripes. This species represents a relatively basal lineage in the anuran tree with an interesting ecology and a high degree of developmental plasticity, and thus is an important resource for amphibian genomic research.
Collapse
Affiliation(s)
- Hans Christoph Liedtke
- Ecology, Evolution and Development Group, Department of Wetland Ecology, Estación Biológica de Doñana (CSIC) , 41092 Sevilla, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona, Spain
| | - Diego Fuentes Palacios
- Barcelona Supercomputing Centre (BSC-CNS) , 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona, Spain
| | - Marina Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS) , 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona, Spain
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF) , Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS) , 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA) , Barcelona, Spain
| | - Ivan Gomez-Mestre
- Ecology, Evolution and Development Group, Department of Wetland Ecology, Estación Biológica de Doñana (CSIC) , 41092 Sevilla, Spain
| |
Collapse
|
17
|
Burraco P, Rendón MA, Díaz‐Paniagua C, Gomez‐Mestre I. Maintenance of phenotypic plasticity is linked to oxidative stress in spadefoot toad larvae. OIKOS 2022. [DOI: 10.1111/oik.09078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Pablo Burraco
- Doñana Biological Station (CSIC) Seville Spain
- Inst. of Biodiversity, Animal Health and Comparative Medicine, Univ. of Glasgow Glasgow UK
| | | | | | | |
Collapse
|
18
|
Jelena M, Anssi L, Katja R. Context dependent variation in corticosterone and phenotypic divergence of Rana arvalis populations along an acidification gradient. BMC Ecol Evol 2022; 22:11. [PMID: 35123416 PMCID: PMC8818180 DOI: 10.1186/s12862-022-01967-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/26/2022] [Indexed: 11/10/2022] Open
Abstract
Background Physiological processes, as immediate responses to the environment, are important mechanisms of phenotypic plasticity and can influence evolution at ecological time scales. In stressful environments, physiological stress responses of individuals are initiated and integrated via the release of hormones, such as corticosterone (CORT). In vertebrates, CORT influences energy metabolism and resource allocation to multiple fitness traits (e.g. growth and morphology) and can be an important mediator of rapid adaptation to environmental stress, such as acidification. The moor frog, Rana arvalis, shows adaptive divergence in larval life-histories and predator defense traits along an acidification gradient in Sweden. Here we take a first step to understanding the role of CORT in this adaptive divergence. We conducted a fully factorial laboratory experiment and reared tadpoles from three populations (one acidic, one neutral and one intermediate pH origin) in two pH treatments (Acid versus Neutral pH) from hatching to metamorphosis. We tested how the populations differ in tadpole CORT profiles and how CORT is associated with tadpole life-history and morphological traits. Results We found clear differences among the populations in CORT profiles across different developmental stages, but only weak effects of pH treatment on CORT. Tadpoles from the acid origin population had, on average, lower CORT levels than tadpoles from the neutral origin population, and the intermediate pH origin population had intermediate CORT levels. Overall, tadpoles with higher CORT levels developed faster and had shorter and shallower tails, as well as shallower tail muscles. Conclusions Our common garden results indicate among population divergence in CORT levels, likely reflecting acidification mediated divergent selection on tadpole physiology, concomitant to selection on larval life-histories and morphology. However, CORT levels were highly environmental context dependent. Jointly these results indicate a potential role for CORT as a mediator of multi-trait divergence along environmental stress gradients in natural populations. At the same time, the population level differences and high context dependency in CORT levels suggest that snapshot assessment of CORT in nature may not be reliable bioindicators of stress. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01967-1.
Collapse
Affiliation(s)
- Mausbach Jelena
- Department of Aquatic Ecology, Eawag, Ueberlandstrasse 133, 8600, Duebendorf, Switzerland. .,Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, 8092, Zurich, Switzerland.
| | - Laurila Anssi
- Animal Ecology/Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, 75236, Uppsala, Sweden
| | - Räsänen Katja
- Department of Aquatic Ecology, Eawag, Ueberlandstrasse 133, 8600, Duebendorf, Switzerland. .,Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, 8092, Zurich, Switzerland. .,Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9C, 40014, Jyväskylä, Finland.
| |
Collapse
|
19
|
Méndez‐Narváez J, Warkentin KM. Reproductive colonization of land by frogs: Embryos and larvae excrete urea to avoid ammonia toxicity. Ecol Evol 2022; 12:e8570. [PMID: 35222954 PMCID: PMC8843769 DOI: 10.1002/ece3.8570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 11/24/2022] Open
Abstract
Vertebrate colonization of land has occurred multiple times, including over 50 origins of terrestrial eggs in frogs. Some environmental factors and phenotypic responses that facilitated these transitions are known, but responses to water constraints and risk of ammonia toxicity during early development are poorly understood. We tested if ammonia accumulation and dehydration risk induce a shift from ammonia to urea excretion during early stages of four anurans, from three origins of terrestrial development. We quantified ammonia and urea concentrations during early development on land, under well-hydrated and dry conditions. Where we found urea excretion, we tested for a plastic increase under dry conditions and with ammonia accumulation in developmental environments. We assessed the potential adaptive role of urea excretion by comparing ammonia tolerance measured in 96h-LC50 tests with ammonia levels in developmental environments. Ammonia accumulated in foam nests and perivitelline fluid, increasing over development and reaching higher concentrations under dry conditions. All four species showed high ammonia tolerance, compared to fishes and aquatic-breeding frogs. Both nest-dwelling larvae of Leptodactylus fragilis and late embryos of Hyalinobatrachium fleischmanni excreted urea, showing a plastic increase under dry conditions. These two species can develop the longest on land and urea excretion appears adaptive, preventing their exposure to potentially lethal levels of ammonia. Neither late embryos of Agalychnis callidryas nor nest-dwelling larvae of Engystomops pustulosus experienced toxic ammonia levels under dry conditions, and neither excreted urea. Our results suggest that an early onset of urea excretion, its increase under dry conditions, and elevated ammonia tolerance can all help prevent ammonia toxicity during terrestrial development. High ammonia represents a general risk for development which may be exacerbated as climate change increases dehydration risk for terrestrial-breeding frogs. It may also be a cue that elicits adaptive physiological responses during early development.
Collapse
Affiliation(s)
- Javier Méndez‐Narváez
- Department of BiologyBoston UniversityBostonMassachusettsUSA
- CalimaFundación para la Investigación de la Biodiversidad y Conservación en el TrópicoCaliColombia
| | - Karen M. Warkentin
- Department of BiologyBoston UniversityBostonMassachusettsUSA
- Smithsonian Tropical Research InstitutePanamaRepublic of Panama
| |
Collapse
|
20
|
Suzuki Y, Toh L. Constraints and Opportunities for the Evolution of Metamorphic Organisms in a Changing Climate. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.734031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We argue that developmental hormones facilitate the evolution of novel phenotypic innovations and timing of life history events by genetic accommodation. Within an individual’s life cycle, metamorphic hormones respond readily to environmental conditions and alter adult phenotypes. Across generations, the many effects of hormones can bias and at times constrain the evolution of traits during metamorphosis; yet, hormonal systems can overcome constraints through shifts in timing of, and acquisition of tissue specific responses to, endocrine regulation. Because of these actions of hormones, metamorphic hormones can shape the evolution of metamorphic organisms. We present a model called a developmental goblet, which provides a visual representation of how metamorphic organisms might evolve. In addition, because developmental hormones often respond to environmental changes, we discuss how endocrine regulation of postembryonic development may impact how organisms evolve in response to climate change. Thus, we propose that developmental hormones may provide a mechanistic link between climate change and organismal adaptation.
Collapse
|
21
|
Rousseau K, Dufour S, Sachs LM. Interdependence of Thyroid and Corticosteroid Signaling in Vertebrate Developmental Transitions. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Post-embryonic acute developmental processes mainly allow the transition from one life stage in a specific ecological niche to the next life stage in a different ecological niche. Metamorphosis, an emblematic type of these post-embryonic developmental processes, has occurred repeatedly and independently in various phylogenetic groups throughout metazoan evolution, such as in cnidarian, insects, molluscs, tunicates, or vertebrates. This review will focus on metamorphoses and developmental transitions in vertebrates, including typical larval metamorphosis in anuran amphibians, larval and secondary metamorphoses in teleost fishes, egg hatching in sauropsids and birth in mammals. Two neuroendocrine axes, the hypothalamic-pituitary-thyroid and the hypothalamic-pituitary-adrenal/interrenal axes, are central players in the regulation of these life transitions. The review will address the molecular and functional evolution of these axes and their interactions. Mechanisms of integration of internal and environmental cues, and activation of these neuroendocrine axes represent key questions in an “eco-evo-devo” perspective of metamorphosis. The roles played by developmental transitions in the innovation, adaptation, and plasticity of life cycles throughout vertebrates will be discussed. In the current context of global climate change and habitat destruction, the review will also address the impact of environmental factors, such as global warming and endocrine disruptors on hypothalamic-pituitary-thyroid and hypothalamic-pituitary-adrenal/interrenal axes, and regulation of developmental transitions.
Collapse
|
22
|
Transcriptome and Methylome Analysis Reveal Complex Cross-Talks between Thyroid Hormone and Glucocorticoid Signaling at Xenopus Metamorphosis. Cells 2021; 10:cells10092375. [PMID: 34572025 PMCID: PMC8468809 DOI: 10.3390/cells10092375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Most work in endocrinology focus on the action of a single hormone, and very little on the cross-talks between two hormones. Here we characterize the nature of interactions between thyroid hormone and glucocorticoid signaling during Xenopus tropicalis metamorphosis. Methods: We used functional genomics to derive genome wide profiles of methylated DNA and measured changes of gene expression after hormonal treatments of a highly responsive tissue, tailfin. Clustering classified the data into four types of biological responses, and biological networks were modeled by system biology. Results: We found that gene expression is mostly regulated by either T3 or CORT, or their additive effect when they both regulate the same genes. A small but non-negligible fraction of genes (12%) displayed non-trivial regulations indicative of complex interactions between the signaling pathways. Strikingly, DNA methylation changes display the opposite and are dominated by cross-talks. Conclusion: Cross-talks between thyroid hormones and glucocorticoids are more complex than initially envisioned and are not limited to the simple addition of their individual effects, a statement that can be summarized with the pseudo-equation: TH ∙ GC > TH + GC. DNA methylation changes are highly dynamic and buffered from genome expression.
Collapse
|
23
|
Espinosa-Soto C, Hernández U, Posadas-García YS. Recombination facilitates genetic assimilation of new traits in gene regulatory networks. Evol Dev 2021; 23:459-473. [PMID: 34455697 DOI: 10.1111/ede.12391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/11/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022]
Abstract
A new phenotypic variant may appear first in organisms through plasticity, that is, as a response to an environmental signal or other nongenetic perturbation. If such trait is beneficial, selection may increase the frequency of alleles that enable and facilitate its development. Thus, genes may take control of such traits, decreasing dependence on nongenetic disturbances, in a process called genetic assimilation. Despite an increasing amount of empirical studies supporting genetic assimilation, its significance is still controversial. Whether genetic assimilation is widespread depends, to a great extent, on how easily mutation and recombination reduce the trait's dependence on nongenetic perturbations. Previous research suggests that this is the case for mutations. Here we use simulations of gene regulatory network dynamics to address this issue with respect to recombination. We find that recombinant offspring of parents that produce a new phenotype through plasticity are more likely to produce the same phenotype without requiring any perturbation. They are also prone to preserve the ability to produce that phenotype after genetic and nongenetic perturbations. Our work also suggests that ancestral plasticity can play an important role for setting the course that evolution takes. In sum, our results indicate that the manner in which phenotypic variation maps unto genetic variation facilitates evolution through genetic assimilation in gene regulatory networks. Thus, we contend that the importance of this evolutionary mechanism should not be easily neglected.
Collapse
Affiliation(s)
- Carlos Espinosa-Soto
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Ulises Hernández
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | |
Collapse
|
24
|
Romero‐Mujalli D, Rochow M, Kahl S, Paraskevopoulou S, Folkertsma R, Jeltsch F, Tiedemann R. Adaptive and nonadaptive plasticity in changing environments: Implications for sexual species with different life history strategies. Ecol Evol 2021; 11:6341-6357. [PMID: 34141222 PMCID: PMC8207414 DOI: 10.1002/ece3.7485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 11/07/2022] Open
Abstract
Populations adapt to novel environmental conditions by genetic changes or phenotypic plasticity. Plastic responses are generally faster and can buffer fitness losses under variable conditions. Plasticity is typically modeled as random noise and linear reaction norms that assume simple one-to-one genotype-phenotype maps and no limits to the phenotypic response. Most studies on plasticity have focused on its effect on population viability. However, it is not clear, whether the advantage of plasticity depends solely on environmental fluctuations or also on the genetic and demographic properties (life histories) of populations. Here we present an individual-based model and study the relative importance of adaptive and nonadaptive plasticity for populations of sexual species with different life histories experiencing directional stochastic climate change. Environmental fluctuations were simulated using differentially autocorrelated climatic stochasticity or noise color, and scenarios of directional climate change. Nonadaptive plasticity was simulated as a random environmental effect on trait development, while adaptive plasticity as a linear, saturating, or sinusoidal reaction norm. The last two imposed limits to the plastic response and emphasized flexible interactions of the genotype with the environment. Interestingly, this assumption led to (a) smaller phenotypic than genotypic variance in the population (many-to-one genotype-phenotype map) and the coexistence of polymorphisms, and (b) the maintenance of higher genetic variation-compared to linear reaction norms and genetic determinism-even when the population was exposed to a constant environment for several generations. Limits to plasticity led to genetic accommodation, when costs were negligible, and to the appearance of cryptic variation when limits were exceeded. We found that adaptive plasticity promoted population persistence under red environmental noise and was particularly important for life histories with low fecundity. Populations producing more offspring could cope with environmental fluctuations solely by genetic changes or random plasticity, unless environmental change was too fast.
Collapse
Affiliation(s)
- Daniel Romero‐Mujalli
- Evolutionary Biology/Systematic ZoologyUniversity of PotsdamPotsdamGermany
- Plant Ecology and Nature ConservationUniversity of PotsdamPotsdamGermany
- Foundation, Zoology InstituteUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Markus Rochow
- Evolutionary Biology/Systematic ZoologyUniversity of PotsdamPotsdamGermany
| | - Sandra Kahl
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
- Biodiversity Research/Systematic BotanyInstitute of Biochemistry und BiologyUniversity of PotsdamPotsdamGermany
| | - Sofia Paraskevopoulou
- Evolutionary Biology/Systematic ZoologyUniversity of PotsdamPotsdamGermany
- Faculty of Life SciencesSchool of ZoologyTel Aviv UniversityTel AvivIsrael
| | - Remco Folkertsma
- Evolutionary Adaptive GenomicsUniversity of PotsdamPotsdamGermany
| | - Florian Jeltsch
- Plant Ecology and Nature ConservationUniversity of PotsdamPotsdamGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Ralph Tiedemann
- Evolutionary Biology/Systematic ZoologyUniversity of PotsdamPotsdamGermany
| |
Collapse
|
25
|
Thyroid hormones regulate the formation and environmental plasticity of white bars in clownfishes. Proc Natl Acad Sci U S A 2021; 118:2101634118. [PMID: 34031155 DOI: 10.1073/pnas.2101634118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Determining how plasticity of developmental traits responds to environmental conditions is a challenge that must combine evolutionary sciences, ecology, and developmental biology. During metamorphosis, fish alter their morphology and color pattern according to environmental cues. We observed that juvenile clownfish (Amphiprion percula) modulate the developmental timing of their adult white bar formation during metamorphosis depending on the sea anemone species in which they are recruited. We observed an earlier formation of white bars when clownfish developed with Stichodactyla gigantea (Sg) than with Heteractis magnifica (Hm). As these bars, composed of iridophores, form during metamorphosis, we hypothesized that timing of their development may be thyroid hormone (TH) dependent. We treated clownfish larvae with TH and found that white bars developed earlier than in control fish. We further observed higher TH levels, associated with rapid white bar formation, in juveniles recruited in Sg than in Hm, explaining the faster white bar formation. Transcriptomic analysis of Sg recruits revealed higher expression of duox, a dual oxidase implicated in TH production as compared to Hm recruits. Finally, we showed that duox is an essential regulator of iridophore pattern timing in zebrafish. Taken together, our results suggest that TH controls the timing of adult color pattern formation and that shifts in duox expression and TH levels are associated with ecological differences resulting in divergent ontogenetic trajectories in color pattern development.
Collapse
|
26
|
Denver RJ. Stress hormones mediate developmental plasticity in vertebrates with complex life cycles. Neurobiol Stress 2021; 14:100301. [PMID: 33614863 PMCID: PMC7879041 DOI: 10.1016/j.ynstr.2021.100301] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/04/2021] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
The environment experienced by developing organisms can shape the timing and character of developmental processes, generating different phenotypes from the same genotype, each with different probabilities of survival and performance as adults. Chordates have two basic modes of development, indirect and direct. Species with indirect development, which includes most fishes and amphibians, have a complex life cycle with a free-swimming larva that is typically a growth stage, followed by a metamorphosis into the adult form. Species with direct development, which is an evolutionarily derived developmental mode, develop directly from embryo to the juvenile without an intervening larval stage. Among the best studied species with complex life cycles are the amphibians, especially the anurans (frogs and toads). Amphibian tadpoles are exposed to diverse biotic and abiotic factors in their developmental habitat. They have extensive capacity for developmental plasticity, which can lead to the expression of different, adaptive morphologies as tadpoles (polyphenism), variation in the timing of and size at metamorphosis, and carry-over effects on the phenotype of the juvenile/adult. The neuroendocrine stress axis plays a pivotal role in mediating environmental effects on amphibian development. Before initiating metamorphosis, if tadpoles are exposed to predators they upregulate production of the stress hormone corticosterone (CORT), which acts directly on the tail to cause it to grow, thereby increasing escape performance. When tadpoles reach a minimum body size to initiate metamorphosis they can vary the timing of transformation in relation to growth opportunity or mortality risk in the larval habitat. They do this by modulating the production of thyroid hormone (TH), the primary inducer of metamorphosis, and CORT, which synergizes with TH to promote tissue transformation. Hypophysiotropic neurons that release the stress neurohormone corticotropin-releasing factor (CRF) are activated in response to environmental stress (e.g., pond drying, food restriction, etc.), and CRF accelerates metamorphosis by directly inducing secretion of pituitary thyrotropin and corticotropin, thereby increasing secretion of TH and CORT. Although activation of the neuroendocrine stress axis promotes immediate survival in a deteriorating larval habitat, costs may be incurred such as reduced tadpole growth and size at metamorphosis. Small size at transformation can impair performance of the adult, reducing probability of survival in the terrestrial habitat, or fecundity. Furthermore, elevations in CORT in the tadpole caused by environmental stressors cause long term, stable changes in neuroendocrine function, behavior and physiology of the adult, which can affect fitness. Comparative studies show that the roles of stress hormones in developmental plasticity are conserved across vertebrate taxa including humans.
Collapse
Affiliation(s)
- Robert J. Denver
- Department of Molecular, Cellular and Developmental Biology, and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109-1085, USA
| |
Collapse
|
27
|
Liedtke HC, Harney E, Gomez-Mestre I. Cross-species transcriptomics uncovers genes underlying genetic accommodation of developmental plasticity in spadefoot toads. Mol Ecol 2021; 30:2220-2234. [PMID: 33730392 DOI: 10.1111/mec.15883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/29/2021] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
That hardcoded genomes can manifest as plastic phenotypes responding to environmental perturbations is a fascinating feature of living organisms. How such developmental plasticity is regulated at the molecular level is beginning to be uncovered aided by the development of -omic techniques. Here, we compare the transcriptome-wide responses of two species of spadefoot toads with differing capacity for developmental acceleration of their larvae in the face of a shared environmental risk: pond drying. By comparing gene expression profiles over time and performing cross-species network analyses, we identified orthologues and functional gene pathways whose environmental sensitivity in expression have diverged between species. Genes related to lipid, cholesterol and steroid biosynthesis and metabolism make up most of a module of genes environmentally responsive in one species, but canalized in the other. The evolutionary changes in the regulation of the genes identified through these analyses may have been key in the genetic accommodation of developmental plasticity in this system.
Collapse
Affiliation(s)
- Hans Christoph Liedtke
- Ecology, Evolution and Development Group, Department of Wetland Ecology, Estación Biológica de Doñana, CSIC, Seville, Spain
| | - Ewan Harney
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Ivan Gomez-Mestre
- Ecology, Evolution and Development Group, Department of Wetland Ecology, Estación Biológica de Doñana, CSIC, Seville, Spain
| |
Collapse
|
28
|
Shewade LH, Schoephoerster JA, Patmann MD, Kulkarni SS, Buchholz DR. Corticosterone Is Essential for Survival Through Frog Metamorphosis. Endocrinology 2020; 161:5938994. [PMID: 33099610 DOI: 10.1210/endocr/bqaa193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Thyroid hormone (TH) is required for frog metamorphosis, and corticosterone (CORT) increases TH signaling to accelerate metamorphic progression. However, a requirement for CORT in metamorphosis has been difficult to assess prior to the recent development of gene-editing technologies. We addressed this long-standing question using transcription activator-like effector nuclease (TALEN) gene disruption to knock out proopiomelanocortin (pomc) and disrupt CORT production in Xenopus tropicalis. As expected, mutant tadpoles had a reduced peak of plasma CORT at metamorphosis with correspondingly reduced expression of the CORT-response gene Usher syndrome type-1G (ush1g). Mutants had reduced rates of growth and development and exhibited lower expression levels of 2 TH response genes, Krüppel-like factor 9 (klf9) and TH receptor β (thrb). In response to exogenous TH, mutants had reduced TH response gene induction and slower morphological change. Importantly, death invariably occurred during tail resorption, unless rescued by exogenous CORT and, remarkably, by exogenous TH. The ability of exogenous TH by itself to overcome death in pomc mutants indicates that the CORT-dependent increase in TH signaling may ensure functional organ transformation required for survival through metamorphosis and/or may shorten the nonfeeding metamorphic transition to avoid lethal inanition.
Collapse
Affiliation(s)
- Leena H Shewade
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | | | - Matthew D Patmann
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Saurabh S Kulkarni
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
29
|
DeVore JL, Crossland MR, Shine R. Trade‐offs affect the adaptive value of plasticity: stronger cannibal‐induced defenses incur greater costs in toad larvae. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jayna L. DeVore
- School of Life and Environmental Sciences The University of Sydney Sydney2006New South Wales Australia
| | - Michael R. Crossland
- School of Life and Environmental Sciences The University of Sydney Sydney2006New South Wales Australia
| | - Richard Shine
- School of Life and Environmental Sciences The University of Sydney Sydney2006New South Wales Australia
- Department of Biological Sciences Macquarie University Sydney2109 New South Wales Australia
| |
Collapse
|
30
|
Hyeun-Ji L, Rendón MÁ, Liedtke HC, Gomez-Mestre I. Shifts in the developmental rate of spadefoot toad larvae cause decreased complexity of post-metamorphic pigmentation patterns. Sci Rep 2020; 10:19624. [PMID: 33184389 PMCID: PMC7665075 DOI: 10.1038/s41598-020-76578-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/27/2020] [Indexed: 11/18/2022] Open
Abstract
Amphibian larvae are plastic organisms that can adjust their growth and developmental rates to local environmental conditions. The consequences of such developmental alterations have been studied in detail, both at the phenotypic and physiological levels. While largely unknown, it is of great importance to assess how developmental alterations affect the pigmentation pattern of the resulting metamorphs, because pigmentation is relevant for communication, mate choice, and camouflage and hence influences the overall fitness of the toads. Here we quantify the variation in several aspects of the pigmentation pattern of juvenile spadefoot toads experimentally induced to accelerate their larval development in response to decreased water level. It is known that induced developmental acceleration comes at the cost of reduced size at metamorphosis, higher metabolic rate, and increased oxidative stress. In this study, we show that spadefoot toads undergoing developmental acceleration metamorphosed with a less complex, more homogeneous, darker dorsal pattern consisting of continuous blotches, compared to the more contrasted pattern with segregated blotches and higher fractal dimension in normally developing individuals, and at a smaller size. We also observed a marked effect of population of origin in the complexity of the pigmentation pattern. Complexity of the post-metamorphic dorsal pigmentation could therefore be linked to pre-metamorphic larval growth and development.
Collapse
Affiliation(s)
- Lee Hyeun-Ji
- Ecology, Evolution, and Development Group, Doñana Biological Station, Consejo Superior de Investigaciones Científicas, 41092, Seville, Spain
- Department of Wetland Ecology, Doñana Biological Station, Consejo Superior de Investigaciones Científicas, 41092, Seville, Spain
| | - Miguel Ángel Rendón
- Department of Wetland Ecology, Doñana Biological Station, Consejo Superior de Investigaciones Científicas, 41092, Seville, Spain
| | - Hans Christoph Liedtke
- Ecology, Evolution, and Development Group, Doñana Biological Station, Consejo Superior de Investigaciones Científicas, 41092, Seville, Spain
- Department of Wetland Ecology, Doñana Biological Station, Consejo Superior de Investigaciones Científicas, 41092, Seville, Spain
| | - Ivan Gomez-Mestre
- Ecology, Evolution, and Development Group, Doñana Biological Station, Consejo Superior de Investigaciones Científicas, 41092, Seville, Spain.
- Department of Wetland Ecology, Doñana Biological Station, Consejo Superior de Investigaciones Científicas, 41092, Seville, Spain.
| |
Collapse
|
31
|
Affiliation(s)
- Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA.
| |
Collapse
|
32
|
Barrionuevo JS. Variation in the growth and development of the hind limbs in frogs of the genus
Telmatobius
(Anura: Telmatobiidae). J Morphol 2020; 281:1534-1546. [DOI: 10.1002/jmor.21264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/31/2020] [Accepted: 09/01/2020] [Indexed: 11/09/2022]
Affiliation(s)
- J. Sebastián Barrionuevo
- División Herpetología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" CONICET Buenos Aires Argentina
| |
Collapse
|
33
|
Cabrera‐Guzmán E, Díaz‐Paniagua C, Gomez‐Mestre I. Differential effect of natural and pigment‐supplemented diets on larval development and phenotype of anurans. J Zool (1987) 2020. [DOI: 10.1111/jzo.12827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- E. Cabrera‐Guzmán
- Ecology Evolution and Development Group Department of Wetland Ecology Estación Biológica de Doñana CSIC Seville Spain
- Department of Integrative Biology Oklahoma State University Stillwater OK USA
| | - C. Díaz‐Paniagua
- Ecology Evolution and Development Group Department of Wetland Ecology Estación Biológica de Doñana CSIC Seville Spain
| | - I. Gomez‐Mestre
- Ecology Evolution and Development Group Department of Wetland Ecology Estación Biológica de Doñana CSIC Seville Spain
| |
Collapse
|
34
|
Levis NA, Reed EMX, Pfennig DW, Burford Reiskind MO. Identification of candidate loci for adaptive phenotypic plasticity in natural populations of spadefoot toads. Ecol Evol 2020; 10:8976-8988. [PMID: 32884672 PMCID: PMC7452772 DOI: 10.1002/ece3.6602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/24/2022] Open
Abstract
Phenotypic plasticity allows organisms to alter their phenotype in direct response to changes in the environment. Despite growing recognition of plasticity's role in ecology and evolution, few studies have probed plasticity's molecular bases-especially using natural populations. We investigated the genetic basis of phenotypic plasticity in natural populations of spadefoot toads (Spea multiplicata). Spea tadpoles normally develop into an "omnivore" morph that is favored in long-lasting, low-density ponds. However, if tadpoles consume freshwater shrimp or other tadpoles, they can alternatively develop (via plasticity) into a "carnivore" morph that is favored in ephemeral, high-density ponds. By combining natural variation in pond ecology and morph production with population genetic approaches, we identified candidate loci associated with each morph (carnivores vs. omnivores) and loci associated with adaptive phenotypic plasticity (adaptive vs. maladaptive morph choice). Our candidate morph loci mapped to two genes, whereas our candidate plasticity loci mapped to 14 genes. In both cases, the identified genes tended to have functions related to their putative role in spadefoot tadpole biology. Our results thereby form the basis for future studies into the molecular mechanisms that mediate plasticity in spadefoots. More generally, these results illustrate how diverse loci might mediate adaptive plasticity.
Collapse
Affiliation(s)
| | - Emily M. X. Reed
- Department of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
| | - David W. Pfennig
- Department of BiologyUniversity of North CarolinaChapel HillNCUSA
| | | |
Collapse
|
35
|
Casasa S, Zattara EE, Moczek AP. Nutrition-responsive gene expression and the developmental evolution of insect polyphenism. Nat Ecol Evol 2020; 4:970-978. [PMID: 32424280 DOI: 10.1038/s41559-020-1202-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/09/2020] [Indexed: 01/05/2023]
Abstract
Nutrition-responsive development is a ubiquitous and highly diversified example of phenotypic plasticity, yet its underlying molecular and developmental mechanisms and modes of evolutionary diversification remain poorly understood. We measured genome-wide transcription in three closely related species of horned beetles exhibiting strikingly diverse degrees of nutrition responsiveness in the development of male weaponry. We show that (1) counts of differentially expressed genes between low- and high-nutritional backgrounds mirror species-specific degrees of morphological nutrition responsiveness; (2) evolutionary exaggeration of morphological responsiveness is underlain by both amplification of ancestral nutrition-responsive gene expression and recruitment of formerly low nutritionally responsive genes; and (3) secondary loss of morphological responsiveness to nutrition coincides with a dramatic reduction in gene expression plasticity. Our results further implicate genetic accommodation of ancestrally high variability of gene expression plasticity in both exaggeration and loss of nutritional plasticity, yet reject a major role of taxon-restricted genes in the developmental regulation and evolution of nutritional plasticity.
Collapse
Affiliation(s)
- Sofia Casasa
- Department of Biology, Indiana University, Bloomington, IN, USA.
| | - Eduardo E Zattara
- Department of Biology, Indiana University, Bloomington, IN, USA. .,INIBIOMA, Universidad Nacional del Comahue - CONICET, Bariloche, Argentina.
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
36
|
Lema SC. Hormones, developmental plasticity, and adaptive evolution: Endocrine flexibility as a catalyst for 'plasticity-first' phenotypic divergence. Mol Cell Endocrinol 2020; 502:110678. [PMID: 31830511 DOI: 10.1016/j.mce.2019.110678] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Explaining how populations adapt to environments is among the foremost objectives of evolutionary theory. Over generations, natural selection impels the phenotypic distribution of a population based on individual variation in phenotype and fitness. However, environmental conditions can also shape how individuals develop within their lifetime to influence which phenotypes are expressed in a population. It has been proposed that such environmentally-initiated phenotypic variation - also termed developmental plasticity - may enable adaptive evolution under some scenarios. As dynamic regulators of development and phenotypic expression, hormones are important physiological mediators of developmental plasticity. Patterns of hormone secretion, hormone transport, and the sensitivity of tissues to hormones can each be altered by environmental conditions, and understanding how endocrine regulation shapes phenotypic development in an ecologically-relevant context has much to contribute toward clarifying the role of plasticity in evolutionary adaptation. This article explores how the environmental sensitivity of endocrine regulation may facilitate 'plasticity-first' evolution by generating phenotypic variants that precede adaptation to altered or novel environments. Predictions arising from 'plasticity-first' evolution are examined in the context of thyroid hormone mediation of morphological plasticity in Cyprinodon pupfishes from the Death Valley region of California and Nevada, USA. This clade of extremophile fishes diversified morphologically over the last ~20,000 years, and observations that some populations experienced contemporary phenotypic differentiation under recent habitat change provide evidence that hormone-mediate plasticity preceded genetic assimilation of morphology in one of the region's species: the Devils Hole pupfish, Cyprinodon diabolis. This example illustrates how conceptualizing hormones not only as regulators of homeostasis, but also as developmental intermediaries between environment conditions and phenotypic variation at the individual-, population-, and species-levels can enrich our understanding of endocrine regulation both as a facilitator of phenotypic change under shifting environments, and as important proximate mechanisms that may initiate 'plasticity-first' evolutionary adaptation.
Collapse
Affiliation(s)
- Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, 93407, USA.
| |
Collapse
|
37
|
Cellular Innovation of the Cyanobacterial Heterocyst by the Adaptive Loss of Plasticity. Curr Biol 2020; 30:344-350.e4. [PMID: 31928871 DOI: 10.1016/j.cub.2019.11.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
Abstract
Cellular innovation is central to biological diversification, yet its underlying mechanisms remain poorly understood [1]. One potential source of new cellular traits is environmentally induced phenotypic variation, or phenotypic plasticity. The plasticity-first hypothesis [2-4] proposes that natural selection can improve upon an ancestrally plastic phenotype to produce a locally adaptive trait, but the role of plasticity for adaptive evolution is still unclear [5-10]. Here, we show that a structurally novel form of the heterocyst, the specialized nitrogen-fixing cell of the multicellular cyanobacterium Fischerella thermalis, has evolved multiple times from ancestrally plastic developmental variation during adaptation to high temperature. Heterocyst glycolipids (HGs) provide an extracellular gas diffusion barrier that protects oxygen-sensitive nitrogenase [11, 12], and cyanobacteria typically exhibit temperature-induced plasticity in HG composition that modulates heterocyst permeability [13, 14]. By contrast, high-temperature specialists of F. thermalis constitutively overproduce glycolipid isomers associated with high temperature to levels unattained by plastic strains. This results in a less-permeable heterocyst, which is advantageous at high temperature but deleterious at low temperature for both nitrogen fixation activity and fitness. Our study illustrates how the origin of a novel cellular phenotype by the genetic assimilation and adaptive refinement of a plastic trait can be a source of biological diversity and contribute to ecological specialization.
Collapse
|
38
|
Levis NA, Pfennig DW. Plasticity‐led evolution: A survey of developmental mechanisms and empirical tests. Evol Dev 2019; 22:71-87. [DOI: 10.1111/ede.12309] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Nicholas A. Levis
- Department of Biology University of North Carolina Chapel Hill North Carolina
| | - David W. Pfennig
- Department of Biology University of North Carolina Chapel Hill North Carolina
| |
Collapse
|
39
|
De Novo Assembly and Annotation of the Larval Transcriptome of Two Spadefoot Toads Widely Divergent in Developmental Rate. G3-GENES GENOMES GENETICS 2019; 9:2647-2655. [PMID: 31217263 PMCID: PMC6686947 DOI: 10.1534/g3.119.400389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Amphibians are highly vulnerable and diverse vertebrates for which we still have modest genomic resources. Amphibian larvae are key components of continental wetlands, where they have strong influences on energy fluxes, nutrient cycling, and community structure. Amphibian larvae are highly sensitive to environmental conditions and can often alter their physiology, behavior and even morphology in response to the local conditions experienced, although we still know relatively little about the transcriptomic changes that enable such plasticity. Here we contribute the larval transcriptomes of two spadefoot toad species with divergent developmental rates and degree of developmental plasticity in response to pond drying.
Collapse
|
40
|
Lafuente E, Beldade P. Genomics of Developmental Plasticity in Animals. Front Genet 2019; 10:720. [PMID: 31481970 PMCID: PMC6709652 DOI: 10.3389/fgene.2019.00720] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
Developmental plasticity refers to the property by which the same genotype produces distinct phenotypes depending on the environmental conditions under which development takes place. By allowing organisms to produce phenotypes adjusted to the conditions that adults will experience, developmental plasticity can provide the means to cope with environmental heterogeneity. Developmental plasticity can be adaptive and its evolution can be shaped by natural selection. It has also been suggested that developmental plasticity can facilitate adaptation and promote diversification. Here, we summarize current knowledge on the evolution of plasticity and on the impact of plasticity on adaptive evolution, and we identify recent advances and important open questions about the genomics of developmental plasticity in animals. We give special attention to studies using transcriptomics to identify genes whose expression changes across developmental environments and studies using genetic mapping to identify loci that contribute to variation in plasticity and can fuel its evolution.
Collapse
Affiliation(s)
| | - Patrícia Beldade
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- CNRS-UMR5174, Université Paul Sabatier, Toulouse, France
- Centre for Ecology, Evolution, and Environmental Changes, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
41
|
Prokić MD, Gavrić JP, Petrović TG, Despotović SG, Gavrilović BR, Radovanović TB, Krizmanić II, Pavlović SZ. Oxidative stress in Pelophylax esculentus complex frogs in the wild during transition from aquatic to terrestrial life. Comp Biochem Physiol A Mol Integr Physiol 2019; 234:98-105. [DOI: 10.1016/j.cbpa.2019.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
|
42
|
Sachs LM, Buchholz DR. Insufficiency of Thyroid Hormone in Frog Metamorphosis and the Role of Glucocorticoids. Front Endocrinol (Lausanne) 2019; 10:287. [PMID: 31143159 PMCID: PMC6521741 DOI: 10.3389/fendo.2019.00287] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022] Open
Abstract
Thyroid hormone (TH) is the most important hormone in frog metamorphosis, a developmental process which will not occur in the absence of TH but can be induced precociously by exogenous TH. However, such treatments including in-vitro TH treatments often do not replicate the events of natural metamorphosis in many organs, including lung, brain, blood, intestine, pancreas, tail, and skin. A potential explanation for the discrepancy between natural and TH-induced metamorphosis is the involvement of glucocorticoids (GCs). GCs are not able to advance development by themselves but can modulate the rate of developmental progress induced by TH via increased tissue sensitivity to TH. Global gene expression analyses and endocrine experiments suggest that GCs may also have direct actions required for completion of metamorphosis independent of their effects on TH signaling. Here, we provide a new review and analysis of the requirement and necessity of TH signaling in light of recent insights from gene knockout frogs. We also examine the independent and interactive roles GCs play in regulating morphological and molecular metamorphic events dependent upon TH.
Collapse
Affiliation(s)
- Laurent M. Sachs
- Département Adaptation du Vivant, UMR 7221 CNRS, Muséum National d'histoire Naturelle, Paris, France
| | - Daniel R. Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
43
|
Levis NA, Pfennig DW. How stabilizing selection and nongenetic inheritance combine to shape the evolution of phenotypic plasticity. J Evol Biol 2019; 32:706-716. [PMID: 30968503 DOI: 10.1111/jeb.13475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/22/2022]
Abstract
Relatively little is known about whether and how nongenetic inheritance interacts with selection to impact the evolution of phenotypic plasticity. Here, we empirically evaluated how stabilizing selection and a common form of nongenetic inheritance-maternal environmental effects-jointly influence the evolution of phenotypic plasticity in natural populations of spadefoot toads. We compared populations that previous fieldwork has shown to have evolved conspicuous plasticity in resource-use phenotypes ("resource polyphenism") with those that, owing to stabilizing selection favouring a narrower range of such phenotypes, appear to have lost this plasticity. We show that: (a) this apparent loss of plasticity in nature reflects a condition-dependent maternal effect and not a genetic loss of plasticity, that is "genetic assimilation," and (b) this plasticity is not costly. By shielding noncostly plasticity from selection, nongenetic inheritance generally, and maternal effects specifically, can preclude genetic assimilation from occurring and consequently impede adaptive (genetic) evolution.
Collapse
Affiliation(s)
- Nicholas A Levis
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina
| | - David W Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
44
|
Zhang YF, Xu HM, Yu F, Yang HY, Jia DD, Li PF. Comparison the sensitivity of amphibian metamorphosis assays with NF 48 stage and NF 51 stage Xenopus laevis tadpoles. Toxicol Mech Methods 2019; 29:421-427. [PMID: 30732517 DOI: 10.1080/15376516.2019.1579291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The amphibian metamorphosis assay (AMA) was proposed by the Organization for Economic Cooperation and Development (OECD) to screen thyroid disruptors of vertebrate species. The general experimental design of the AMA exposes Nieuwkoop and Faber (NF) stage 51 Xenopus laevis tadpoles to test chemical concentrations for 21 d. However, recent studies demonstrated that thyroid gland began to function after NF stage 45 in X. laevis. Thus, in this study, we initiated exposure with NF stage 48 tadpoles when the thyroid gland is still in a preliminary development period, to compare the sensitivity of the AMA with NF 48 stage and NF 51 stage tadpoles. Further, the application and sensitivity of the optimized AMA were evaluated and validated by two known thyroid toxicants methimazole (MMI) and sodium perchlorate (SP). The observational endpoints are developmental stage, hind limb length (HLL), snout-vent length (SVL), wet weight, and daily observations of mortality. The results were as follows. Although the sensitivity to endpoint of growth, such as wet weight and SVL was similar between the two assays, our optimized AMA detected delaying effects of 1 mg/L MMI and 32 μg/L SP on metamorphosis development both on day 7 and at test termination, which were lower than those in AMA. Additionally, it is easier to get a large number of animals at NF stage 48 than NF stage 51 in a short time. Thus, it is suggested that the NF stage 48 tadpoles might be applied to the AMA for efficiently screening the thyroid-active substances.
Collapse
Affiliation(s)
- Yin-Feng Zhang
- a College of Medicine , Institute for Translational Medicine, Qingdao University , Qingdao , PR China
| | - Hai-Ming Xu
- b Department of Occupational and Environmental Medicine, School of Public Health and Management , Ningxia Medical University , Yinchuan , PR China
| | - Fei Yu
- a College of Medicine , Institute for Translational Medicine, Qingdao University , Qingdao , PR China
| | - Hong-Yu Yang
- a College of Medicine , Institute for Translational Medicine, Qingdao University , Qingdao , PR China
| | - Dong-Dong Jia
- a College of Medicine , Institute for Translational Medicine, Qingdao University , Qingdao , PR China
| | - Pei-Feng Li
- a College of Medicine , Institute for Translational Medicine, Qingdao University , Qingdao , PR China
| |
Collapse
|
45
|
Levis NA, Pfennig DW. Plasticity-led evolution: evaluating the key prediction of frequency-dependent adaptation. Proc Biol Sci 2019; 286:20182754. [PMID: 30963848 PMCID: PMC6408876 DOI: 10.1098/rspb.2018.2754] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/05/2019] [Indexed: 01/20/2023] Open
Abstract
Plasticity-led evolution occurs when a change in the environment triggers a change in phenotype via phenotypic plasticity, and this pre-existing plasticity is subsequently refined by selection into an adaptive phenotype. A critical, but largely untested prediction of plasticity-led evolution (and evolution by natural selection generally) is that the rate and magnitude of evolutionary change should be positively associated with a phenotype's frequency of expression in a population. Essentially, the more often a phenotype is expressed and exposed to selection, the greater its opportunity for adaptive refinement. We tested this prediction by competing against each other spadefoot toad tadpoles from different natural populations that vary in how frequently they express a novel, environmentally induced carnivore ecomorph. As expected, laboratory-reared tadpoles whose parents were derived from populations that express the carnivore ecomorph more frequently were superior competitors for the resource for which this ecomorph is specialized-fairy shrimp. These tadpoles were better at using this resource both because they were more efficient at capturing and consuming shrimp and because they produced more exaggerated carnivore traits. Moreover, they exhibited these more carnivore-like features even without experiencing the inducing cue, suggesting that this ecomorph has undergone an extreme form of plasticity-led evolution-genetic assimilation. Thus, our findings provide evidence that the frequency of trait expression drives the magnitude of adaptive refinement, thereby validating a key prediction of plasticity-led evolution specifically and adaptive evolution generally.
Collapse
Affiliation(s)
- Nicholas A. Levis
- Department of Biology, University of North Carolina, CB no. 3280, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
46
|
Developmental Bias and Evolution: A Regulatory Network Perspective. Genetics 2018; 209:949-966. [PMID: 30049818 DOI: 10.1534/genetics.118.300995] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/19/2018] [Indexed: 01/12/2023] Open
Abstract
Phenotypic variation is generated by the processes of development, with some variants arising more readily than others-a phenomenon known as "developmental bias." Developmental bias and natural selection have often been portrayed as alternative explanations, but this is a false dichotomy: developmental bias can evolve through natural selection, and bias and selection jointly influence phenotypic evolution. Here, we briefly review the evidence for developmental bias and illustrate how it is studied empirically. We describe recent theory on regulatory networks that explains why the influence of genetic and environmental perturbation on phenotypes is typically not uniform, and may even be biased toward adaptive phenotypic variation. We show how bias produced by developmental processes constitutes an evolving property able to impose direction on adaptive evolution and influence patterns of taxonomic and phenotypic diversity. Taking these considerations together, we argue that it is not sufficient to accommodate developmental bias into evolutionary theory merely as a constraint on evolutionary adaptation. The influence of natural selection in shaping developmental bias, and conversely, the influence of developmental bias in shaping subsequent opportunities for adaptation, requires mechanistic models of development to be expanded and incorporated into evolutionary theory. A regulatory network perspective on phenotypic evolution thus helps to integrate the generation of phenotypic variation with natural selection, leaving evolutionary biology better placed to explain how organisms adapt and diversify.
Collapse
|
47
|
Vitousek MN, Johnson MA, Husak JF. Illuminating Endocrine Evolution: The Power and Potential of Large-Scale Comparative Analyses. Integr Comp Biol 2018; 58:712-719. [DOI: 10.1093/icb/icy098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| | - Michele A Johnson
- Department of Biology, Trinity University, San Antonio, TX 78212, USA
| | - Jerry F Husak
- Department of Biology, University of St. Thomas, 2115 Summit Avenue, St. Paul, MN 55105, USA
| |
Collapse
|
48
|
Morphological novelty emerges from pre-existing phenotypic plasticity. Nat Ecol Evol 2018; 2:1289-1297. [PMID: 29988161 DOI: 10.1038/s41559-018-0601-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/08/2018] [Indexed: 02/01/2023]
Abstract
Plasticity-first evolution (PFE) posits that novel features arise when selection refines pre-existing phenotypic plasticity into an adaptive phenotype. However, PFE is controversial because few tests have been conducted in natural populations. Here we present evidence that PFE fostered the origin of an evolutionary novelty that allowed certain amphibians to invade a new niche-a distinctive carnivore morph. We compared morphology, gene expression and growth of three species of spadefoot toad tadpoles when reared on alternative diets: Scaphiopus holbrookii, which (like most frogs) never produce carnivores; Spea multiplicata, which sometimes produce carnivores, but only through diet-induced plasticity; and Spea bombifrons, which often produce carnivores regardless of diet. Consistent with PFE, we found diet-induced plasticity-in morphology and gene expression-in Sc. holbrookii, adaptive refinement of this plasticity in Sp. multiplicata, and further refinement of the carnivore phenotype in Sp. bombifrons. Generally, phenotypic plasticity might play a significant, if underappreciated, role in evolutionary innovation.
Collapse
|
49
|
Levis NA, Pfennig DW. Phenotypic plasticity, canalization, and the origins of novelty: Evidence and mechanisms from amphibians. Semin Cell Dev Biol 2018; 88:80-90. [PMID: 29408711 DOI: 10.1016/j.semcdb.2018.01.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 12/20/2022]
Abstract
A growing number of biologists have begun asking whether environmentally induced phenotypic change--'phenotypic plasticity'--precedes and facilitates the origin and canalization of novel, complex phenotypes. However, such 'plasticity-first evolution' (PFE) remains controversial. Here, we summarize the PFE hypothesis and describe how it can be evaluated in natural systems. We then review the evidence for PFE from amphibians (a group in which phenotypic plasticity is especially widespread) and describe how phenotypic plasticity might have facilitated macroevolutionary change. Finally, we discuss what is known about the proximate mechanisms of PFE in amphibians. We close with suggestions for future research. As we describe, amphibians offer some of the best support for plasticity's role in the origin of evolutionary novelties.
Collapse
Affiliation(s)
- Nicholas A Levis
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - David W Pfennig
- Department of Biology, CB#3280, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|