1
|
Saccone M, Caravelli F, Hofhuis K, Dhuey S, Scholl A, Nisoli C, Farhan A. Real-space observation of ergodicity transitions in artificial spin ice. Nat Commun 2023; 14:5674. [PMID: 37704596 PMCID: PMC10499874 DOI: 10.1038/s41467-023-41235-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
Ever since its introduction by Ludwig Boltzmann, the ergodic hypothesis became a cornerstone analytical concept of equilibrium thermodynamics and complex dynamic processes. Examples of its relevance range from modeling decision-making processes in brain science to economic predictions. In condensed matter physics, ergodicity remains a concept largely investigated via theoretical and computational models. Here, we demonstrate the direct real-space observation of ergodicity transitions in a vertex-frustrated artificial spin ice. Using synchrotron-based photoemission electron microscopy we record thermally-driven moment fluctuations as a function of temperature, allowing us to directly observe transitions between ergodicity-breaking dynamics to system freezing, standing in contrast to simple trends observed for the temperature-dependent vertex populations, all while the entropy features arise as a function of temperature. These results highlight how a geometrically frustrated system, with thermodynamics strictly adhering to local ice-rule constraints, runs back-and-forth through periods of ergodicity-breaking dynamics. Ergodicity breaking and the emergence of memory is important for emergent computation, particularly in physical reservoir computing. Our work serves as further evidence of how fundamental laws of thermodynamics can be experimentally explored via real-space imaging.
Collapse
Affiliation(s)
- Michael Saccone
- Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Francesco Caravelli
- Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Kevin Hofhuis
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093, Zurich, Switzerland
- Laboratory for Multiscale Materials Experiments (LMX), Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Scott Dhuey
- Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
| | - Andreas Scholl
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA, 94720, USA
| | - Cristiano Nisoli
- Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Alan Farhan
- Department of Physics, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
2
|
Zhang X, Duzgun A, Lao Y, Subzwari S, Bingham NS, Sklenar J, Saglam H, Ramberger J, Batley JT, Watts JD, Bromley D, Chopdekar RV, O'Brien L, Leighton C, Nisoli C, Schiffer P. String Phase in an Artificial Spin Ice. Nat Commun 2021; 12:6514. [PMID: 34764259 PMCID: PMC8585881 DOI: 10.1038/s41467-021-26734-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/19/2021] [Indexed: 11/11/2022] Open
Abstract
One-dimensional strings of local excitations are a fascinating feature of the physical behavior of strongly correlated topological quantum matter. Here we study strings of local excitations in a classical system of interacting nanomagnets, the Santa Fe Ice geometry of artificial spin ice. We measured the moment configuration of the nanomagnets, both after annealing near the ferromagnetic Curie point and in a thermally dynamic state. While the Santa Fe Ice lattice structure is complex, we demonstrate that its disordered magnetic state is naturally described within a framework of emergent strings. We show experimentally that the string length follows a simple Boltzmann distribution with an energy scale that is associated with the system's magnetic interactions and is consistent with theoretical predictions. The results demonstrate that string descriptions and associated topological characteristics are not unique to quantum models but can also provide a simplifying description of complex classical systems with non-trivial frustration.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Applied Physics, Yale University, New Haven, CT, 06511, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ayhan Duzgun
- Theoretical Division and Center for Nonlinear Studies, MS B258, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Yuyang Lao
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shayaan Subzwari
- Department of Applied Physics, Yale University, New Haven, CT, 06511, USA
| | - Nicholas S Bingham
- Department of Applied Physics, Yale University, New Haven, CT, 06511, USA
| | - Joseph Sklenar
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Physics and Astronomy, Wayne State University, Detroit, MI, 48201, USA
| | - Hilal Saglam
- Department of Applied Physics, Yale University, New Haven, CT, 06511, USA
| | - Justin Ramberger
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joseph T Batley
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Justin D Watts
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daniel Bromley
- Department of Physics, University of Liverpool, Liverpool, L69 3BX, United Kingdom
| | - Rajesh V Chopdekar
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Liam O'Brien
- Department of Physics, University of Liverpool, Liverpool, L69 3BX, United Kingdom
| | - Chris Leighton
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Cristiano Nisoli
- Theoretical Division and Center for Nonlinear Studies, MS B258, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Peter Schiffer
- Department of Applied Physics, Yale University, New Haven, CT, 06511, USA.
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Physics, Yale University, New Haven, CT, 06511, USA.
| |
Collapse
|
3
|
Saha S, Zhou J, Hofhuis K, Kákay A, Scagnoli V, Heyderman LJ, Gliga S. Spin-Wave Dynamics and Symmetry Breaking in an Artificial Spin Ice. NANO LETTERS 2021; 21:2382-2389. [PMID: 33689358 DOI: 10.1021/acs.nanolett.0c04294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Artificial spin ices are periodic arrangements of interacting nanomagnets which allow investigating emergent phenomena in the presence of geometric frustration. Recently, it has been shown that artificial spin ices can be used as building blocks for creating functional materials, such as magnonic crystals. We investigate the magnetization dynamics in a system exhibiting anisotropic magnetostatic interactions owing to locally broken structural inversion symmetry. We find a rich spin-wave spectrum and investigate its evolution in an external magnetic field. We determine the evolution of individual modes, from building blocks up to larger arrays, highlighting the role of symmetry breaking in defining the mode profiles. Moreover, we demonstrate that the mode spectra exhibit signatures of long-range interactions in the system. These results contribute to the understanding of magnetization dynamics in spin ices beyond the kagome and square ice geometries and are relevant for the realization of reconfigurable magnonic crystals based on spin ices.
Collapse
Affiliation(s)
- Susmita Saha
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
| | - Jingyuan Zhou
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Kevin Hofhuis
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Attila Kákay
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - Valerio Scagnoli
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Laura J Heyderman
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Sebastian Gliga
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| |
Collapse
|
4
|
Duzgun A, Nisoli C. Skyrmion Spin Ice in Liquid Crystals. PHYSICAL REVIEW LETTERS 2021; 126:047801. [PMID: 33576672 DOI: 10.1103/physrevlett.126.047801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 10/17/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
We propose the first skyrmion spin ice, realized via confined, interacting liquid crystal skyrmions. Skyrmions in a chiral nematic liquid crystal behave as quasiparticles that can be dynamically confined, bound, and created or annihilated individually with ease and precision. We show that these quasiparticles can be employed to realize binary variables that interact to form ice-rule states. Because of their unique versatility, liquid crystal skyrmions can open entirely novel avenues in the field of frustrated systems. More broadly, our findings also demonstrate the viability of liquid crystal skyrmions as elementary degrees of freedom in the design of collective complex behaviors.
Collapse
Affiliation(s)
- Ayhan Duzgun
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Cristiano Nisoli
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
5
|
Parakkat VM, Macauley GM, Stamps RL, Krishnan KM. Configurable Artificial Spin Ice with Site-Specific Local Magnetic Fields. PHYSICAL REVIEW LETTERS 2021; 126:017203. [PMID: 33480755 DOI: 10.1103/physrevlett.126.017203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
We demonstrate ground state tunability for a hybrid artificial spin ice composed of Fe nanomagnets which are subject to site-specific exchange-bias fields, applied in integer multiples of the lattice along one sublattice of the classic square artificial spin ice. By varying this period, three distinct magnetic textures are identified: a striped ferromagnetic phase; an antiferromagnetic phase attainable through an external field protocol alone; and an unconventional ground state with magnetically charged pairs embedded in an antiferromagnetic matrix. Monte Carlo simulations support the results of field protocols and demonstrate that the pinning tunes relaxation timescales and their critical behavior.
Collapse
Affiliation(s)
- Vineeth Mohanan Parakkat
- Department of Materials Science and Engineering, 323 Roberts Hall, University of Washington, Seattle, Washington 98195, USA
| | - Gavin M Macauley
- SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Robert L Stamps
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Kannan M Krishnan
- Department of Materials Science and Engineering, 323 Roberts Hall, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
6
|
Farhan A, Saccone M, Petersen CF, Dhuey S, Hofhuis K, Mansell R, Chopdekar RV, Scholl A, Lippert T, van Dijken S. Geometrical Frustration and Planar Triangular Antiferromagnetism in Quasi-Three-Dimensional Artificial Spin Architecture. PHYSICAL REVIEW LETTERS 2020; 125:267203. [PMID: 33449705 DOI: 10.1103/physrevlett.125.267203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/01/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
We present a realization of highly frustrated planar triangular antiferromagnetism achieved in a quasi-three-dimensional artificial spin system consisting of monodomain Ising-type nanomagnets lithographically arranged onto a deep-etched silicon substrate. We demonstrate how the three-dimensional spin architecture results in the first direct observation of long-range ordered planar triangular antiferromagnetism, in addition to a highly disordered phase with short-range correlations, once competing interactions are perfectly tuned. Our work demonstrates how escaping two-dimensional restrictions can lead to new types of magnetically frustrated metamaterials.
Collapse
Affiliation(s)
- Alan Farhan
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
- Laboratory for Multiscale Materials Experiments (LMX), Paul Scherrer Institut, 5232 Villigen, Switzerland
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA
| | - Michael Saccone
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
- Physics Department, University of California, 1156 High Street, Santa Cruz, California 95064, USA
| | - Charlotte F Petersen
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Scott Dhuey
- Molecular Foundry, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA
| | - Kevin Hofhuis
- Laboratory for Multiscale Materials Experiments (LMX), Paul Scherrer Institut, 5232 Villigen, Switzerland
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Rhodri Mansell
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| | - Rajesh V Chopdekar
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA
| | - Andreas Scholl
- Advanced Light Source, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California 94720, USA
| | - Thomas Lippert
- Laboratory for Multiscale Materials Experiments (LMX), Paul Scherrer Institut, 5232 Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Sebastiaan van Dijken
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| |
Collapse
|
7
|
Puttock R, Manzin A, Neu V, Garcia-Sanchez F, Fernandez Scarioni A, Schumacher HW, Kazakova O. Modal Frustration and Periodicity Breaking in Artificial Spin Ice. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003141. [PMID: 32985104 DOI: 10.1002/smll.202003141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Here, an artificial spin ice lattice is introduced that exhibits unique Ising and non-Ising behavior under specific field switching protocols because of the inclusion of coupled nanomagnets into the unit cell. In the Ising regime, a magnetic switching mechanism that generates a uni- or bimodal distribution of states dependent on the alignment of the field is demonstrated with respect to the lattice unit cell. In addition, a method for generating a plethora of randomly distributed energy states across the lattice, consisting of Ising and Landau states, is investigated through magnetic force microscopy and micromagnetic modeling. It is demonstrated that the dispersed energy distribution across the lattice is a result of the intrinsic design and can be finely tuned through control of the incident angle of a critical field. The present manuscript explores a complex frustrated environment beyond the 16-vertex Ising model for the development of novel logic-based technologies.
Collapse
Affiliation(s)
- Robert Puttock
- National Physical Laboratory, Teddington, TW11 0LW, UK
- Department of Physics, Royal Holloway University of London, Egham Hill, Egham, TW20 0EX, UK
| | | | - Volker Neu
- Leibniz Institute for Solid State and Materials Research Dresden, Dresden, 01069, Germany
| | - Felipe Garcia-Sanchez
- Istituto Nazionale di Ricerca Metrologica, Torino, 10135, Italy
- Departamento de Física Aplicada, University of Salamanca, Pza de la Merced s/n, Salamanca, 37008, Spain
| | | | | | - Olga Kazakova
- National Physical Laboratory, Teddington, TW11 0LW, UK
| |
Collapse
|
8
|
Saccone M, Hofhuis K, Bracher D, Kleibert A, van Dijken S, Farhan A. Elevated effective dimension in tree-like nanomagnetic Cayley structures. NANOSCALE 2020; 12:189-194. [PMID: 31803884 DOI: 10.1039/c9nr07510k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Using state-of-the-art electron-beam lithography, Ising-type nanomagnets may be defined onto nearly any two-dimensional pattern imaginable. The ability to directly observe magnetic configurations achieved in such artificial spin systems makes them a perfect playground for the realization of artificial spin glasses. However, no experimental realization of a finite-temperature artificial spin glass has been achieved so far. Here, we aim to get a significant step closer in achieving that goal by introducing an artificial spin system with random interactions and increased effective dimension: dipolar Cayley tree. Through synchrotron-based photoemission electron microscopy, we show that an improved balance of ferro- and antiferromagnetic ordering can be achieved in this type of system. This combined with an effective dimension as high as d = 2.72 suggests that future systems generated out of these building blocks can host finite temperature spin glass phases, allowing for real-time observation of glassy dynamics.
Collapse
Affiliation(s)
- Michael Saccone
- Physics Department, University of California, 1156 High Street, Santa Cruz, CA 95064, USA. and NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland.
| | - Kevin Hofhuis
- Laboratory for Mesoscopic Systems, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland and Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - David Bracher
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Armin Kleibert
- Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Sebastiaan van Dijken
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland.
| | - Alan Farhan
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland. and Laboratory for Multiscale Materials Experiments, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| |
Collapse
|
9
|
Farhan A, Saccone M, Petersen CF, Dhuey S, Chopdekar RV, Huang YL, Kent N, Chen Z, Alava MJ, Lippert T, Scholl A, van Dijken S. Emergent magnetic monopole dynamics in macroscopically degenerate artificial spin ice. SCIENCE ADVANCES 2019; 5:eaav6380. [PMID: 30783629 PMCID: PMC6368442 DOI: 10.1126/sciadv.aav6380] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/21/2018] [Indexed: 05/26/2023]
Abstract
Magnetic monopoles, proposed as elementary particles that act as isolated magnetic south and north poles, have long attracted research interest as magnetic analogs to electric charge. In solid-state physics, a classical analog to these elusive particles has emerged as topological excitations within pyrochlore spin ice systems. We present the first real-time imaging of emergent magnetic monopole motion in a macroscopically degenerate artificial spin ice system consisting of thermally activated Ising-type nanomagnets lithographically arranged onto a pre-etched silicon substrate. A real-space characterization of emergent magnetic monopoles within the framework of Debye-Hückel theory is performed, providing visual evidence that these topological defects act like a plasma of Coulomb-type magnetic charges. In contrast to vertex defects in a purely two-dimensional artificial square ice, magnetic monopoles are free to evolve within a divergence-free vacuum, a magnetic Coulomb phase, for which features in the form of pinch-point singularities in magnetic structure factors are observed.
Collapse
Affiliation(s)
- Alan Farhan
- Advanced Light Source, Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720, USA
- Laboratory for Multiscale Materials Experiments (LMX), Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Michael Saccone
- Physics Department, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Charlotte F. Petersen
- COMP Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Espoo, Finland
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Scott Dhuey
- Molecular Foundry, LBNL, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Rajesh V. Chopdekar
- Advanced Light Source, Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Yen-Lin Huang
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Noah Kent
- Physics Department, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Materials Sciences Division, LBNL, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Zuhuang Chen
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, Guangdong 518055, China
| | - Mikko J. Alava
- COMP Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Espoo, Finland
| | - Thomas Lippert
- Laboratory for Multiscale Materials Experiments (LMX), Paul Scherrer Institute, 5232 Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, ETH Zurich, Switzerland
| | - Andreas Scholl
- Advanced Light Source, Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Sebastiaan van Dijken
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| |
Collapse
|
10
|
Katkar AS, Gupta SP, Seikh MM, Chen LJ, Walke PS. Room-temperature ferromagnetic Cr-doped Ge/GeO x core-shell nanowires. NANOTECHNOLOGY 2018; 29:235705. [PMID: 29553477 DOI: 10.1088/1361-6528/aab7a9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The Cr-doped tunable thickness core-shell Ge/GeOx nanowires (NWs) were synthesized and characterized using x-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy and magnetization studies. The shell thickness increases with the increase in synthesis temperature. The presence of metallic Cr and Cr3+ in core-shell structure was confirmed from XPS study. The magnetic property is highly sensitive to the core-shell thickness and intriguing room temperature ferromagnetism is realized only in core-shell NWs. The magnetization decreases with an increase in shell thickness and practically ceases to exist when there is no core. These NWs show remarkably high Curie temperature (TC > 300 K) with the dominating values of its magnetic remanence (MR) and coercivity (HC) compared to germanium dilute magnetic semiconductor nanomaterials. We believe that our finding on these Cr-doped Ge/GeOX core-shell NWs has the potential to be used as a hard magnet for future spintronic devices, owing to their higher characteristic values of ferromagnetic ordering.
Collapse
Affiliation(s)
- Amar S Katkar
- Dr. B N Purandare Arts and Smt. S G Gupta Commerce and Science College, Valvan, Lonavla, Pune-410403, India
| | | | | | | | | |
Collapse
|