1
|
Liang H, Du Y, Zhu C, Zhang Z, Liao G, Liu L, Chen Y. Nanoparticulate Cationic Poly(amino acid)s Block Cancer Metastases by Destructing Neutrophil Extracellular Traps. ACS NANO 2023; 17:2868-2880. [PMID: 36648411 DOI: 10.1021/acsnano.2c11280] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cancer metastasis that is resistant to conventional therapies has become a major cause of patient death. Recent reports indicate that the neutrophil extracellular trap (NET) is closely associated with cancer distant metastases, and the cell-free DNA of NETs has been identified as the ligand of the transmembrane protein CCDC25 of cancer cells, acting as a chemokine to induce cancer cell migration to distant organs. In this work, we present the poly(aspartic acid) based-cationic materials to interfere with the interaction between NET-DNA and CCDC25, and furthermore to inhibit NET-DNA-mediated cancer cell chemotaxis and migration. Because of a stronger binding affinity to DNA and favorable retention in the liver, nanoparticulate poly(aspartic acid) derivatives (cANP) efficiently reduce the level of hepatic NET-DNA infiltration, leading to a significant suppression of cancer metastases in mice and several human metastatic models. Moreover, the cANP exhibits no toxicity to organs of animals during the entire treatment. Thus, this work suggests a strategy for controlling cancer metastases, which will benefit patients in clinics.
Collapse
Affiliation(s)
- Huiyi Liang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yibo Du
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chenxu Zhu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhaoqiang Zhang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guiqing Liao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Sun Yat-sen University, 56th Lingyuanxi Road, Guangzhou, 510055, China
| | - Lixin Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, China
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- State Key Laboratory of Oncology in South China, Guangzhou, 510060, China
| |
Collapse
|
2
|
RNA-binding proteins and cancer metastasis. Semin Cancer Biol 2022; 86:748-768. [PMID: 35339667 DOI: 10.1016/j.semcancer.2022.03.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
RNA-binding proteins (RBPs) can regulate gene expression through post-transcriptionally influencing all manner of RNA biology, including alternative splicing (AS), polyadenylation, stability, and translation of mRNAs, as well as microRNAs (miRNAs) and circular RNAs (circRNAs) processing. There is accumulating evidence reinforcing the perception that dysregulation or dysfunction of RBPs can lead to various human diseases, including cancers. RBPs influence diverse cancer-associated cellular phenotypes, such as proliferation, apoptosis, senescence, migration, invasion, and angiogenesis, contributing to the initiation and development of tumors, as well as clinical prognosis. Metastasis is the leading cause of cancer-related recurrence and death. Therefore, it is necessary to elucidate the molecular mechanisms behind tumor metastasis. In fact, a growing body of published research has proved that RBPs play pivotal roles in cancer metastasis. In this review, we will summarize the recent advances for helping us understand the role of RBPs in tumor metastasis, and discuss dysfunctions and dysregulations of RBPs affecting metastasis-associated processes including epithelial-mesenchymal transition (EMT), migration, and invasion of cancer cells. Furthermore, we will discuss emerging RBP-based strategy for the treatment of cancer metastasis.
Collapse
|
3
|
Titus MB, Chang AW, Olesnicky EC. Exploring the Diverse Functional and Regulatory Consequences of Alternative Splicing in Development and Disease. Front Genet 2021; 12:775395. [PMID: 34899861 PMCID: PMC8652244 DOI: 10.3389/fgene.2021.775395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
Alternative splicing is a fundamental mechanism of eukaryotic RNA regulation that increases the transcriptomic and proteomic complexity within an organism. Moreover, alternative splicing provides a framework for generating unique yet complex tissue- and cell type-specific gene expression profiles, despite using a limited number of genes. Recent efforts to understand the negative consequences of aberrant splicing have increased our understanding of developmental and neurodegenerative diseases such as spinal muscular atrophy, frontotemporal dementia and Parkinsonism linked to chromosome 17, myotonic dystrophy, and amyotrophic lateral sclerosis. Moreover, these studies have led to the development of innovative therapeutic treatments for diseases caused by aberrant splicing, also known as spliceopathies. Despite this, a paucity of information exists on the physiological roles and specific functions of distinct transcript spliceforms for a given gene. Here, we will highlight work that has specifically explored the distinct functions of protein-coding spliceforms during development. Moreover, we will discuss the use of alternative splicing of noncoding exons to regulate the stability and localization of RNA transcripts.
Collapse
Affiliation(s)
- M Brandon Titus
- University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Adeline W Chang
- University of Colorado Colorado Springs, Colorado Springs, CO, United States
| | - Eugenia C Olesnicky
- University of Colorado Colorado Springs, Colorado Springs, CO, United States
| |
Collapse
|
4
|
Bai W, Wells ML, Lai WS, Hicks SN, Burkholder AB, Perera L, Kimmel AR, Blackshear PJ. A post-transcriptional regulon controlled by TtpA, the single tristetraprolin family member expressed in Dictyostelium discoideum. Nucleic Acids Res 2021; 49:11920-11937. [PMID: 34718768 DOI: 10.1093/nar/gkab983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/30/2022] Open
Abstract
Post-transcriptional processes mediated by mRNA binding proteins represent important control points in gene expression. In eukaryotes, mRNAs containing specific AU-rich motifs are regulated by binding of tristetraprolin (TTP) family tandem zinc finger proteins, which promote mRNA deadenylation and decay, partly through interaction of a conserved C-terminal CNOT1 binding (CNB) domain with CCR4-NOT protein complexes. The social ameba Dictyostelium discoideum shared a common ancestor with humans more than a billion years ago, and expresses only one TTP family protein, TtpA, in contrast to three members expressed in humans. Evaluation of ttpA null-mutants identified six transcripts that were consistently upregulated compared to WT during growth and early development. The 3'-untranslated regions (3'-UTRs) of all six 'TtpA-target' mRNAs contained multiple TTP binding motifs (UUAUUUAUU), and one 3'-UTR conferred TtpA post-transcriptional stability regulation to a heterologous mRNA that was abrogated by mutations in the core TTP-binding motifs. All six target transcripts were upregulated to similar extents in a C-terminal truncation mutant, in contrast to less severe effects of analogous mutants in mice. All six target transcripts encoded probable membrane proteins. In Dictyostelium, TtpA may control an 'RNA regulon', where a single RNA binding protein, TtpA, post-transcriptionally co-regulates expression of several functionally related proteins.
Collapse
Affiliation(s)
- Wenli Bai
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Melissa L Wells
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Wi S Lai
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Stephanie N Hicks
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Adam B Burkholder
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Perry J Blackshear
- The Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA.,The Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
5
|
Feng H, Wan C, Zhang Z, Chen H, Li Z, Jiang H, Yin M, Dong S, Dou D, Wang Y, Zheng X, Ye W. Specific interaction of an RNA-binding protein with the 3'-UTR of its target mRNA is critical to oomycete sexual reproduction. PLoS Pathog 2021; 17:e1010001. [PMID: 34648596 PMCID: PMC8547697 DOI: 10.1371/journal.ppat.1010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/26/2021] [Accepted: 10/03/2021] [Indexed: 01/17/2023] Open
Abstract
Sexual reproduction is an essential stage of the oomycete life cycle. However, the functions of critical regulators in this biological process remain unclear due to a lack of genome editing technologies and functional genomic studies in oomycetes. The notorious oomycete pathogen Pythium ultimum is responsible for a variety of diseases in a broad range of plant species. In this study, we revealed the mechanism through which PuM90, a stage-specific Puf family RNA-binding protein, regulates oospore formation in P. ultimum. We developed the first CRISPR/Cas9 system-mediated gene knockout and in situ complementation methods for Pythium. PuM90-knockout mutants were significantly defective in oospore formation, with empty oogonia or oospores larger in size with thinner oospore walls compared with the wild type. A tripartite recognition motif (TRM) in the Puf domain of PuM90 could specifically bind to a UGUACAUA motif in the mRNA 3′ untranslated region (UTR) of PuFLP, which encodes a flavodoxin-like protein, and thereby repress PuFLP mRNA level to facilitate oospore formation. Phenotypes similar to PuM90-knockout mutants were observed with overexpression of PuFLP, mutation of key amino acids in the TRM of PuM90, or mutation of the 3′-UTR binding site in PuFLP. The results demonstrated that a specific interaction of the RNA-binding protein PuM90 with the 3′-UTR of PuFLP mRNA at the post-transcriptional regulation level is critical for the sexual reproduction of P. ultimum. Oomycetes are a class of eukaryotic microorganisms with life cycles and growth habits similar to filamentous fungi, but are not true fungi. Although sexual reproduction, which produce oospores, is an essential stage of life cycle, the functions of critical regulators in this biological process remain unclear due to a lack of genome editing technologies and functional genomic studies in oomycetes. In this study, we developed the first CRISPR/Cas9 system-mediated gene knockout and in situ complementation methods for Pythium ultimum, a notorious oomycete pathogen that is responsible for a variety of diseases in a broad range of plant species. We further identified the Puf family RNA-binding protein PuM90 and the flavodoxin-like protein PuFLP as major functional factors involved in P. ultimum oospore formation. We proposed a new model that PuM90 acts as a stage-specific post-transcriptional regulator by specifically binding to the 3′-UTR of PuFLP and then repressing PuFLP mRNA level. This study describes new technologies and data that will help to elucidate sexual reproduction and post-transcriptional regulation in oomycetes.
Collapse
Affiliation(s)
- Hui Feng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Chuanxu Wan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Han Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Zhipeng Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Haibin Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Maozhu Yin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, Jiangsu, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|
6
|
Schieweck R, Ninkovic J, Kiebler MA. RNA-binding proteins balance brain function in health and disease. Physiol Rev 2020; 101:1309-1370. [PMID: 33000986 DOI: 10.1152/physrev.00047.2019] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Posttranscriptional gene expression including splicing, RNA transport, translation, and RNA decay provides an important regulatory layer in many if not all molecular pathways. Research in the last decades has positioned RNA-binding proteins (RBPs) right in the center of posttranscriptional gene regulation. Here, we propose interdependent networks of RBPs to regulate complex pathways within the central nervous system (CNS). These are involved in multiple aspects of neuronal development and functioning, including higher cognition. Therefore, it is not sufficient to unravel the individual contribution of a single RBP and its consequences but rather to study and understand the tight interplay between different RBPs. In this review, we summarize recent findings in the field of RBP biology and discuss the complex interplay between different RBPs. Second, we emphasize the underlying dynamics within an RBP network and how this might regulate key processes such as neurogenesis, synaptic transmission, and synaptic plasticity. Importantly, we envision that dysfunction of specific RBPs could lead to perturbation within the RBP network. This would have direct and indirect (compensatory) effects in mRNA binding and translational control leading to global changes in cellular expression programs in general and in synaptic plasticity in particular. Therefore, we focus on RBP dysfunction and how this might cause neuropsychiatric and neurodegenerative disorders. Based on recent findings, we propose that alterations in the entire regulatory RBP network might account for phenotypic dysfunctions observed in complex diseases including neurodegeneration, epilepsy, and autism spectrum disorders.
Collapse
Affiliation(s)
- Rico Schieweck
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Jovica Ninkovic
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Michael A Kiebler
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| |
Collapse
|
7
|
Costa G, Bradbury JJ, Tarannum N, Herbert SP. RAB13 mRNA compartmentalisation spatially orients tissue morphogenesis. EMBO J 2020; 39:e106003. [PMID: 32946121 PMCID: PMC7604621 DOI: 10.15252/embj.2020106003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
Polarised targeting of diverse mRNAs to cellular protrusions is a hallmark of cell migration. Although a widespread phenomenon, definitive functions for endogenous targeted mRNAs and their relevance to modulation of in vivo tissue dynamics remain elusive. Here, using single-molecule analysis, gene editing and zebrafish live-cell imaging, we report that mRNA polarisation acts as a molecular compass that orients motile cell polarity and spatially directs tissue movement. Clustering of protrusion-derived RNAseq datasets defined a core 192-nt localisation element underpinning precise mRNA targeting to sites of filopodia formation. Such targeting of the small GTPase RAB13 generated tight spatial coupling of mRNA localisation, translation and protein activity, achieving precise subcellular compartmentalisation of RAB13 protein function to create a polarised domain of filopodia extension. Consequently, genomic excision of this localisation element and perturbation of RAB13 mRNA targeting-but not translation-depolarised filopodia dynamics in motile endothelial cells and induced mispatterning of blood vessels in zebrafish. Hence, mRNA polarisation, not expression, is the primary determinant of the site of RAB13 action, preventing ectopic functionality at inappropriate subcellular loci and orienting tissue morphogenesis.
Collapse
Affiliation(s)
- Guilherme Costa
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, UK
| | - Joshua J Bradbury
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Nawseen Tarannum
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Shane P Herbert
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Yang L, Liu Q, Zhang X, Liu X, Zhou B, Chen J, Huang D, Li J, Li H, Chen F, Liu J, Xing Y, Chen X, Su S, Song E. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. Nature 2020; 583:133-138. [PMID: 32528174 DOI: 10.1038/s41586-020-2394-6] [Citation(s) in RCA: 563] [Impact Index Per Article: 112.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 05/01/2020] [Indexed: 12/15/2022]
Abstract
Neutrophil extracellular traps (NETs), which consist of chromatin DNA filaments coated with granule proteins, are released by neutrophils to trap microorganisms1-3. Recent studies have suggested that the DNA component of NETs (NET-DNA) is associated with cancer metastasis in mouse models4-6. However, the functional role and clinical importance of NET-DNA in metastasis in patients with cancer remain unclear. Here we show that NETs are abundant in the liver metastases of patients with breast and colon cancers, and that serum NETs can predict the occurrence of liver metastases in patients with early-stage breast cancer. NET-DNA acts as a chemotactic factor to attract cancer cells, rather than merely acting as a 'trap' for them; in several mouse models, NETs in the liver or lungs were found to attract cancer cells to form distant metastases. We identify the transmembrane protein CCDC25 as a NET-DNA receptor on cancer cells that senses extracellular DNA and subsequently activates the ILK-β-parvin pathway to enhance cell motility. NET-mediated metastasis is abrogated in CCDC25-knockout cells. Clinically, we show that the expression of CCDC25 on primary cancer cells is closely associated with a poor prognosis for patients. Overall, we describe a transmembrane DNA receptor that mediates NET-dependent metastasis, and suggest that targeting CCDC25 could be an appealing therapeutic strategy for the prevention of cancer metastasis.
Collapse
Affiliation(s)
- Linbin Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoqian Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xinwei Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Boxuan Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Di Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiaqian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Heliang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fei Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yue Xing
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xueman Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China. .,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China. .,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China. .,Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| |
Collapse
|
9
|
Sending messages in moving cells: mRNA localization and the regulation of cell migration. Essays Biochem 2020; 63:595-606. [PMID: 31324705 DOI: 10.1042/ebc20190009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022]
Abstract
Cell migration is a fundamental biological process involved in tissue formation and homeostasis. The correct polarization of motile cells is critical to ensure directed movement, and is orchestrated by many intrinsic and extrinsic factors. Of these, the subcellular distribution of mRNAs and the consequent spatial control of translation are key modulators of cell polarity. mRNA transport is dependent on cis-regulatory elements within transcripts, which are recognized by trans-acting proteins that ensure the efficient delivery of certain messages to the leading edge of migrating cells. At their destination, translation of localized mRNAs then participates in regional cellular responses underlying cell motility. In this review, we summarize the key findings that established mRNA targetting as a critical driver of cell migration and how the characterization of polarized mRNAs in motile cells has been expanded from just a few species to hundreds of transcripts. We also describe the molecular control of mRNA trafficking, subsequent mechanisms of local protein synthesis and how these ultimately regulate cell polarity during migration.
Collapse
|
10
|
Abstract
The use of nanomaterials to regulate cell surface receptors is considered a novel strategy to manipulate cell behaviors. However, recognition is important to drive nanoparticle-cell complex formation. Here, we report a novel approach that uses graphene oxide (GO) as a chemoattractant to lure bacteria to nanosurface, facilitating complex formation. The amount of Escherichia coli (E. coli) cells attracted into capillaries containing 20 mg/L GO was more than 8.6-fold higher than that attracted into capillaries containing 20 mg/L glucose. The inherent mechanism involved interference with transmembrane chemoreceptors and activation of the chemotactic system via GO attachment and a subsequent increase in cell aggregation and migration via self-secreted quorum sensing molecules. The key feature of this strategy is the potential to improve the efficiency of the nanoparticle-cell recognition pattern and to expedite the development of surface-contact-related nanotechnology.
Collapse
Affiliation(s)
- Chengdong Zhang
- School of Environment , Beijing Normal University , Xin Jie Kou Wai ST 19 , Beijing 100875 , China
| | - Yaqi Wang
- College of Environmental Science and Engineering , Nankai University , Tong Yan Rd. 38 , Tianjin 300350 , China
| | - Huiru Zhao
- College of Environmental Science and Engineering , Nankai University , Tong Yan Rd. 38 , Tianjin 300350 , China
| |
Collapse
|
11
|
Functions, mechanisms and regulation of Pumilio/Puf family RNA binding proteins: a comprehensive review. Mol Biol Rep 2019; 47:785-807. [PMID: 31643042 DOI: 10.1007/s11033-019-05142-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
The Pumilio (Pum)/Puf family proteins are ubiquitously present across eukaryotes, including yeast, plants and humans. They generally bind to the 3' untranslated regions of single stranded RNA targets in a sequence specific manner and destabilize them, although a few reports suggest their role in stabilizing the target transcripts. The Pum isoforms are implicated in a wide array of biological processes including stem cell maintenance, development, ribosome biogenesis as well as human diseases. Further studies on Pum would be interesting and important to understand their evolutionarily conserved and divergent features across species, which can have potential implications in medicine, plant sciences as well as basic molecular and cell biological studies. A large number of research reports exists, pertaining to various aspects of Pum, in individual experimental systems. This review is a comprehensive summary of the functions, types, mechanism of action as well as the regulation of Pum in various species. Also, the research questions to be addressed in future are discussed.
Collapse
|
12
|
Wang W, Chen S, Das S, Losert W, Parent CA. Adenylyl cyclase A mRNA localized at the back of cells is actively translated in live chemotaxing Dictyostelium. J Cell Sci 2018; 131:jcs.216176. [PMID: 29618632 DOI: 10.1242/jcs.216176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/26/2018] [Indexed: 11/20/2022] Open
Abstract
Dictyostelium discoideum cells transport adenylyl cyclase A (ACA)-containing vesicles to the back of polarized cells to relay exogenous cAMP signals during chemotaxis. Fluorescence in situ hybridization (FISH) experiments showed that ACA mRNA is also asymmetrically distributed at the back of polarized cells. By using the MS2 bacteriophage system, we now visualize the distribution of ACA mRNA in live chemotaxing cells. We found that the ACA mRNA localization is not dependent on the translation of the protein product and requires multiple cis-acting elements within the ACA-coding sequence. We show that ACA mRNA is associated with actively translating ribosomes and is transported along microtubules towards the back of cells. By monitoring the recovery of ACA-YFP after photobleaching, we observed that local translation of ACA-YFP occurs at the back of cells. These data represent a novel functional role for localized translation in the relay of chemotactic signals during chemotaxis.
Collapse
Affiliation(s)
- Weiye Wang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Song Chen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA.,Department of Pharmacology, Michigan Medicine, Ann Arbor, MI 48109, USA.,Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Satarupa Das
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA.,Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Wolfgang Losert
- Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Carole A Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA .,Department of Pharmacology, Michigan Medicine, Ann Arbor, MI 48109, USA.,Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|