1
|
Homma H, Yoshioka Y, Fujita K, Shirai S, Hama Y, Komano H, Saito Y, Yabe I, Okano H, Sasaki H, Tanaka H, Okazawa H. Dynamic molecular network analysis of iPSC-Purkinje cells differentiation delineates roles of ISG15 in SCA1 at the earliest stage. Commun Biol 2024; 7:413. [PMID: 38594382 PMCID: PMC11003991 DOI: 10.1038/s42003-024-06066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
Better understanding of the earliest molecular pathologies of all neurodegenerative diseases is expected to improve human therapeutics. We investigated the earliest molecular pathology of spinocerebellar ataxia type 1 (SCA1), a rare familial neurodegenerative disease that primarily induces death and dysfunction of cerebellum Purkinje cells. Extensive prior studies have identified involvement of transcription or RNA-splicing factors in the molecular pathology of SCA1. However, the regulatory network of SCA1 pathology, especially central regulators of the earliest developmental stages and inflammatory events, remains incompletely understood. Here, we elucidated the earliest developmental pathology of SCA1 using originally developed dynamic molecular network analyses of sequentially acquired RNA-seq data during differentiation of SCA1 patient-derived induced pluripotent stem cells (iPSCs) to Purkinje cells. Dynamic molecular network analysis implicated histone genes and cytokine-relevant immune response genes at the earliest stages of development, and revealed relevance of ISG15 to the following degradation and accumulation of mutant ataxin-1 in Purkinje cells of SCA1 model mice and human patients.
Collapse
Affiliation(s)
- Hidenori Homma
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yuki Yoshioka
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takaramachi, Kanazawa-shi, Ishikawa, 920-8640, Japan
| | - Shinichi Shirai
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Yuka Hama
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hajime Komano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuko Saito
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hidenao Sasaki
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hikari Tanaka
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
2
|
Thompson LM, Orr HT. HD and SCA1: Tales from two 30-year journeys since gene discovery. Neuron 2023; 111:3517-3530. [PMID: 37863037 PMCID: PMC10842341 DOI: 10.1016/j.neuron.2023.09.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/21/2023] [Accepted: 09/26/2023] [Indexed: 10/22/2023]
Abstract
One of the more transformative findings in human genetics was the discovery that the expansion of unstable nucleotide repeats underlies a group of inherited neurological diseases. A subset of these unstable repeat neurodegenerative diseases is due to the expansion of a CAG trinucleotide repeat encoding a stretch of glutamines, i.e., the polyglutamine (polyQ) repeat neurodegenerative diseases. Among the CAG/polyQ repeat diseases are Huntington's disease (HD) and spinocerebellar ataxia type 1 (SCA1), in which the expansions are within widely expressed proteins. Although both HD and SCA1 are autosomal dominantly inherited, and both typically cause mid- to late-life-onset movement disorders with cognitive decline, they each are characterized by distinct clinical characteristics and predominant sites of neuropathology. Importantly, the respective affected proteins, Huntingtin (HTT, HD) and Ataxin 1 (ATXN1, SCA1), have unique functions and biological properties. Here, we review HD and SCA1 with a focus on how their disease-specific and shared features may provide informative insights.
Collapse
Affiliation(s)
- Leslie M Thompson
- Department of Psychiatry and Human Behavior, Department of Neurobiology and Behavior, Department of Biological Chemistry, Institute of Memory Impairments and Neurological Disorders, Sue and Bill Gross Stem Cell Center, University of California Irvine, Irvine, CA 92697, USA
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis and Saint Paul, MN 55455, USA.
| |
Collapse
|
3
|
Chen JM, Chen SK, Jin PP, Sun SC. Identification of the ataxin-1 interaction network and its impact on spinocerebellar ataxia type 1. Hum Genomics 2022; 16:29. [PMID: 35906672 PMCID: PMC9335979 DOI: 10.1186/s40246-022-00404-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/22/2022] [Indexed: 12/03/2022] Open
Abstract
Background Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disease caused by a polyglutamine expansion in the ataxin-1 protein. The pathogenic mechanism resulting in SCA1 is still unclear. Protein–protein interactions affect the function and stability of ataxin-1. Methods Wild-type and mutant ataxin-1 were expressed in HEK-293T cells. The levels of expression were assessed using real-time polymerase chain reaction (PCR) and Western blots. Co-immunoprecipitation was done in HEK-293T cells expressing exogenous wild-type and mutant ataxin-1 using anti-Flag antibody following by tandem affinity purification in order to study protein–protein interactions. The candidate interacting proteins were validated by immunoprecipitation. Chromatin immunoprecipitation and high-throughput sequencing and RNA immunoprecipitation and high-throughput sequencing were performed using HEK-293T cells expressing wild-type or mutant ataxin-1. Results In this study using HEK-293T cells, we found that wild-type ataxin-1 interacted with MCM2, GNAS, and TMEM206, while mutant ataxin-1 lost its interaction with MCM2, GNAS, and TMEM206. Two ataxin-1 binding targets containing the core GGAG or AAAT were identified in HEK-293T cells using ChIP-seq. Gene Ontology analysis of the top ataxin-1 binding genes identified SLC6A15, NTF3, KCNC3, and DNAJC6 as functional genes in neurons in vitro. Ataxin-1 also was identified as an RNA-binding protein in HEK-293T cells using RIP-seq, but the polyglutamine expansion in the ataxin-1 had no direct effects on the RNA-binding activity of ataxin-1. Conclusions An expanded polyglutamine tract in ataxin-1 might interfere with protein–protein or protein–DNA interactions but had little effect on protein–RNA interactions. This study suggested that the dysfunction of protein–protein or protein–DNA interactions is involved in the pathogenesis of SCA1.
Collapse
Affiliation(s)
- Jiu-Ming Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201801, China
| | - Shi-Kai Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201801, China
| | - Pei-Pei Jin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201801, China
| | - Shun-Chang Sun
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201801, China.
| |
Collapse
|
4
|
Liang T, Chen T, Qiu J, Gao W, Qiu X, Zhu Y, Wang X, Chen Y, Zhou H, Deng Z, Li P, Xu C, Peng Y, Liang A, Su P, Gao B, Huang D. Inhibition of nuclear receptor RORα attenuates cartilage damage in osteoarthritis by modulating IL-6/STAT3 pathway. Cell Death Dis 2021; 12:886. [PMID: 34584074 PMCID: PMC8478978 DOI: 10.1038/s41419-021-04170-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/26/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022]
Abstract
Osteoarthritis (OA) is characterized by cartilage destruction, chronic inflammation, and local pain. Evidence showed that retinoic acid receptor-related orphan receptor-α (RORα) is crucial in cartilage development and OA pathogenesis. Here, we investigated the role and molecular mechanism of RORα, an important member of the nuclear receptor family, in regulating the development of OA pathologic features. Investigation into clinical cartilage specimens showed that RORα expression level is positively correlated with the severity of OA and cartilage damage. In an in vivo OA model induced by anterior crucial ligament transaction, intra-articular injection of si-Rora adenovirus reversed the cartilage damage. The expression of cartilage matrix components type II collagen and aggrecan were elevated upon RORα blockade. RNA-seq data suggested that the IL-6/STAT3 pathway is significantly downregulated, manifesting the reduced expression level of both IL-6 and phosphorylated STAT3. RORα exerted its effect on IL-6/STAT3 signaling in two different ways, including interaction with STAT3 and IL-6 promoter. Taken together, our findings indicated the pivotal role of the RORα/IL-6/STAT3 axis in OA progression and confirmed that RORα blockade improved the matrix catabolism in OA chondrocytes. These results may provide a potential treatment target in OA therapy.
Collapse
MESH Headings
- Aged
- Animals
- Base Sequence
- Benzamides/chemistry
- Benzamides/pharmacology
- Cartilage, Articular/drug effects
- Cartilage, Articular/metabolism
- Cartilage, Articular/pathology
- Chondrocytes/metabolism
- Chondrocytes/pathology
- Disease Models, Animal
- Down-Regulation/drug effects
- Female
- Fluorocarbons/chemistry
- Fluorocarbons/pharmacology
- Humans
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Male
- Mice, Inbred C57BL
- Models, Biological
- Nuclear Receptor Subfamily 1, Group F, Member 1/agonists
- Nuclear Receptor Subfamily 1, Group F, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Osteoarthritis/genetics
- Osteoarthritis/metabolism
- Osteoarthritis/pathology
- Phosphorylation/drug effects
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- STAT3 Transcription Factor/metabolism
- Severity of Illness Index
- Signal Transduction
- Sulfonamides/chemistry
- Sulfonamides/pharmacology
- Thiophenes/chemistry
- Thiophenes/pharmacology
- Mice
Collapse
Affiliation(s)
- Tongzhou Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Taiqiu Chen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jincheng Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenjie Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xianjian Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuanxin Zhu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xudong Wang
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanbo Chen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hang Zhou
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhihuai Deng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pengfei Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Caixia Xu
- Research Centre for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Peng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anjing Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Peiqiang Su
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bo Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Dongsheng Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Liang T, Qiu J, Li S, Deng Z, Qiu X, Hu W, Li P, Chen T, Liang Z, Zhou H, Gao B, Huang D, Liang A, Gao W. Inverse Agonist of Retinoid-Related Orphan Receptor-Alpha Prevents Apoptosis and Degeneration in Nucleus Pulposus Cells via Upregulation of YAP. Mediators Inflamm 2021; 2021:9954909. [PMID: 34366712 PMCID: PMC8337132 DOI: 10.1155/2021/9954909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/17/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Intervertebral disc degenerative disease (IDD) is the most common degenerative spine disease, which leads to chronic low back pain and symptoms in the lower extremities. In this study, we found that RORα, a member of the retinoid-related orphan receptor family, is significantly elevated in nucleus pulposus tissue in IDD patients. The elevation of RORα is associated with increased apoptosis of nucleus pulposus (NP) cells. Therefore, we applicated a well-established inverse agonist of RORα, SR3335, to investigate its role in regulating NP cell metabolism and apoptosis. To further investigate the mechanism that SR3335 regulates the pathogenesis of IDD in vitro, tumor necrosis factor alpha (TNF-α) stimulation was used in human NP cells to mimic the hostile environment that leads to degeneration. We found that SR3335 treatment reversed the trend of increased apoptosis in NP cells induced by TNF-α treatment. Next, TNF-α treatment upregulated the expression of type II collagen and aggrecan and downregulated MMP13 (matrix-degrading enzyme matrix metalloproteinase 13) and ADAMTS4 (a disintegrin and metalloproteinase with thrombospondin motifs 4). However, these effects were reversed after SR3335 treatment. Furthermore, we find that SR3335 mediated the effect in NP cells by regulating the YAP signaling pathway, especially by affecting the phosphorylation state of YAP. In conclusion, the reduction of matrix degradation enzymes and apoptosis upon SR3335 treatment suggests that SR3335 is a promising drug in reversing the deleterious microenvironment in IDD patients.
Collapse
Affiliation(s)
- Tongzhou Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Jincheng Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Shaoguang Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Zhihuai Deng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Xianjian Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Wenjun Hu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Pengfei Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Taiqiu Chen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Zhancheng Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Hang Zhou
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Bo Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Dongsheng Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Anjing Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Wenjie Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| |
Collapse
|
6
|
Edamakanti CR, Opal P. Developmental Alterations in Adult-Onset Neurodegenerative Disorders: Lessons from Polyglutamine Diseases. Mov Disord 2021; 36:1548-1552. [PMID: 34014004 DOI: 10.1002/mds.28657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 01/22/2023] Open
Affiliation(s)
| | - Puneet Opal
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Vrbský J, Vinarský V, Perestrelo AR, De La Cruz JO, Martino F, Pompeiano A, Izzi V, Hlinomaz O, Rotrekl V, Sudol M, Pagliari S, Forte G. Evidence for discrete modes of YAP1 signaling via mRNA splice isoforms in development and diseases. Genomics 2021; 113:1349-1365. [PMID: 33713822 DOI: 10.1016/j.ygeno.2021.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/10/2021] [Accepted: 03/05/2021] [Indexed: 01/02/2023]
Abstract
Yes-associated protein 1 (YAP1) is a transcriptional co-activator downstream of Hippo pathway. The pathway exerts crucial roles in organogenesis and its dysregulation is associated with the spreading of different cancer types. YAP1 gene encodes for multiple protein isoforms, whose specific functions are not well defined. We demonstrate the splicing of isoform-specific mRNAs is controlled in a stage- and tissue-specific fashion. We designed expression vectors encoding for the most-represented isoforms of YAP1 with either one or two WW domains and studied their specific signaling activities in YAP1 knock-out cell lines. YAP1 isoforms display both common and unique functions and activate distinct transcriptional programs, as the result of their unique protein interactomes. By generating TEAD-based transcriptional reporter cell lines, we demonstrate individual YAP1 isoforms display unique effects on cell proliferation and differentiation. Finally, we illustrate the complexity of the regulation of Hippo-YAP1 effector in physiological and in pathological conditions of the heart.
Collapse
Affiliation(s)
- Jan Vrbský
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic.
| | - Vladimir Vinarský
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic; Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, CZ-62500 Brno, Czech Republic
| | - Ana Rubina Perestrelo
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Jorge Oliver De La Cruz
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic; Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, CZ-62500 Brno, Czech Republic
| | - Fabiana Martino
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic; Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, CZ-62500 Brno, Czech Republic; Department of Biology, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Antonio Pompeiano
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Valerio Izzi
- University of Oulu, FI-90014 Oulu, Finland; Finnish Cancer Institute, 00130 Helsinki, Finland
| | - Ota Hlinomaz
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Vladimir Rotrekl
- Department of Biology, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Marius Sudol
- Department of Physiology, Yong Loo Li School of Medicine, Block MD9, 2 Medical Drive #04-01, 117597, Singapore; Mechanobiology Institute, T-Lab, 5A Engineering Drive 1, 117411, Singapore; Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, New York 10029, United States of America
| | - Stefania Pagliari
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Giancarlo Forte
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic; Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, CZ-62500 Brno, Czech Republic.
| |
Collapse
|
8
|
Cobbaut M, Karagil S, Bruno L, Diaz de la Loza MDC, Mackenzie FE, Stolinski M, Elbediwy A. Dysfunctional Mechanotransduction through the YAP/TAZ/Hippo Pathway as a Feature of Chronic Disease. Cells 2020; 9:cells9010151. [PMID: 31936297 PMCID: PMC7016982 DOI: 10.3390/cells9010151] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 02/07/2023] Open
Abstract
In order to ascertain their external environment, cells and tissues have the capability to sense and process a variety of stresses, including stretching and compression forces. These mechanical forces, as experienced by cells and tissues, are then converted into biochemical signals within the cell, leading to a number of cellular mechanisms being activated, including proliferation, differentiation and migration. If the conversion of mechanical cues into biochemical signals is perturbed in any way, then this can be potentially implicated in chronic disease development and processes such as neurological disorders, cancer and obesity. This review will focus on how the interplay between mechanotransduction, cellular structure, metabolism and signalling cascades led by the Hippo-YAP/TAZ axis can lead to a number of chronic diseases and suggest how we can target various pathways in order to design therapeutic targets for these debilitating diseases and conditions.
Collapse
Affiliation(s)
- Mathias Cobbaut
- Protein Phosphorylation Lab, Francis Crick Institute, London NW1 1AT, UK;
| | - Simge Karagil
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
| | - Lucrezia Bruno
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
- Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK;
| | | | - Francesca E Mackenzie
- Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK;
| | - Michael Stolinski
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
| | - Ahmed Elbediwy
- Department of Biomolecular Sciences, Kingston University, Kingston-upon-Thames KT1 2EE, UK; (S.K.); (L.B.); (M.S.)
- Correspondence:
| |
Collapse
|
9
|
Human Huntington's Disease iPSC-Derived Cortical Neurons Display Altered Transcriptomics, Morphology, and Maturation. Cell Rep 2019; 25:1081-1096.e6. [PMID: 30355486 DOI: 10.1016/j.celrep.2018.09.076] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/02/2018] [Accepted: 09/24/2018] [Indexed: 01/11/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by an expanded CAG repeat in the Huntingtin (HTT) gene. Induced pluripotent stem cell (iPSC) models of HD provide an opportunity to study the mechanisms underlying disease pathology in disease-relevant patient tissues. Murine studies have demonstrated that HTT is intricately involved in corticogenesis. However, the effect of mutant Hungtintin (mtHTT) in human corticogenesis has not yet been thoroughly explored. This examination is critical, due to inherent differences in cortical development and timing between humans and mice. We therefore differentiated HD and non-diseased iPSCs into functional cortical neurons. While HD patient iPSCs can successfully differentiate toward a cortical fate in culture, the resulting neurons display altered transcriptomics, morphological and functional phenotypes indicative of altered corticogenesis in HD.
Collapse
|
10
|
Rojek KO, Krzemień J, Doleżyczek H, Boguszewski PM, Kaczmarek L, Konopka W, Rylski M, Jaworski J, Holmgren L, Prószyński TJ. Amot and Yap1 regulate neuronal dendritic tree complexity and locomotor coordination in mice. PLoS Biol 2019; 17:e3000253. [PMID: 31042703 PMCID: PMC6513106 DOI: 10.1371/journal.pbio.3000253] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 05/13/2019] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
The angiomotin (Amot)-Yes-associated protein 1 (Yap1) complex plays a major role in regulating the inhibition of cell contact, cellular polarity, and cell growth in many cell types. However, the function of Amot and the Hippo pathway transcription coactivator Yap1 in the central nervous system remains unclear. We found that Amot is a critical mediator of dendritic morphogenesis in cultured hippocampal cells and Purkinje cells in the brain. Amot function in developing neurons depends on interactions with Yap1, which is also indispensable for dendrite growth and arborization in vitro. The conditional deletion of Amot and Yap1 in neurons led to a decrease in the complexity of Purkinje cell dendritic trees, abnormal cerebellar morphology, and impairments in motor coordination. Our results indicate that the function of Amot and Yap1 in dendrite growth does not rely on interactions with TEA domain (TEAD) transcription factors or the expression of Hippo pathway-dependent genes. Instead, Amot and Yap1 regulate dendrite development by affecting the phosphorylation of S6 kinase and its target S6 ribosomal protein.
Collapse
Affiliation(s)
- Katarzyna O. Rojek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Krzemień
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Hubert Doleżyczek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł M. Boguszewski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Leszek Kaczmarek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Witold Konopka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Rylski
- Centre of Postgraduate Medical Education, Warsaw, Poland
- Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | - Tomasz J. Prószyński
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
11
|
Callus BA, Finch-Edmondson ML, Fletcher S, Wilton SD. YAPping about and not forgetting TAZ. FEBS Lett 2019; 593:253-276. [PMID: 30570758 DOI: 10.1002/1873-3468.13318] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022]
Abstract
The Hippo pathway has emerged as a major eukaryotic signalling pathway and is increasingly the subject of intense interest, as are the key effectors of canonical Hippo signalling, YES-associated protein (YAP) and TAZ. The Hippo pathway has key roles in diverse biological processes, including network signalling regulation, development, organ growth, tissue repair and regeneration, cancer, stem cell regulation and mechanotransduction. YAP and TAZ are multidomain proteins and function as transcriptional coactivators of key genes to evoke their biological effects. YAP and TAZ interact with numerous partners and their activities are controlled by a complex set of processes. This review provides an overview of Hippo signalling and its role in growth. In particular, the functional domains of YAP and TAZ and the complex mechanisms that regulate their protein stability and activity are discussed. Notably, the similarities and key differences are highlighted between the two paralogues including which partner proteins interact with which functional domains to regulate their activity.
Collapse
Affiliation(s)
| | - Megan L Finch-Edmondson
- Discipline of Child and Adolescent Health, Children's Hospital at Westmead Clinical School, University of Sydney Medical School, Australia.,Cerebral Palsy Alliance Research Institute, University of Sydney, Australia
| | - Sue Fletcher
- Centre for Comparative Genomics, Murdoch University, Australia.,Perron Institute for Neurological and Translational Research, Nedlands, Australia
| | - Steve D Wilton
- Centre for Comparative Genomics, Murdoch University, Australia.,Perron Institute for Neurological and Translational Research, Nedlands, Australia
| |
Collapse
|
12
|
Abstract
Alternative splicing is a well-studied gene regulatory mechanism that produces biological diversity by allowing the production of multiple protein isoforms from a single gene. An involvement of alternative splicing in the key biological signalling Hippo pathway is emerging and offers new therapeutic avenues. This review discusses examples of alternative splicing in the Hippo pathway, how deregulation of these processes may contribute to disease and whether these processes offer new potential therapeutic targets.
Collapse
|