1
|
Meng WH, Zhang X, Pan BB, Tan X, Zhao JL, Liu Y, Yang Y, Goldfarb D, Su XC. Efficient Orthogonal Spin Labeling of Proteins via Aldehyde Cyclization for Pulsed Dipolar EPR Distance Measurements. J Am Chem Soc 2025; 147:234-246. [PMID: 39731614 DOI: 10.1021/jacs.4c09139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Pulsed dipolar electron paramagnetic resonance (PD-EPR) measurement is a powerful technique for characterizing the interactions and conformational changes of biomolecules. The extraction of these distance restraints from PD-EPR experiments relies on manipulation of spin-spin pairs. The orthogonal spin labeling approach offers unique advantages by providing multiple distances between different spin-spin pairs. Here, we report an efficient orthogonal labeling approach based on exploiting the cyclization between the 1,2-aminothiol moiety in a protein (e.g., the N-terminal cysteine) with the aldehyde group in a spin label and a thiol substitution (or addition) reaction with a different spin label. We demonstrated that this orthogonal spin labeling method enables high accuracy and precision of multiple protein distance constraints through the PD-EPR measurement from a single sample. This spin labeling approach was applied to characterize the oligomeric state of the trigger factor (TF) protein of Escherichia coli, an important protein chaperone, in solution and cell lysates by distance measurements between different spin-spin pairs. Contrary to popular belief, TF exists mainly in the monomeric state and not as a dimer in the cell lysate.
Collapse
Affiliation(s)
- Wei-Han Meng
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xing Zhang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bin-Bin Pan
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoli Tan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical, Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jia-Long Zhao
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical, Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yin Yang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Njenga RK, Boele J, Drepper F, Sinha K, Marouda E, Huesgen PF, Blaby-Haas C, Koch HG. Ribosome-inactivation by a class of widely distributed C-tail anchored membrane proteins. Structure 2024; 32:2259-2275.e6. [PMID: 39419022 DOI: 10.1016/j.str.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/16/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
Ribosome hibernation is a commonly used strategy that protects ribosomes under unfavorable conditions and regulates developmental processes. Multiple ribosome-hibernation factors have been identified in all domains of life, but due to their structural diversity and the lack of a common inactivation mechanism, it is currently unknown how many different hibernation factors exist. Here, we show that the YqjD/ElaB/YgaM paralogs, initially discovered as membrane-bound ribosome binding proteins in E. coli, constitute an abundant class of ribosome-hibernating proteins, which are conserved across all proteobacteria and some other bacterial phyla. Our data demonstrate that they inhibit in vitro protein synthesis by interacting with the 50S ribosomal subunit. In vivo cross-linking combined with mass spectrometry revealed their specific interactions with proteins surrounding the ribosomal tunnel exit and even their penetration into the ribosomal tunnel. Thus, YqjD/ElaB/YgaM inhibit translation by blocking the ribosomal tunnel and thus mimic the activity of antimicrobial peptides and macrolide antibiotics.
Collapse
Affiliation(s)
- Robert Karari Njenga
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Julian Boele
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Friedel Drepper
- Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Kasturica Sinha
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Eirini Marouda
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Pitter F Huesgen
- Fakultät für Biologie, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Crysten Blaby-Haas
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hans-Georg Koch
- Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
3
|
Herling TW, Cassaignau AME, Wentink AS, Peter QAE, Kumar PC, Kartanas T, Schneider MM, Cabrita LD, Christodoulou J, Knowles TPJ. Thermodynamic profiles for cotranslational trigger factor substrate recognition. SCIENCE ADVANCES 2024; 10:eadn4824. [PMID: 38985872 PMCID: PMC11235164 DOI: 10.1126/sciadv.adn4824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
Molecular chaperones are central to the maintenance of proteostasis in living cells. A key member of this protein family is trigger factor (TF), which acts throughout the protein life cycle and has a ubiquitous role as the first chaperone encountered by proteins during synthesis. However, our understanding of how TF achieves favorable interactions with such a diverse substrate base remains limited. Here, we use microfluidics to reveal the thermodynamic determinants of this process. We find that TF binding to empty 70S ribosomes is enthalpy-driven, with micromolar affinity, while nanomolar affinity is achieved through a favorable entropic contribution for both intrinsically disordered and folding-competent nascent chains. These findings suggest a general mechanism for cotranslational TF function, which relies on occupation of the exposed TF-substrate binding groove rather than specific complementarity between chaperone and nascent chain. These insights add to our wider understanding of how proteins can achieve broad substrate specificity.
Collapse
Affiliation(s)
- Therese W. Herling
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Anaïs M. E. Cassaignau
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1 6BT, UK
| | - Anne S. Wentink
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1 6BT, UK
| | - Quentin A. E. Peter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Pavan C. Kumar
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Tadas Kartanas
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Matthias M. Schneider
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Lisa D. Cabrita
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1 6BT, UK
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1 6BT, UK
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
4
|
Aspholm EE, Lidman J, Burmann BM. Structural basis of substrate recognition and allosteric activation of the proapoptotic mitochondrial HtrA2 protease. Nat Commun 2024; 15:4592. [PMID: 38816423 PMCID: PMC11535027 DOI: 10.1038/s41467-024-48997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
The mitochondrial serine protease HtrA2 is a human homolog of the Escherichia coli Deg-proteins exhibiting chaperone and proteolytic roles. HtrA2 is involved in both apoptotic regulation via its ability to degrade inhibitor-of-apoptosis proteins (IAPs), as well as in cellular maintenance as part of the cellular protein quality control machinery, by preventing the possible toxic accumulation of aggregated proteins. In this study, we use advanced solution NMR spectroscopy methods combined with biophysical characterization and biochemical assays to elucidate the crucial role of the substrate recognizing PDZ domain. This domain regulates the protease activity of HtrA2 by triggering an intricate allosteric network involving the regulatory loops of the protease domain. We further show that divalent metal ions can both positively and negatively modulate the activity of HtrA2, leading to a refined model of HtrA2 regulation within the apoptotic pathway.
Collapse
Affiliation(s)
- Emelie E Aspholm
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden
| | - Jens Lidman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden
| | - Björn M Burmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden.
| |
Collapse
|
5
|
Lykoshin DD, Kostromina MA, Azmukova VR, Esipov RS. Chaperone-mediated production of active homodimer human bone morphogenetic protein - 2 in E. coli. Protein Expr Purif 2023; 206:106245. [PMID: 36805029 DOI: 10.1016/j.pep.2023.106245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/23/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023]
Abstract
Human bone morphogenetic protein 2 (hBMP-2) plays a leading role in the process of osteogenesis and is one of the key components of osteoplastic materials, ensuring their high osteoinduction. In order to obtain a homodimeric form hBMP-2 using the E. coli expression system, a number of problems associated with refolding in vitro and purification from monomer and oligomeric forms must be solved. The developed method for co-expression of the target protein with chaperone proteins makes it possible to obtain the biologically active homodimeric form of hBMP-2 in vivo. Purification with simple ion-exchange sorbents without the use of denaturing reagents affecting the structure of the protein molecule provides a chromatographic purity of the product of at least 97%. The expressed hBMP-2 was identified by Western blotting and the LC-ESI-TOF mass spectrometry confirmed its molecular weight of 26052.72 Da. Circular dichroism spectroscopy showed that recombinant hBMP-2 has a native secondary structure.
Collapse
Affiliation(s)
- Dmitry D Lykoshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Maria A Kostromina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Veronika R Azmukova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Roman S Esipov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| |
Collapse
|
6
|
Troussicot L, Vallet A, Molin M, Burmann BM, Schanda P. Disulfide-Bond-Induced Structural Frustration and Dynamic Disorder in a Peroxiredoxin from MAS NMR. J Am Chem Soc 2023; 145:10700-10711. [PMID: 37140345 PMCID: PMC10197130 DOI: 10.1021/jacs.3c01200] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Indexed: 05/05/2023]
Abstract
Disulfide bond formation is fundamentally important for protein structure and constitutes a key mechanism by which cells regulate the intracellular oxidation state. Peroxiredoxins (PRDXs) eliminate reactive oxygen species such as hydrogen peroxide through a catalytic cycle of Cys oxidation and reduction. Additionally, upon Cys oxidation PRDXs undergo extensive conformational rearrangements that may underlie their presently structurally poorly defined functions as molecular chaperones. Rearrangements include high molecular-weight oligomerization, the dynamics of which are, however, poorly understood, as is the impact of disulfide bond formation on these properties. Here we show that formation of disulfide bonds along the catalytic cycle induces extensive μs time scale dynamics, as monitored by magic-angle spinning NMR of the 216 kDa-large Tsa1 decameric assembly and solution-NMR of a designed dimeric mutant. We ascribe the conformational dynamics to structural frustration, resulting from conflicts between the disulfide-constrained reduction of mobility and the desire to fulfill other favorable contacts.
Collapse
Affiliation(s)
- Laura Troussicot
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, SE-405 30 Göteborg, Sweden
- Wallenberg
Centre for Molecular and Translational Medicine, University of Gothenburg, SE-405 30 Göteborg, Sweden
- Institut
de Biologie Structurale, Univ. Grenoble
Alpes, CEA, CNRS, IBS, 71 Avenue des Martyrs, F-38044 Grenoble, France
- Institute
of Science and Technology Austria, Am Campus
1, A-3400 Klosterneuburg, Austria
| | - Alicia Vallet
- Institut
de Biologie Structurale, Univ. Grenoble
Alpes, CEA, CNRS, IBS, 71 Avenue des Martyrs, F-38044 Grenoble, France
| | - Mikael Molin
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, SE-405 30 Göteborg, Sweden
- Department
of Life Sciences, Chalmers University of
Technology, SE-405 30 Göteborg, Sweden
| | - Björn M. Burmann
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, SE-405 30 Göteborg, Sweden
- Wallenberg
Centre for Molecular and Translational Medicine, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Paul Schanda
- Institute
of Science and Technology Austria, Am Campus
1, A-3400 Klosterneuburg, Austria
| |
Collapse
|
7
|
Carius Y, Ries F, Gries K, Trentmann O, Lancaster CRD, Willmund F. Structural features of chloroplast trigger factor determined at 2.6 Å resolution. Acta Crystallogr D Struct Biol 2022; 78:1259-1272. [PMID: 36189745 PMCID: PMC9527764 DOI: 10.1107/s2059798322009068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/11/2022] [Indexed: 11/21/2022] Open
Abstract
The folding of newly synthesized polypeptides requires the coordinated action of molecular chaperones. Prokaryotic cells and the chloroplasts of plant cells possess the ribosome-associated chaperone trigger factor, which binds nascent polypeptides at their exit stage from the ribosomal tunnel. The structure of bacterial trigger factor has been well characterized and it has a dragon-shaped conformation, with flexible domains responsible for ribosome binding, peptidyl-prolyl cis-trans isomerization (PPIase) activity and substrate protein binding. Chloroplast trigger-factor sequences have diversified from those of their bacterial orthologs and their molecular mechanism in plant organelles has been little investigated to date. Here, the crystal structure of the plastidic trigger factor from the green alga Chlamydomonas reinhardtii is presented at 2.6 Å resolution. Due to the high intramolecular flexibility of the protein, diffraction to this resolution was only achieved using a protein that lacked the N-terminal ribosome-binding domain. The eukaryotic trigger factor from C. reinhardtii exhibits a comparable dragon-shaped conformation to its bacterial counterpart. However, the C-terminal chaperone domain displays distinct charge distributions, with altered positioning of the helical arms and a specifically altered charge distribution along the surface responsible for substrate binding. While the PPIase domain shows a highly conserved structure compared with other PPIases, its rather weak activity and an unusual orientation towards the C-terminal domain points to specific adaptations of eukaryotic trigger factor for function in chloroplasts.
Collapse
Affiliation(s)
- Yvonne Carius
- Department of Structural Biology, Saarland University, Center of Human and Molecular Biology (ZHMB), Faculty of Medicine, Building 60, 66421 Homburg, Germany
| | - Fabian Ries
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Erwin-Schrödinger-Strasse 70, 67663 Kaiserslautern, Germany
| | - Karin Gries
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Erwin-Schrödinger-Strasse 70, 67663 Kaiserslautern, Germany
| | - Oliver Trentmann
- Molecular Botany, University of Kaiserslautern, Erwin-Schrödinger-Strasse 70, 67663 Kaiserslautern, Germany
| | - C. Roy D. Lancaster
- Department of Structural Biology, Saarland University, Center of Human and Molecular Biology (ZHMB), Faculty of Medicine, Building 60, 66421 Homburg, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Erwin-Schrödinger-Strasse 70, 67663 Kaiserslautern, Germany
| |
Collapse
|
8
|
Wu K, Minshull TC, Radford SE, Calabrese AN, Bardwell JCA. Trigger factor both holds and folds its client proteins. Nat Commun 2022; 13:4126. [PMID: 35840586 PMCID: PMC9287376 DOI: 10.1038/s41467-022-31767-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/15/2022] [Indexed: 12/12/2022] Open
Abstract
ATP-independent chaperones like trigger factor are generally assumed to play passive roles in protein folding by acting as holding chaperones. Here we show that trigger factor plays a more active role. Consistent with a role as an aggregation inhibiting chaperone, we find that trigger factor rapidly binds to partially folded glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and prevents it from non-productive self-association by shielding oligomeric interfaces. In the traditional view of holding chaperone action, trigger factor would then be expected to transfer its client to a chaperone foldase system for complete folding. Unexpectedly, we noticed that GAPDH folds into a monomeric but otherwise rather native-like intermediate state while trigger factor-bound. Upon release from trigger factor, the mostly folded monomeric GAPDH rapidly self-associates into its native tetramer and acquires enzymatic activity without needing additional folding factors. The mechanism we propose here for trigger factor bridges the holding and folding activities of chaperone function.
Collapse
Affiliation(s)
- Kevin Wu
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Thomas C Minshull
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - James C A Bardwell
- Department of Molecular, Cellular, and Developmental Biology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Abstract
The folding of proteins into their native structure is crucial for the functioning of all biological processes. Molecular chaperones are guardians of the proteome that assist in protein folding and prevent the accumulation of aberrant protein conformations that can lead to proteotoxicity. ATP-independent chaperones do not require ATP to regulate their functional cycle. Although these chaperones have been traditionally regarded as passive holdases that merely prevent aggregation, recent work has shown that they can directly affect the folding energy landscape by tuning their affinity to various folding states of the client. This review focuses on emerging paradigms in the mechanism of action of ATP-independent chaperones and on the various modes of regulating client binding and release.
Collapse
Affiliation(s)
- Rishav Mitra
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA; .,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin Wu
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA; .,Department of Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| | - Changhan Lee
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| | - James C A Bardwell
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA; .,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
Fedorov AN. Biosynthetic Protein Folding and Molecular Chaperons. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S128-S19. [PMID: 35501992 DOI: 10.1134/s0006297922140115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The problem of linear polypeptide chain folding into a unique tertiary structure is one of the fundamental scientific challenges. The process of folding cannot be fully understood without its biological context, especially for big multidomain and multisubunit proteins. The principal features of biosynthetic folding are co-translational folding of growing nascent polypeptide chains and involvement of molecular chaperones in the process. The review summarizes available data on the early events of nascent chain folding, as well as on later advanced steps, including formation of elements of native structure. The relationship between the non-uniformity of translation rate and folding of the growing polypeptide is discussed. The results of studies on the effect of biosynthetic folding features on the parameters of folding as a physical process, its kinetics and mechanisms, are presented. Current understanding and hypotheses on the relationship of biosynthetic folding with the fundamental physical parameters and current views on polypeptide folding in the context of energy landscapes are discussed.
Collapse
Affiliation(s)
- Alexey N Fedorov
- Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
11
|
Stiller JB, Otten R, Häussinger D, Rieder PS, Theobald DL, Kern D. Structure determination of high-energy states in a dynamic protein ensemble. Nature 2022; 603:528-535. [PMID: 35236984 PMCID: PMC9126080 DOI: 10.1038/s41586-022-04468-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 01/25/2022] [Indexed: 01/24/2023]
Abstract
Macromolecular function frequently requires that proteins change conformation into high-energy states1-4. However, methods for solving the structures of these functionally essential, lowly populated states are lacking. Here we develop a method for high-resolution structure determination of minorly populated states by coupling NMR spectroscopy-derived pseudocontact shifts5 (PCSs) with Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion6 (PCS-CPMG). Our approach additionally defines the corresponding kinetics and thermodynamics of high-energy excursions, thereby characterizing the entire free-energy landscape. Using a large set of simulated data for adenylate kinase (Adk), calmodulin and Src kinase, we find that high-energy PCSs accurately determine high-energy structures (with a root mean squared deviation of less than 3.5 angström). Applying our methodology to Adk during catalysis, we find that the high-energy excursion involves surprisingly small openings of the AMP and ATP lids. This previously unresolved high-energy structure solves a longstanding controversy about conformational interconversions that are rate-limiting for catalysis. Primed for either substrate binding or product release, the high-energy structure of Adk suggests a two-step mechanism combining conformational selection to this state, followed by an induced-fit step into a fully closed state for catalysis of the phosphoryl-transfer reaction. Unlike other methods for resolving high-energy states, such as cryo-electron microscopy and X-ray crystallography, our solution PCS-CPMG approach excels in cases involving domain rearrangements of smaller systems (less than 60 kDa) and populations as low as 0.5%, and enables the simultaneous determination of protein structure, kinetics and thermodynamics while proteins perform their function.
Collapse
Affiliation(s)
- John B Stiller
- Department of Biochemistry and Howard Hughes Medical Institute, Brandeis University, Waltham, MA, USA
| | - Renee Otten
- Department of Biochemistry and Howard Hughes Medical Institute, Brandeis University, Waltham, MA, USA
| | | | - Pascal S Rieder
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | | - Dorothee Kern
- Department of Biochemistry and Howard Hughes Medical Institute, Brandeis University, Waltham, MA, USA.
| |
Collapse
|
12
|
Šulskis D, Thoma J, Burmann BM. Structural basis of DegP protease temperature-dependent activation. SCIENCE ADVANCES 2021; 7:eabj1816. [PMID: 34878848 PMCID: PMC8654288 DOI: 10.1126/sciadv.abj1816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/16/2021] [Indexed: 05/21/2023]
Abstract
Protein quality control is an essential cellular function mainly executed by a vast array of different proteases and molecular chaperones. One of the bacterial high temperature requirement A (HtrA) protein family members, the homo-oligomeric DegP protease, plays a crucial role in the Escherichia coli protein quality control machinery by removing unfolded proteins or preventing their aggregation and chaperoning them to their final folded state within the periplasm. DegP contains two regulatory PDZ domains, which play key roles in substrate recognition and in the transformation of DegP between inactive hexameric and proteolytic active cage-like structures. Here, we analyze the interaction and dynamics of the DegP PDZ domains underlying this transformation by high-resolution NMR spectroscopy complemented with biochemical cleavage assays. We identify an interdomain molecular lock, which controls the interactions between the two PDZ domains, regulated by fine-tuned temperature-dependent protein dynamics, and which is potentially conserved in proteins harboring tandem PDZ domains.
Collapse
Affiliation(s)
- Darius Šulskis
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden
| | - Johannes Thoma
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden
| | - Björn M. Burmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden
- Corresponding author.
| |
Collapse
|
13
|
Kurzawa-Akanbi M, Tammireddy S, Fabrik I, Gliaudelytė L, Doherty MK, Heap R, Matečko-Burmann I, Burmann BM, Trost M, Lucocq JM, Gherman AV, Fairfoul G, Singh P, Burté F, Green A, McKeith IG, Härtlova A, Whitfield PD, Morris CM. Altered ceramide metabolism is a feature in the extracellular vesicle-mediated spread of alpha-synuclein in Lewy body disorders. Acta Neuropathol 2021; 142:961-984. [PMID: 34514546 PMCID: PMC8568874 DOI: 10.1007/s00401-021-02367-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
Mutations in glucocerebrosidase (GBA) are the most prevalent genetic risk factor for Lewy body disorders (LBD)-collectively Parkinson's disease, Parkinson's disease dementia and dementia with Lewy bodies. Despite this genetic association, it remains unclear how GBA mutations increase susceptibility to develop LBD. We investigated relationships between LBD-specific glucocerebrosidase deficits, GBA-related pathways, and α-synuclein levels in brain tissue from LBD and controls, with and without GBA mutations. We show that LBD is characterised by altered sphingolipid metabolism with prominent elevation of ceramide species, regardless of GBA mutations. Since extracellular vesicles (EV) could be involved in LBD pathogenesis by spreading disease-linked lipids and proteins, we investigated EV derived from post-mortem cerebrospinal fluid (CSF) and brain tissue from GBA mutation carriers and non-carriers. EV purified from LBD CSF and frontal cortex were heavily loaded with ceramides and neurodegeneration-linked proteins including alpha-synuclein and tau. Our in vitro studies demonstrate that LBD EV constitute a "pathological package" capable of inducing aggregation of wild-type alpha-synuclein, mediated through a combination of alpha-synuclein-ceramide interaction and the presence of pathological forms of alpha-synuclein. Together, our findings indicate that abnormalities in ceramide metabolism are a feature of LBD, constituting a promising source of biomarkers, and that GBA mutations likely accelerate the pathological process occurring in sporadic LBD through endolysosomal deficiency.
Collapse
|
14
|
Thoma J, Burmann BM. Architects of their own environment: How membrane proteins shape the Gram-negative cell envelope. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:1-34. [PMID: 35034716 DOI: 10.1016/bs.apcsb.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gram-negative bacteria are surrounded by a complex multilayered cell envelope, consisting of an inner and an outer membrane, and separated by the aqueous periplasm, which contains a thin peptidoglycan cell wall. These bacteria employ an arsenal of highly specialized membrane protein machineries to ensure the correct assembly and maintenance of the membranes forming the cell envelope. Here, we review the diverse protein systems, which perform these functions in Escherichia coli, such as the folding and insertion of membrane proteins, the transport of lipoproteins and lipopolysaccharide within the cell envelope, the targeting of phospholipids, and the regulation of mistargeted envelope components. Some of these protein machineries have been known for a long time, yet still hold surprises. Others have only recently been described and some are still missing pieces or yet remain to be discovered.
Collapse
Affiliation(s)
- Johannes Thoma
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden.
| | - Björn M Burmann
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
15
|
Arhar T, Shkedi A, Nadel CM, Gestwicki JE. The interactions of molecular chaperones with client proteins: why are they so weak? J Biol Chem 2021; 297:101282. [PMID: 34624315 PMCID: PMC8567204 DOI: 10.1016/j.jbc.2021.101282] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
The major classes of molecular chaperones have highly variable sequences, sizes, and shapes, yet they all bind to unfolded proteins, limit their aggregation, and assist in their folding. Despite the central importance of this process to protein homeostasis, it has not been clear exactly how chaperones guide this process or whether the diverse families of chaperones use similar mechanisms. For the first time, recent advances in NMR spectroscopy have enabled detailed studies of how unfolded, "client" proteins interact with both ATP-dependent and ATP-independent classes of chaperones. Here, we review examples from four distinct chaperones, Spy, Trigger Factor, DnaK, and HscA-HscB, highlighting the similarities and differences between their mechanisms. One striking similarity is that the chaperones all bind weakly to their clients, such that the chaperone-client interactions are readily outcompeted by stronger, intra- and intermolecular contacts in the folded state. Thus, the relatively weak affinity of these interactions seems to provide directionality to the folding process. However, there are also key differences, especially in the details of how the chaperones release clients and how ATP cycling impacts that process. For example, Spy releases clients in a largely folded state, while clients seem to be unfolded upon release from Trigger Factor or DnaK. Together, these studies are beginning to uncover the similarities and differences in how chaperones use weak interactions to guide protein folding.
Collapse
Affiliation(s)
- Taylor Arhar
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco California, USA
| | - Arielle Shkedi
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco California, USA
| | - Cory M Nadel
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco California, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco California, USA.
| |
Collapse
|
16
|
Zinc-Dependent Oligomerization of Thermus thermophilus Trigger Factor Chaperone. BIOLOGY 2021; 10:biology10111106. [PMID: 34827099 PMCID: PMC8614707 DOI: 10.3390/biology10111106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Metal ions often play important roles in biological processes. Thermus thermophilus trigger factor (TtTF) is a zinc-dependent molecular chaperone where Zn2+ has been shown to enhance its folding-arrest activity. However, the mechanisms of how Zn2+ binds to TtTF and how Zn2+ affects the activity of TtTF are yet to be elucidated. As a first step in understanding the mechanism, we performed in vitro biophysical experiments on TtTF to investigate the zinc-binding site on TtTF and unveil how Zn2+ alters the physical properties of TtTF, including secondary structure, thermal stability, and oligomeric state. Our results showed that TtTF binds Zn2+ in a 1:1 ratio, and all three domains of TtTF are involved in zinc-binding. We found that Zn2+ does not affect the thermal stability of TtTF, whereas it does induce partial structural change and promote the oligomerization of TtTF. Given that the folding-arrest activity of Escherichia coli TF (EcTF) is regulated by its oligomerization, our results imply that TtTF exploits Zn2+ to modulate its oligomeric state to regulate the activity. Abstract Thermus thermophilus trigger factor (TtTF) is a zinc-dependent molecular chaperone whose folding-arrest activity is regulated by Zn2+. However, little is known about the mechanism of zinc-dependent regulation of the TtTF activity. Here we exploit in vitro biophysical experiments to investigate zinc-binding, the oligomeric state, the secondary structure, and the thermal stability of TtTF in the absence and presence of Zn2+. The data show that full-length TtTF binds Zn2+, but the isolated domains and tandem domains of TtTF do not bind to Zn2+. Furthermore, circular dichroism (CD) and nuclear magnetic resonance (NMR) spectra suggested that Zn2+-binding induces the partial structural changes of TtTF, and size exclusion chromatography-multi-angle light scattering (SEC-MALS) showed that Zn2+ promotes TtTF oligomerization. Given the previous work showing that the activity regulation of E. coli trigger factor is accompanied by oligomerization, the data suggest that TtTF exploits zinc ions to induce the structural change coupled with the oligomerization to assemble the client-binding site, thereby effectively preventing proteins from misfolding in the thermal environment.
Collapse
|
17
|
Macošek J, Mas G, Hiller S. Redefining Molecular Chaperones as Chaotropes. Front Mol Biosci 2021; 8:683132. [PMID: 34195228 PMCID: PMC8237284 DOI: 10.3389/fmolb.2021.683132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/20/2021] [Indexed: 01/27/2023] Open
Abstract
Molecular chaperones are the key instruments of bacterial protein homeostasis. Chaperones not only facilitate folding of client proteins, but also transport them, prevent their aggregation, dissolve aggregates and resolve misfolded states. Despite this seemingly large variety, single chaperones can perform several of these functions even on multiple different clients, thus suggesting a single biophysical mechanism underlying. Numerous recently elucidated structures of bacterial chaperone–client complexes show that dynamic interactions between chaperones and their client proteins stabilize conformationally flexible non-native client states, which results in client protein denaturation. Based on these findings, we propose chaotropicity as a suitable biophysical concept to rationalize the generic activity of chaperones. We discuss the consequences of applying this concept in the context of ATP-dependent and -independent chaperones and their functional regulation.
Collapse
|
18
|
Huang CT, Lai YC, Chen SY, Ho MR, Chiang YW, Hsu ST. Structural polymorphism and substrate promiscuity of a ribosome-associated molecular chaperone. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:375-386. [PMID: 37904759 PMCID: PMC10539794 DOI: 10.5194/mr-2-375-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/02/2021] [Indexed: 11/01/2023]
Abstract
Trigger factor (TF) is a highly conserved multi-domain molecular chaperone that exerts its chaperone activity at the ribosomal tunnel exit from which newly synthesized nascent chains emerge. TF also displays promiscuous substrate binding for a large number of cytosolic proteins independent of ribosome binding. We asked how TF recognizes a variety of substrates while existing in a monomer-dimer equilibrium. Paramagnetic nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy were used to show that dimeric TF displays a high degree of structural polymorphism in solution. A series of peptides has been generated to quantify their TF binding affinities in relation with their sequence compositions. The results confirmed a previous predication that TF preferentially binds to peptide fragments that are rich in aromatic and positively charged amino acids. NMR paramagnetic relaxation enhancement analysis showed that TF utilizes multiple binding sites, located in the chaperone domain and part of the prolyl trans-cis isomerization domain, to interact with these peptides. Dimerization of TF effectively sequesters most of the substrate binding sites, which are expected to become accessible upon binding to the ribosome as a monomer. As TF lacks ATPase activity, which is commonly used to trigger conformational changes within molecular chaperones in action, the ribosome-binding-associated disassembly and conformational rearrangements may be the underlying regulatory mechanism of its chaperone activity.
Collapse
Affiliation(s)
- Chih-Ting Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yei-Chen Lai
- Department of Chemistry, National Tsing Hua University, Hsichu 30013, Taiwan
| | - Szu-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsichu 30013, Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
19
|
Troussicot L, Burmann BM, Molin M. Structural determinants of multimerization and dissociation in 2-Cys peroxiredoxin chaperone function. Structure 2021; 29:640-654. [PMID: 33945778 DOI: 10.1016/j.str.2021.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022]
Abstract
Peroxiredoxins (PRDXs) are abundant peroxidases present in all kingdoms of life. Recently, they have been shown to also carry out additional roles as molecular chaperones. To address this emerging supplementary function, this review focuses on structural studies of 2-Cys PRDX systems exhibiting chaperone activity. We provide a detailed understanding of the current knowledge of structural determinants underlying the chaperone function of PRDXs. Specifically, we describe the mechanisms which may modulate their quaternary structure to facilitate interactions with client proteins and how they are coordinated with the functions of other molecular chaperones. Following an overview of PRDX molecular architecture, we outline structural details of the presently best-characterized peroxiredoxins exhibiting chaperone function and highlight common denominators. Finally, we discuss the remarkable structural similarities between 2-Cys PRDXs, small HSPs, and J-domain-independent Hsp40 holdases in terms of their functions and dynamic equilibria between low- and high-molecular-weight oligomers.
Collapse
Affiliation(s)
- Laura Troussicot
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden
| | - Björn M Burmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden.
| | - Mikael Molin
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden; Department of Biology and Biological Engineering, Chalmers University of Technology, 405 30 Göteborg, Sweden.
| |
Collapse
|
20
|
Alderson TR, Kay LE. NMR spectroscopy captures the essential role of dynamics in regulating biomolecular function. Cell 2021; 184:577-595. [PMID: 33545034 DOI: 10.1016/j.cell.2020.12.034] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 01/02/2023]
Abstract
Biomolecules are in constant motion. To understand how they function, and why malfunctions can cause disease, it is necessary to describe their three-dimensional structures in terms of dynamic conformational ensembles. Here, we demonstrate how nuclear magnetic resonance (NMR) spectroscopy provides an essential, dynamic view of structural biology that captures biomolecular motions at atomic resolution. We focus on examples that emphasize the diversity of biomolecules and biochemical applications that are amenable to NMR, such as elucidating functional dynamics in large molecular machines, characterizing transient conformations implicated in the onset of disease, and obtaining atomic-level descriptions of intrinsically disordered regions that make weak interactions involved in liquid-liquid phase separation. Finally, we discuss the pivotal role that NMR has played in driving forward our understanding of the biomolecular dynamics-function paradigm.
Collapse
Affiliation(s)
- T Reid Alderson
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, The University of Toronto, Toronto, ON M5S A18, Canada.
| | - Lewis E Kay
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, The University of Toronto, Toronto, ON M5S A18, Canada; Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
21
|
Kawale AA, Burmann BM. UvrD helicase-RNA polymerase interactions are governed by UvrD's carboxy-terminal Tudor domain. Commun Biol 2020; 3:607. [PMID: 33097771 PMCID: PMC7585439 DOI: 10.1038/s42003-020-01332-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
All living organisms have to cope with the constant threat of genome damage by UV light and other toxic reagents. To maintain the integrity of their genomes, organisms developed a variety of DNA repair pathways. One of these, the Transcription Coupled DNA-Repair (TCR) pathway, is triggered by stalled RNA Polymerase (RNAP) complexes at DNA damage sites on actively transcribed genes. A recently elucidated bacterial TCR pathway employs the UvrD helicase pulling back stalled RNAP complexes from the damage, stimulating recruitment of the DNA-repair machinery. However, structural and functional aspects of UvrD's interaction with RNA Polymerase remain elusive. Here we used advanced solution NMR spectroscopy to investigate UvrD's role within the TCR, identifying that the carboxy-terminal region of the UvrD helicase facilitates RNAP interactions by adopting a Tudor-domain like fold. Subsequently, we functionally analyzed this domain, identifying it as a crucial component for the UvrD-RNAP interaction besides having nucleic-acid affinity.
Collapse
Affiliation(s)
- Ashish A Kawale
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, 40530, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 40530, Sweden
| | - Björn M Burmann
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, 40530, Sweden.
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 40530, Sweden.
| |
Collapse
|
22
|
Mas G, Burmann BM, Sharpe T, Claudi B, Bumann D, Hiller S. Regulation of chaperone function by coupled folding and oligomerization. SCIENCE ADVANCES 2020; 6:6/43/eabc5822. [PMID: 33087350 PMCID: PMC7577714 DOI: 10.1126/sciadv.abc5822] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/03/2020] [Indexed: 05/03/2023]
Abstract
The homotrimeric molecular chaperone Skp of Gram-negative bacteria facilitates the transport of outer membrane proteins across the periplasm. It has been unclear how its activity is modulated during its functional cycle. Here, we report an atomic-resolution characterization of the Escherichia coli Skp monomer-trimer transition. We find that the monomeric state of Skp is intrinsically disordered and that formation of the oligomerization interface initiates folding of the α-helical coiled-coil arms via a unique "stapling" mechanism, resulting in the formation of active trimeric Skp. Native client proteins contact all three Skp subunits simultaneously, and accordingly, their binding shifts the Skp population toward the active trimer. This activation mechanism is shown to be essential for Salmonella fitness in a mouse infection model. The coupled mechanism is a unique example of how an ATP-independent chaperone can modulate its activity as a function of the presence of client proteins.
Collapse
Affiliation(s)
- Guillaume Mas
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Björn M Burmann
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Timothy Sharpe
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Beatrice Claudi
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Dirk Bumann
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
23
|
Kohl B, Brüderlin M, Ritz D, Schmidt A, Hiller S. Protocol for High-Yield Production of Photo-Leucine-Labeled Proteins in Escherichia coli. J Proteome Res 2020; 19:3100-3108. [PMID: 32412763 DOI: 10.1021/acs.jproteome.0c00105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UV-cross-linking mass spectrometry is an emerging technique to obtain structural information of biomacromolecules and their complexes in vivo and in vitro. In particular, certain photo-reactive amino acids (pA) such as photo-leucine (pLeu) and photo-methionine can provide unique short-distance information on the structural core regions of proteins. Here, we present a protocol for high-yield incorporation of pLeu in proteins recombinantly expressed in Escherichia coli. The protein of interest is expressed at high cell densities, which reduces the required amount of the pA by a factor of 10, as compared to the standard protocols, while maintaining high incorporation rates. For the two chaperones, trigger factor and SecB, up to 3 mg of pLeu-labeled protein were thus obtained from 100 mL of cell culture, with label incorporation rates of up to 34%. For trigger factor, UV-induced cross-linking leads to the identification of 12 cross-links that are in agreement with the published three-dimensional structures. The accessibility of milligram amounts of pLeu-labeled proteins at low costs will be highly useful to address structural biology questions.
Collapse
Affiliation(s)
- Bastian Kohl
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Mitchell Brüderlin
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Danilo Ritz
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Alexander Schmidt
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| |
Collapse
|
24
|
Calabrese AN, Schiffrin B, Watson M, Karamanos TK, Walko M, Humes JR, Horne JE, White P, Wilson AJ, Kalli AC, Tuma R, Ashcroft AE, Brockwell DJ, Radford SE. Inter-domain dynamics in the chaperone SurA and multi-site binding to its outer membrane protein clients. Nat Commun 2020; 11:2155. [PMID: 32358557 PMCID: PMC7195389 DOI: 10.1038/s41467-020-15702-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/18/2020] [Indexed: 01/11/2023] Open
Abstract
The periplasmic chaperone SurA plays a key role in outer membrane protein (OMP) biogenesis. E. coli SurA comprises a core domain and two peptidylprolyl isomerase domains (P1 and P2), but its mechanisms of client binding and chaperone function have remained unclear. Here, we use chemical cross-linking, hydrogen-deuterium exchange mass spectrometry, single-molecule FRET and molecular dynamics simulations to map the client binding site(s) on SurA and interrogate the role of conformational dynamics in OMP recognition. We demonstrate that SurA samples an array of conformations in solution in which P2 primarily lies closer to the core/P1 domains than suggested in the SurA crystal structure. OMP binding sites are located primarily in the core domain, and OMP binding results in conformational changes between the core/P1 domains. Together, the results suggest that unfolded OMP substrates bind in a cradle formed between the SurA domains, with structural flexibility between domains assisting OMP recognition, binding and release.
Collapse
Affiliation(s)
- Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthew Watson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Martin Walko
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Julia R Humes
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jim E Horne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul White
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Antreas C Kalli
- Astbury Centre for Structural Molecular Biology and School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Alison E Ashcroft
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
25
|
Marakasova E, Ii A, Nelson KT, van Hoek ML. Proteome Wide Profiling of N-ε-Lysine Acetylation Reveals a Novel Mechanism of Regulation of the Chitinase Activity in Francisella novicida. J Proteome Res 2020; 19:1409-1422. [PMID: 32056440 DOI: 10.1021/acs.jproteome.9b00512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Francisella tularensis is a Gram-negative bacterium that causes the zoonotic disease tularemia. The historical development of tularemia as a biological weapon has led to it being characterized by the CDC as a category A biothreat agent. Neither posttranslational modification (PTM) of proteins, in particular lysine acetylation, in Francisella nor its subsequent regulation of the protein activity has been well studied. In this work, we analyze N-ε-lysine acetylation of the F. tularensis ssp. novicida proteome by mass spectrometry for the first time. To create a comprehensive acetylation profile, we enriched protein acetylation using two approaches: (1) the addition of glucose or acetate into the culture medium and (2) direct chemical acetylation of N-ε-lysines with acetyl phosphate. We discovered 280 acetylated proteins with 1178 acetylation sites in the F. tularensis ssp. novicida strain U112. Lysine acetylation is an important PTM that regulates multiple cellular processes in bacteria, including metabolism, transcription, translation, stress response, and protein folding. We discovered that Francisella chitinases A and B are acetylated naturally and when chemically induced by acetyl phosphate. Moreover, chemical overacetylation of chitinases results in silencing of the enzymatic activity. Our findings suggest a novel mechanism of posttranslational regulation of the chitinase activity and that acetylation may play a role in Francisella's regulation of the protein activity.
Collapse
Affiliation(s)
- Ekaterina Marakasova
- School of Systems Biology, George Mason University, 10900 University Blvd, Manassas, Virginia 20110, United States
| | - Alexandra Ii
- School of Systems Biology, George Mason University, 10900 University Blvd, Manassas, Virginia 20110, United States
| | - Kristina T Nelson
- Chemical and Proteomic Mass Spectrometry Core Facility, Virginia Commonwealth University, 1001 W. Main Street, Richmond, Virginia 23284, United States
| | - Monique L van Hoek
- School of Systems Biology, George Mason University, 10900 University Blvd, Manassas, Virginia 20110, United States
| |
Collapse
|
26
|
Rojano-Nisimura AM, Haning K, Janovsky J, Vasquez KA, Thompson JP, Contreras LM. Codon Selection Affects Recruitment of Ribosome-Associating Factors during Translation. ACS Synth Biol 2020; 9:329-342. [PMID: 31769967 DOI: 10.1021/acssynbio.9b00344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An intriguing aspect of protein synthesis is how cotranslational events are managed inside the cell. In this study, we developed an in vivo bimolecular fluorescence complementation assay coupled to SecM stalling (BiFC-SecM) to study how codon usage influences the interactions of ribosome-associating factors that occur cotranslationally. We profiled ribosomal associations of a number of proteins, and observed differential association of chaperone proteins TF, DnaK, GroEL, and translocation factor Ffh as a result of introducing synonymous codon substitutions that change the affinity of the translating sequence to the ribosomal anti-Shine-Dalgarno (aSD) sequence. The use of pausing sequences within proteins regulates their transit within the translating ribosome. Our results indicate that the dynamics between cellular factors and the new polypeptide chain are affected by how codon composition is designed. Furthermore, associating factors may play a role in processes including protein quality control (folding and degradation) and cellular respiration.
Collapse
Affiliation(s)
- Alejandra M. Rojano-Nisimura
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Stop A4800, Austin, Texas 78712, United States
| | - Katie Haning
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Justin Janovsky
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Stop A4800, Austin, Texas 78712, United States
| | - Kevin A. Vasquez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Jeffrey P. Thompson
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, Texas 78712, United States
| |
Collapse
|
27
|
Horvath I, Blockhuys S, Šulskis D, Holgersson S, Kumar R, Burmann BM, Wittung-Stafshede P. Interaction between Copper Chaperone Atox1 and Parkinson's Disease Protein α-Synuclein Includes Metal-Binding Sites and Occurs in Living Cells. ACS Chem Neurosci 2019; 10:4659-4668. [PMID: 31600047 DOI: 10.1021/acschemneuro.9b00476] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Alterations in copper ion homeostasis appear coupled to neurodegenerative disorders, but mechanisms are unknown. The cytoplasmic copper chaperone Atox1 was recently found to inhibit amyloid formation in vitro of α-synuclein, the amyloidogenic protein in Parkinson's disease. As α-synuclein may have copper-dependent functions, and free copper ions promote α-synuclein amyloid formation, it is important to characterize the Atox1 interaction with α-synuclein on a molecular level. Here we applied solution-state nuclear magnetic resonance spectroscopy, with isotopically labeled α-synuclein and Atox1, to define interaction regions in both proteins. The α-synuclein interaction interface includes the whole N-terminal part up to Gln24; in Atox1, residues around the copper-binding cysteines (positions 11-16) are mostly perturbed, but additional effects are also found for residues elsewhere in both proteins. Because α-synuclein is N-terminally acetylated in vivo, we established that Atox1 also inhibits amyloid formation of this variant in vitro, and proximity ligation in human cell lines demonstrated α-synuclein-Atox1 interactions in situ. Thus, this interaction may provide the direct link between copper homeostasis and amyloid formation in vivo.
Collapse
Affiliation(s)
- Istvan Horvath
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Stéphanie Blockhuys
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Darius Šulskis
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 405 30, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Stellan Holgersson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Ranjeet Kumar
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Björn M. Burmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 405 30, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg 412 96, Sweden
| |
Collapse
|
28
|
Roch M, Lelong E, Panasenko OO, Sierra R, Renzoni A, Kelley WL. Thermosensitive PBP2a requires extracellular folding factors PrsA and HtrA1 for Staphylococcus aureus MRSA β-lactam resistance. Commun Biol 2019; 2:417. [PMID: 31754647 PMCID: PMC6858329 DOI: 10.1038/s42003-019-0667-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen and represents a clinical challenge because of widespread antibiotic resistance. Methicillin resistant Staphylococcus aureus (MRSA) is particularly problematic and originates by the horizontal acquisition of mecA encoding PBP2a, an extracellular membrane anchored transpeptidase, which confers resistance to β-lactam antibiotics by allosteric gating of its active site channel. Herein, we show that dual disruption of PrsA, a lipoprotein chaperone displaying anti-aggregation activity, together with HtrA1, a membrane anchored chaperone/serine protease, resulted in severe and synergistic attenuation of PBP2a folding that restores sensitivity to β-lactams such as oxacillin. Purified PBP2a has a pronounced unfolding transition initiating at physiological temperatures that leads to irreversible precipitation and complete loss of activity. The concordance of genetic and biochemical data highlights the necessity for extracellular protein folding factors governing MRSA β-lactam resistance. Targeting the PBP2a folding pathway represents a particularly attractive adjuvant strategy to combat antibiotic resistance.
Collapse
Affiliation(s)
- Mélanie Roch
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1 rue Michel-Servet, Geneva, CH-1211 Switzerland
| | - Emmanuelle Lelong
- Service of Infectious Diseases and Department of Medical Specialties, University Hospital and Medical School of Geneva, 4 rue Gabrielle-Perret-Gentil, Geneva, CH-1206 Switzerland
| | - Olesya O. Panasenko
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1 rue Michel-Servet, Geneva, CH-1211 Switzerland
- Service of Infectious Diseases and Department of Medical Specialties, University Hospital and Medical School of Geneva, 4 rue Gabrielle-Perret-Gentil, Geneva, CH-1206 Switzerland
| | - Roberto Sierra
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1 rue Michel-Servet, Geneva, CH-1211 Switzerland
| | - Adriana Renzoni
- Service of Infectious Diseases and Department of Medical Specialties, University Hospital and Medical School of Geneva, 4 rue Gabrielle-Perret-Gentil, Geneva, CH-1206 Switzerland
| | - William L. Kelley
- Department of Microbiology and Molecular Medicine, University Hospital and Medical School of Geneva, 1 rue Michel-Servet, Geneva, CH-1211 Switzerland
| |
Collapse
|
29
|
He L, Hiller S. Frustrated Interfaces Facilitate Dynamic Interactions between Native Client Proteins and Holdase Chaperones. Chembiochem 2019; 20:2803-2806. [PMID: 31063619 DOI: 10.1002/cbic.201900215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Lichun He
- Wuhan Institute of Physics and MathematicsChinese Academy of Sciences West No. 30 Xiao Hong Shan Wuhan 430071 P.R. China
| | - Sebastian Hiller
- BiozentrumUniversity of Basel Klingelbergstrasse 70 4056 Basel Switzerland
| |
Collapse
|
30
|
Waudby CA, Dobson CM, Christodoulou J. Nature and Regulation of Protein Folding on the Ribosome. Trends Biochem Sci 2019; 44:914-926. [PMID: 31301980 PMCID: PMC7471843 DOI: 10.1016/j.tibs.2019.06.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/23/2022]
Abstract
Co-translational protein folding is an essential process by which cells ensure the safe and efficient production and assembly of new proteins in their functional native states following biosynthesis on the ribosome. In this review, we describe recent progress in probing the changes during protein synthesis of the free energy landscapes that underlie co-translational folding and discuss the critical coupling between these landscapes and the rate of translation that ultimately determines the success or otherwise of the folding process. Recent developments have revealed a variety of mechanisms by which both folding and translation can be modulated or regulated, and we discuss how these effects are utilised by the cell to optimise the outcome of protein biosynthesis.
Collapse
Affiliation(s)
- Christopher A Waudby
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK
| | - Christopher M Dobson
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London, UK.
| |
Collapse
|
31
|
Hiller S. Chaperone-Bound Clients: The Importance of Being Dynamic. Trends Biochem Sci 2019; 44:517-527. [PMID: 30611607 DOI: 10.1016/j.tibs.2018.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/29/2018] [Accepted: 12/11/2018] [Indexed: 01/14/2023]
Abstract
Several recent atomic-resolution studies have resolved how chaperones interact with their client proteins. In some cases, molecular chaperones recognize and bind their clients in conformational ensembles that are locally highly dynamic and interconvert, while in other cases clients bind in unique conformations. The presence of a locally dynamic client ensemble state has important consequences, both for the interpretation of experimental data and for the functionality of chaperones, as local dynamics facilitate rapid client release, folding on and from the chaperone surface, and client recognition without shape complementarity. Facilitated by the local dynamics, at least some chaperones appear to specifically recognize energetically frustrated sites of partially folded client proteins, such that the release of frustration contributes to the interaction affinity.
Collapse
|
32
|
Saio T, Kawagoe S, Ishimori K, Kalodimos CG. Oligomerization of a molecular chaperone modulates its activity. eLife 2018; 7:35731. [PMID: 29714686 PMCID: PMC5988418 DOI: 10.7554/elife.35731] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/30/2018] [Indexed: 11/13/2022] Open
Abstract
Molecular chaperones alter the folding properties of cellular proteins via mechanisms that are not well understood. Here, we show that Trigger Factor (TF), an ATP-independent chaperone, exerts strikingly contrasting effects on the folding of non-native proteins as it transitions between a monomeric and a dimeric state. We used NMR spectroscopy to determine the atomic resolution structure of the 100 kDa dimeric TF. The structural data show that some of the substrate-binding sites are buried in the dimeric interface, explaining the lower affinity for protein substrates of the dimeric compared to the monomeric TF. Surprisingly, the dimeric TF associates faster with proteins and it exhibits stronger anti-aggregation and holdase activity than the monomeric TF. The structural data show that the dimer assembles in a way that substrate-binding sites in the two subunits form a large contiguous surface inside a cavity, thus accounting for the observed accelerated association with unfolded proteins. Our results demonstrate how the activity of a chaperone can be modulated to provide distinct functional outcomes in the cell.
Collapse
Affiliation(s)
- Tomohide Saio
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Soichiro Kawagoe
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Koichiro Ishimori
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
| | - Charalampos G Kalodimos
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, United States
| |
Collapse
|
33
|
Hiller S, Burmann BM. Chaperone-client complexes: A dynamic liaison. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 289:142-155. [PMID: 29544626 DOI: 10.1016/j.jmr.2017.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/08/2017] [Accepted: 12/10/2017] [Indexed: 06/08/2023]
Abstract
Living cells contain molecular chaperones that are organized in intricate networks to surveil protein homeostasis by avoiding polypeptide misfolding, aggregation, and the generation of toxic species. In addition, cellular chaperones also fulfill a multitude of alternative functionalities: transport of clients towards a target location, help them fold, unfold misfolded species, resolve aggregates, or deliver clients towards proteolysis machineries. Until recently, the only available source of atomic resolution information for virtually all chaperones were crystal structures of their client-free, apo-forms. These structures were unable to explain details of the functional mechanisms underlying chaperone-client interactions. The difficulties to crystallize chaperones in complexes with clients arise from their highly dynamic nature, making solution NMR spectroscopy the method of choice for their study. With the advent of advanced solution NMR techniques, in the past few years a substantial number of structural and functional studies on chaperone-client complexes have been resolved, allowing unique insight into the chaperone-client interaction. This review summarizes the recent insights provided by advanced high-resolution NMR-spectroscopy to understand chaperone-client interaction mechanisms at the atomic scale.
Collapse
Affiliation(s)
- Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Björn M Burmann
- Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, University for Gothenburg, 405 30 Göteborg, Sweden.
| |
Collapse
|