1
|
Gu J, Xie YM, Liu WB, Fu Y, Yin HL, Chen ZB. Secure quantum secret sharing without signal disturbance monitoring. OPTICS EXPRESS 2021; 29:32244-32255. [PMID: 34615300 DOI: 10.1364/oe.440365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Quantum secret sharing (QSS) is an essential primitive for the future quantum internet, which promises secure multiparty communication. However, developing a large-scale QSS network is a huge challenge due to the channel loss and the requirement of multiphoton interference or high-fidelity multipartite entanglement distribution. Here, we propose a three-user QSS protocol without monitoring signal disturbance, which is capable of ensuring the unconditional security. The final key rate of our protocol can be demonstrated to break the Pirandola-Laurenza-Ottaviani-Banchi bound of quantum channel and its simulated transmission distance can approach over 600 km using current techniques. Our results pave the way to realizing high-rate and large-scale QSS networks.
Collapse
|
2
|
Bouchard F, Sit A, Zhang Y, Fickler R, Miatto FM, Yao Y, Sciarrino F, Karimi E. Two-photon interference: the Hong-Ou-Mandel effect. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:012402. [PMID: 33232945 DOI: 10.1088/1361-6633/abcd7a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nearly 30 years ago, two-photon interference was observed, marking the beginning of a new quantum era. Indeed, two-photon interference has no classical analogue, giving it a distinct advantage for a range of applications. The peculiarities of quantum physics may now be used to our advantage to outperform classical computations, securely communicate information, simulate highly complex physical systems and increase the sensitivity of precise measurements. This separation from classical to quantum physics has motivated physicists to study two-particle interference for both fermionic and bosonic quantum objects. So far, two-particle interference has been observed with massive particles, among others, such as electrons and atoms, in addition to plasmons, demonstrating the extent of this effect to larger and more complex quantum systems. A wide array of novel applications to this quantum effect is to be expected in the future. This review will thus cover the progress and applications of two-photon (two-particle) interference over the last three decades.
Collapse
Affiliation(s)
- Frédéric Bouchard
- Department of Physics, University of Ottawa, Advanced Research Complex, 25 Templeton Street, Ottawa ON K1N 6N5, Canada
| | - Alicia Sit
- Department of Physics, University of Ottawa, Advanced Research Complex, 25 Templeton Street, Ottawa ON K1N 6N5, Canada
| | - Yingwen Zhang
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Robert Fickler
- Department of Physics, University of Ottawa, Advanced Research Complex, 25 Templeton Street, Ottawa ON K1N 6N5, Canada
| | - Filippo M Miatto
- Télécom Paris, LTCI, Institut Polytechnique de Paris, 19 Place Marguerite Peray, 91120 Palaiseau, France
| | - Yuan Yao
- Télécom Paris, LTCI, Institut Polytechnique de Paris, 19 Place Marguerite Peray, 91120 Palaiseau, France
| | - Fabio Sciarrino
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Ebrahim Karimi
- Department of Physics, University of Ottawa, Advanced Research Complex, 25 Templeton Street, Ottawa ON K1N 6N5, Canada
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
3
|
Liu H, Yin ZQ, Wang R, Lu FY, Wang S, Chen W, Huang W, Xu BJ, Guo GC, Han ZF. Finite-key analysis for round-robin-differential-phase-shift quantum key distribution. OPTICS EXPRESS 2020; 28:15416-15423. [PMID: 32403569 DOI: 10.1364/oe.391924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Since the round-robin-differential-phase-shift (RRDPS) quantum key distribution (QKD) protocol was proposed, it has attracted much attention due to its unique characteristic i.e., it can bind the amount of information leakage without monitoring signal disturbance. Recently, Yin et al. have developed a novel theory to estimate its information leakage tightly. However, the finite-sized key effects are not taken into account. Here, we fill this gap and extend the security proof of the RRDPS protocol to the finite-sized regime using post-selection technique. As a consequence, it's predicted that the key rate of RRDPS in a finite-sized key scenario can be comparable to the asymptotic one, which is meaningful for the real-life applications.
Collapse
|
4
|
Yin F, Li M, Mao X, Li F, Xiang X, Li Q, Wang L, Zuo X, Fan C, Zhu Y. DNA Framework-Based Topological Cell Sorters. Angew Chem Int Ed Engl 2020; 59:10406-10410. [PMID: 32187784 DOI: 10.1002/anie.202002020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/02/2020] [Indexed: 12/20/2022]
Abstract
Molecular recognition in cell biological process is characterized with specific locks-and-keys interactions between ligands and receptors, which are ubiquitously distributed on cell membrane with topological clustering. Few topologically-engineered ligand systems enable the exploration of the binding strength between ligand-receptor topological organization. Herein, we generate topologically controlled ligands by developing a family of tetrahedral DNA frameworks (TDFs), so the multiple ligands are stoichiometrically and topologically arranged. This topological control of multiple ligands changes the nature of the molecular recognition by inducing the receptor clustering, so the binding strength is significantly improved (ca. 10-fold). The precise engineering of topological complexes formed by the TDFs are readily translated into effective binding control for cell patterning and binding strength control of cells for cell sorting. This work paves the way for the development of versatile design of topological ligands.
Collapse
Affiliation(s)
- Fangfei Yin
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Li
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fan Li
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xuelin Xiang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qian Li
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ying Zhu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| |
Collapse
|
5
|
Yin F, Li M, Mao X, Li F, Xiang X, Li Q, Wang L, Zuo X, Fan C, Zhu Y. DNA Framework‐Based Topological Cell Sorters. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fangfei Yin
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Min Li
- Institute of Molecular Medicine Renji Hospital School of Medicine and School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200127 China
| | - Xiuhai Mao
- Institute of Molecular Medicine Renji Hospital School of Medicine and School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200127 China
| | - Fan Li
- Institute of Molecular Medicine Renji Hospital School of Medicine and School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200127 China
| | - Xuelin Xiang
- Institute of Molecular Medicine Renji Hospital School of Medicine and School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200127 China
| | - Qian Li
- Institute of Molecular Medicine Renji Hospital School of Medicine and School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200127 China
| | - Lihua Wang
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 China
| | - Xiaolei Zuo
- Institute of Molecular Medicine Renji Hospital School of Medicine and School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200127 China
| | - Chunhai Fan
- Institute of Molecular Medicine Renji Hospital School of Medicine and School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200127 China
| | - Ying Zhu
- Division of Physical Biology CAS Key Laboratory of Interfacial Physics and Technology Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 China
| |
Collapse
|
6
|
Zhao W, Shi R, Huang D. Practical Security Analysis of Reference Pulses for Continuous-Variable Quantum Key Distribution. Sci Rep 2019; 9:18155. [PMID: 31796759 PMCID: PMC6890703 DOI: 10.1038/s41598-019-54249-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/30/2019] [Indexed: 11/15/2022] Open
Abstract
By manipulating the reference pulses amplitude, a security vulnerability is caused by self-reference continuous-variable quantum key distribution. In this paper, we formalize an attack strategy for reference pulses, showing that the proposed attack can compromise the practical security of CVQKD protocol. In this scheme, before the beam splitter attack, Eve intercepts the reference pulses emitted by Alice, using Bayesian algorithm to estimate phase shifts. Subsequently, other reference pulses are re-prepared and resubmitted to Bob. In simulations, Bayesian algorithm effectively estimates the phase drifts and has the high robustness to noise. Therefore, the eavesdropper can bias the excess noise due to the intercept-resend attack and the beam splitter attack. And Alice and Bob believe that their excess noise is below the null key threshold and can still share a secret key. Consequently, the proposed attack shows that its practical security can be compromised by transmitting the reference pulses in the continuous-variable quantum key distribution protocol.
Collapse
Affiliation(s)
- Wei Zhao
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Ronghua Shi
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Duan Huang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
7
|
Entropic nonclassicality and quantum non-Gaussianity tests via beam splitting. Sci Rep 2019; 9:17835. [PMID: 31780692 PMCID: PMC6882878 DOI: 10.1038/s41598-019-54110-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/08/2019] [Indexed: 11/21/2022] Open
Abstract
We propose entropic nonclassicality criteria for quantum states of light that can be readily tested using homodyne detection with beam splitting operation. Our method draws on the fact that the entropy of quadrature distributions for a classical state is non-increasing under an arbitrary loss channel. We show that our test is strictly stronger than the variance-based squeezing condition and that it can also be extended to detect quantum non-Gaussianity in conjunction with phase randomization. Furthermore, we address how our criteria can be used to identify single-mode resource states to generate two-mode states demonstrating EPR paradox, i.e., quantum steering, via beam-splitter setting.
Collapse
|
8
|
Niu J, Sun Y, Zhang Y, Ji Y. Noise-suppressing channel allocation in dynamic DWDM-QKD networks using LightGBM. OPTICS EXPRESS 2019; 27:31741-31756. [PMID: 31684400 DOI: 10.1364/oe.27.031741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
Integrating quantum key distribution (QKD) with existing optical networks is highly desired to reduce the deployment costs and achieve efficient resource utilization, and some point-to-point transmitting experiments have verified its feasibility. Nevertheless, there are still many problems in the realistic scenario where QKD coexists with dynamic data traffics. On the one hand, the conventional static channel allocation schemes cannot guarantee the quality of quantum channels in the presence of the time-varying noises. On the other hand, considering the complex noise generation caused by dynamic classical data traffics with variable characters, it is challenging to achieve online high-performance quantum channel assignments. To address these problems, we propose a machine learning based noise-suppressing channel allocation (ML-NSCA) scheme. In this scheme, the LightGBM based ML framework is trained to predict the optimal channel allocations with lowest noise impacts, according to which, the quantum channels are periodically reallocated to guarantee high secure key rate. To improve the accuracy and scalability of the ML framework, we also optimize the method of feature extraction during the training process. The performance evaluation results indicate that the proposed scheme can effectively resist the dynamic noise impacts in the realistic optical networks and obtain higher secure key rate with less operation complexity than the previous schemes.
Collapse
|
9
|
Zhang CM, Wang WB, Li HW, Wang Q. Weak randomness impacts the security of reference-frame-independent quantum key distribution. OPTICS LETTERS 2019; 44:1226-1229. [PMID: 30821754 DOI: 10.1364/ol.44.001226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Perfect randomness is of great significance in various quantum key distribution (QKD) protocols. In this Letter, we investigate the effect of weak randomness on the state preparation in reference-frame-independent QKD (RFI-QKD), which may be implemented with imperfect random numbers or quantum-state encoding devices. In the scenario of weak randomness, the maximal amount of information the eavesdropper can acquire should be carefully evaluated. With practical experimental parameters, we demonstrate that even a small proportion of weak randomness will impact the security of RFI-QKD seriously. Furthermore, we briefly study the side effect of weak randomness on RFI measurement-device-independent QKD (RFI-MDI-QKD), and simulation results show that weak randomness damages the performance of RFI-MDI-QKD more critically than that of RFI-QKD.
Collapse
|
10
|
Niu JN, Sun YM, Cai C, Ji YF. Optimized channel allocation scheme for jointly reducing four-wave mixing and Raman scattering in the DWDM-QKD system. APPLIED OPTICS 2018; 57:7987-7996. [PMID: 30462070 DOI: 10.1364/ao.57.007987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/21/2018] [Indexed: 06/09/2023]
Abstract
Conducting quantum key distribution (QKD) through existing optical fibers together with conventional communication signals is a viable way to expand its practical application, but weak quantum signals can be severely disrupted by co-propagating classical signals. In this paper, the suppression of four-wave mixing (FWM) noise and Raman noise is considered simultaneously for the first time, to the best of our knowledge, and the joint optimized channel allocation (JOCA) scheme is proposed. In the JOCA scheme, the quantum channels and classical channels are interleaved with each other to avoid FWM noise and optimal quantum channel positions are chosen in variable conditions according to the Raman scattering spectrum. Experimental measurements of the noise photons show that the JOCA scheme can effectively reduce the impairments on quantum signals compared with the single-target schemes. Additionally, simulation results verify that the JOCA scheme can increase the secure key generation rate and transmission distance, and that it also enables the DWDM-QKD system to tolerate higher-power classical signals and more classical channels, which improve the compatibility with a high-capacity communication system.
Collapse
|
11
|
Wang R, Yin ZQ, Wang S, Chen W, Guo GC, Han ZF. Round-robin-differential-phase-shift quantum key distribution with monitoring signal disturbance. OPTICS LETTERS 2018; 43:4228-4231. [PMID: 30160758 DOI: 10.1364/ol.43.004228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
In recent years, round-robin-differential-phase-shift (RRDPS) quantum key distribution (QKD) has attracted great attention for its unique characteristics, i.e., the information leakage can be bounded without learning bit error rate. Though the RRDPS QKD has made a breakthrough, it is still a question of how RRDPS will perform with monitoring signal disturbance, e.g., decoy-state and error rate statistics are both used. Here, we present simulations to study RRDPS protocol while monitoring signal disturbance. To our excitement, when using the infinite decoy-states method, RRDPS protocol can outperform the commonly used Bennett and Brassard 1984 (BB84) protocol in terms of channel length under typical experimental parameters. In the case of finite decoy states, we find that only two decoy-states and one signal state are sufficient to obtain performance very close to the infinite decoy-states case. Our simulations prove that RRDPS is a competitive protocol in real-life situations.
Collapse
|