1
|
Wang L, Zha S, Zhang S, Jin J. Sulfonated Chitosan Gel Membrane with Confined Amine Carriers for Stable and Efficient Carbon Dioxide Capture. CHEMSUSCHEM 2024; 17:e202400160. [PMID: 38596908 DOI: 10.1002/cssc.202400160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
Capturing carbon dioxide (CO2) from flue gases is a crucial step towards reducing CO2 emissions. Among the various carbon capture methods, facilitated transport membranes (FTMs) have emerged as a promising technology for CO2 capture owing to their high efficiency and low energy consumption in separating CO2. However, FTMs still face the challenge of losing mobile carriers due to weak interaction between the carriers and membrane matrix. Herein, we report a sulfonated chitosan (SCS) gel membrane with confined amine carriers for effective CO2 capture. In this structure, diethylenetriamine (DETA) as a CO2-mobile carrier is confined within the SCS gel membrane via electrostatic forces, which can react reversibly with CO2 and thus greatly facilitate its transport. The SCS ion gel membrane allows for the fast diffusion of amine carriers within it while blocking the diffusion of nonreactive gases, like N2. Thus, the prepared membrane exhibits exceptional CO2 separation capabilities when tested under simulated flue gas conditions with CO2 permeance of 1155 GPU and an ultra-high CO2/N2 selectivity of above 550. Moreover, the membrane retains a stable separation performance during the 170 h continuous test. The excellent CO2 separation performance demonstrates the high potential of gel membranes for CO2 capture from flue gas.
Collapse
Affiliation(s)
- Lixinyu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Shangwen Zha
- Department of Research and Development, Shanghai ECO Polymer Sci.&Tech. CO., Ltd, Shanghai, 201306, China
| | - Shenxiang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou, Jiangsu, 215123, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jian Jin
- College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou, Jiangsu, 215123, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
2
|
Karousos DS, Chiesa F, Theodorakopoulos GV, Bouroushian M, Favvas EP. Rapid hollow fiber-coating device for thin film composite membrane preparation. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:033906. [PMID: 38501937 DOI: 10.1063/5.0176413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/18/2024] [Indexed: 03/20/2024]
Abstract
Aligned with the recent trend and imperative to reduce separation layer thickness in gas separation membranes to the nanometer scale in order to raise permeance to levels that can render them competitive with respect to other gas separation technologies, a novel approach and device for fabricating defect-free composite hollow fiber (HF) membranes by dip-coating is described. The presented method avoids the fundamental drawbacks of state-of-the-art techniques for applying a thin gas separation layer onto a porous HF substrate, providing a safe but, at the same time, easily up-scalable way of producing HF membranes at a relatively high production rate. As a basic concept, hanging HF substrates are coated by allowing the coating solution to flow and drip along their external surface. The adaptability of this method, stemming from the array of available coating solutions (a plethora of dispersed nanofillers) and the multitude of substrate options, holds great promise for the fabrication of highly selective and defect-free composite HF membranes.
Collapse
Affiliation(s)
- Dionysios S Karousos
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Aghia Paraskevi, 15341 Athens, Greece
| | - Francesco Chiesa
- School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 9 Iroon Polytechniou Street, 15780 Athens, Greece
| | - George V Theodorakopoulos
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Aghia Paraskevi, 15341 Athens, Greece
| | - Mirtat Bouroushian
- School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9 Iroon Polytechniou Street, Zografou, 15772 Athens, Greece
| | - Evangelos P Favvas
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Aghia Paraskevi, 15341 Athens, Greece
| |
Collapse
|
3
|
Zhang C, Fan L, Kang Z, Sun D. Solution processing of crystalline porous material based membranes for CO 2 separation. Chem Commun (Camb) 2024. [PMID: 38273772 DOI: 10.1039/d3cc05545k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The carbon emission problem is a significant challenge in today's society, which has led to severe global climate issues. Membrane-based separation technology has gained considerable interest in CO2 separation due to its simplicity, environmental friendliness, and energy efficiency. Crystalline porous materials (CPMs), such as zeolites, metal-organic frameworks, covalent organic frameworks, hydrogen-bonded organic frameworks, and porous organic cages, hold great promise for advanced CO2 separation membranes because of their ordered and customizable pore structures. However, the preparation of defect-free and large-area crystalline porous material (CPM)-based membranes remains challenging, limiting their practical use in CO2 separation. To address this challenge, the solution-processing method, commonly employed in commercial polymer preparation, has been adapted for CPM membranes in recent years. Nanosheets, spheres, molecular cages, and even organic monomers, depending on the CPM type, are dissolved in suitable solvents and processed into continuous membranes for CO2 separation. This feature article provides an overview of the recent advancements in the solution processing of CPM membranes. It summarizes the differences among the solution-processing methods used for forming various CPM membranes, highlighting the key factors for achieving continuous membranes. The article also summarizes and discusses the CO2 separation performance of these membranes. Furthermore, it addresses the current issues and proposes future research directions in this field. Overall, this feature article aims to shed light on the development of solution-processing techniques for CPM membranes, facilitating their practical application in CO2 separation.
Collapse
Affiliation(s)
- Caiyan Zhang
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Lili Fan
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Zixi Kang
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Daofeng Sun
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
4
|
Soomro F, Ali A, Ullah S, Iqbal M, Alshahrani T, Khan F, Yang J, Thebo KH. Highly Efficient Arginine Intercalated Graphene Oxide Composite Membranes for Water Desalination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18447-18457. [PMID: 38055936 DOI: 10.1021/acs.langmuir.3c02699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Graphene oxide-based composite membranes have received enormous attention for highly efficient water desalination. Herein, we prepare arginine/graphene oxide (Arg/GO) composite membranes by surface functionalizing GO nanosheets with arginine amino acid. Arginine has a unique combination of hydroxyl and amino functional groups that cross-link GO nanosheets through hydrogen bonding and electrostatic interactions. The as-prepared Arg@GO composite membranes with different thicknesses are used to separate the salt and dye molecules. The 900-nm-thick Arg@GO composite membrane shows high rejection of 98% for NaCl and 99.8% for MgCl2, Ni(NO3)2, and Pb(NO3)2 with good water permeance. Such a membrane also shows a high separation efficiency (100%) for methylene blue, rhodamine B, and Evans blue dyes. At the same time, the ultrathin Arg@GO composite membrane (220 ± 10 nm) exhibits high water permeance of up to 2100 ± 10 L m-2 h-1 bar-1. Furthermore, the 900-nm-thick Arg@GO composite membrane is stable in an aqueous environment for 40 days with significantly less swelling. Therefore, these membranes can be utilized in future desalination and separation applications.
Collapse
Affiliation(s)
- Faheeda Soomro
- Department of Human and Rehabilitation Sciences, Faculty of Education, Linguists and Sciences, The Begum Nusrat Bhutto Women University, Rohri Bypass, Sukkur 65200, Pakistan
| | - Akbar Ali
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing 100F190, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Sami Ullah
- K.A.CARE Energy Research & Innovation Centre (ERIC), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur 22620 KPK, Pakistan
| | - Thamraa Alshahrani
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Firoz Khan
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Jun Yang
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing 100F190, China
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Khalid Hussain Thebo
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
5
|
Cheng P, Zhu T, Wang X, Fan K, Liu Y, Wang XM, Xia S. Enhancing Nanofiltration Selectivity of Metal-Organic Framework Membranes via a Confined Interfacial Polymerization Strategy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12879-12889. [PMID: 37582261 DOI: 10.1021/acs.est.3c03120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Development of well-constructed metal-organic framework (MOF) membranes can bring about breakthroughs in nanofiltration (NF) performance for water treatment applications, while the relatively loose structures and inevitable defects usually cause low rejection capacity of MOF membranes. Herein, a confined interfacial polymerization (CIP) method is showcased to synthesize polyamide (PA)-modified NF membranes with MOF nanosheets as the building blocks, yielding a stepwise transition from two-dimensional (2D) MOF membranes to polyamide NF membranes. The CIP process was regulated by adjusting the loading amount of piperazine (PIP)-grafted MOF nanosheets on substrates and the additional content of free PIP monomers distributed among the nanosheets, followed by the reaction with trimesoyl chloride in the organic phase. The prepared optimal membrane exhibited a high Na2SO4 rejection of 98.4% with a satisfactory water permeance of 37.4 L·m-2·h-1·bar-1, which could be achieved by neither the pristine 2D MOF membranes nor the PA membranes containing the MOF nanosheets as the conventional interlayer. The PA-modified MOF membrane also displayed superior stability and enhanced antifouling ability. This CIP strategy provides a novel avenue to develop efficient MOF-based NF membranes with high ion-sieving separation performance for water treatment.
Collapse
Affiliation(s)
- Peng Cheng
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Tongren Zhu
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton Street, Austin, Texas 78712, United States
| | - Xiaoping Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
| | - Kaiming Fan
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
| | - Yanling Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Xiao-Mao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| |
Collapse
|
6
|
Shen J, Salmon S. Biocatalytic Membranes for Carbon Capture and Utilization. MEMBRANES 2023; 13:membranes13040367. [PMID: 37103794 PMCID: PMC10146961 DOI: 10.3390/membranes13040367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 05/12/2023]
Abstract
Innovative carbon capture technologies that capture CO2 from large point sources and directly from air are urgently needed to combat the climate crisis. Likewise, corresponding technologies are needed to convert this captured CO2 into valuable chemical feedstocks and products that replace current fossil-based materials to close the loop in creating viable pathways for a renewable economy. Biocatalytic membranes that combine high reaction rates and enzyme selectivity with modularity, scalability, and membrane compactness show promise for both CO2 capture and utilization. This review presents a systematic examination of technologies under development for CO2 capture and utilization that employ both enzymes and membranes. CO2 capture membranes are categorized by their mode of action as CO2 separation membranes, including mixed matrix membranes (MMM) and liquid membranes (LM), or as CO2 gas-liquid membrane contactors (GLMC). Because they selectively catalyze molecular reactions involving CO2, the two main classes of enzymes used for enhancing membrane function are carbonic anhydrase (CA) and formate dehydrogenase (FDH). Small organic molecules designed to mimic CA enzyme active sites are also being developed. CO2 conversion membranes are described according to membrane functionality, the location of enzymes relative to the membrane, which includes different immobilization strategies, and regeneration methods for cofactors. Parameters crucial for the performance of these hybrid systems are discussed with tabulated examples. Progress and challenges are discussed, and perspectives on future research directions are provided.
Collapse
|
7
|
Dong J, Peng Y, Li J, Liu ZW, Hu R. CO 2 capture and conversion to syngas via dry reforming of C 3H 8 over a Pt/ZrO 2–CaO catalyst. Catal Sci Technol 2023. [DOI: 10.1039/d3cy00049d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Pt/ZrO2–5CaO could capture 10.3 mmol CO2 g−1 and convert it to syngas completely in C3H8 with little intensive energy swing.
Collapse
Affiliation(s)
- Jingjing Dong
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Yang Peng
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Juanting Li
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Zhong-wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| | - Rongrong Hu
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
| |
Collapse
|
8
|
Zhi Q, Liu W, Jiang R, Zhan X, Jin Y, Chen X, Yang X, Wang K, Cao W, Qi D, Jiang J. Piperazine-Linked Metalphthalocyanine Frameworks for Highly Efficient Visible-Light-Driven H 2O 2 Photosynthesis. J Am Chem Soc 2022; 144:21328-21336. [DOI: 10.1021/jacs.2c09482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qianjun Zhi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenping Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rong Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoning Zhan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wei Cao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
9
|
Sadilov I, Eliseev A, Eliseev A, Chumakova A, Kurtina D, Vasiliev R, Petukhov D. The origin for hydrocarbons fast transport and photoswitching permeation behavior in grafted laminar CdTe membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Li Q, Wu H, Wang Z, Wang J. Analysis and optimal design of membrane processes for flue gas CO2 capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Mohsenpour S, Ameen AW, Leaper S, Skuse C, Almansour F, Budd PM, Gorgojo P. PIM-1 membranes containing POSS - graphene oxide for CO2 separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Jia Y, Shi F, Li H, Yan Z, Xu J, Gao J, Wu X, Li Y, Wang J, Zhang B. Facile Ionization of the Nanochannels of Lamellar Membranes for Stable Ionic Liquid Immobilization and Efficient CO 2 Separation. ACS NANO 2022; 16:14379-14389. [PMID: 36095242 DOI: 10.1021/acsnano.2c04670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional (2D) lamellar membranes, with highly ordered nanochannels between the adjacent layers, have revealed potential application prospects in various fields. To separate gases with similar kinetic diameters, intercalation of a functional liquid, especially an ionic liquid (IL), into 2D lamellar membranes is proved to be an efficient method due to the capacity of imparting solubility-based separation and sealing undesired defects. Stable immobilization of a high content of liquid is challenging but extremely required to achieve and maintain high separation performance. Herein, we describe the intercalation of a typical IL, 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), into the ionized nanochannels of sulfonated MXene lamellar membranes, where the sulfonate groups are anchored onto MXene nanosheets through a facile method based on metal-catechol chelating chemistry. Thanks to the intrinsic benefits of MXene as building blocks and the decorated sulfonate groups, the optimal membrane possesses adequate interlayer spacing (∼1.8 nm) and high IL uptake (∼47 wt %) and therefore presents a CO2 permeance of 519 GPU and a CO2/N2 selectivity of 210, outperforming the previously reported liquid-immobilized lamellar membranes. Moreover, the IL loss rate of the membrane within 7 days at elevated pressure (5 bar) is measured to be significantly decreased (from 43.2 to 9.0 wt %) after growing sulfonate groups on the nanochannel walls, demonstrating the excellent IL storage stability.
Collapse
Affiliation(s)
- Youyu Jia
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Feng Shi
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Hongying Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Zhikun Yan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Jiwei Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Jiale Gao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Xiaoli Wu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yifan Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Jingtao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Bing Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
13
|
Liu Y, Sim J, Hailemariam RH, Lee J, Rho H, Park KD, Kim DW, Woo YC. Status and future trends of hollow fiber biogas separation membrane fabrication and modification techniques. CHEMOSPHERE 2022; 303:134959. [PMID: 35580646 DOI: 10.1016/j.chemosphere.2022.134959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
With the increasing global demand for energy, renewable and sustainable biogas has attracted considerable attention. However, the presence of various gases such as methane, carbon dioxide (CO2), nitrogen, and hydrogen sulfide in biogas, and the potential emission of acid gases, which may adversely influence the environment, limits the efficient application of biogas in many fields. Consequently, researchers have focused on the upgrade and purification of biogas to eliminate impurities and obtain high-quality and high-purity biomethane with an increased combustion efficiency. In this context, the removal of CO2 gas, which is the most abundant contaminant in biogas, is of significance. Compared to conventional biogas purification processes such as water scrubbing, chemical absorption, pressure swing adsorption, and cryogenic separation, advanced membrane separation technologies are simpler to implement, easier to scale, and incur lower costs. Notably, hollow fiber membranes enhance the gas separation efficiency and decrease costs because their large specific surface area provides a greater range of gas transport. Several reviews have described biogas upgrading technologies and gas separation membranes composed of different materials. In this review, five commonly used commercial biogas upgrading technologies, as well as biological microalgae-based techniques are compared, the advantages and limitations of polymeric and mixed matrix hollow fiber membranes are highlighted, and methods to fabricate and modify hollow fiber membranes are described. This will provide more ideas and methods for future low-cost, large-scale industrial biogas upgrading using membrane technology.
Collapse
Affiliation(s)
- Yuying Liu
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea; Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeonghoo Sim
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Ruth Habte Hailemariam
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Jonghun Lee
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Hojung Rho
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Kwang-Duck Park
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea
| | - Dae Woo Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Yun Chul Woo
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283, Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
14
|
Zhang C, Xie R, Liu Z, Ju XJ, Wang W, Chu LY. Hollow fiber membranes with knitted braid-like structures for process intensification via generation of Dean vortices. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2080079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Chuan Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Lau HS, Lau SK, Soh LS, Hong SU, Gok XY, Yi S, Yong WF. State-of-the-Art Organic- and Inorganic-Based Hollow Fiber Membranes in Liquid and Gas Applications: Looking Back and Beyond. MEMBRANES 2022; 12:539. [PMID: 35629866 PMCID: PMC9144028 DOI: 10.3390/membranes12050539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
The aggravation of environmental problems such as water scarcity and air pollution has called upon the need for a sustainable solution globally. Membrane technology, owing to its simplicity, sustainability, and cost-effectiveness, has emerged as one of the favorable technologies for water and air purification. Among all of the membrane configurations, hollow fiber membranes hold promise due to their outstanding packing density and ease of module assembly. Herein, this review systematically outlines the fundamentals of hollow fiber membranes, which comprise the structural analyses and phase inversion mechanism. Furthermore, illustrations of the latest advances in the fabrication of organic, inorganic, and composite hollow fiber membranes are presented. Key findings on the utilization of hollow fiber membranes in microfiltration (MF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), pervaporation, gas and vapor separation, membrane distillation, and membrane contactor are also reported. Moreover, the applications in nuclear waste treatment and biomedical fields such as hemodialysis and drug delivery are emphasized. Subsequently, the emerging R&D areas, precisely on green fabrication and modification techniques as well as sustainable materials for hollow fiber membranes, are highlighted. Last but not least, this review offers invigorating perspectives on the future directions for the design of next-generation hollow fiber membranes for various applications. As such, the comprehensive and critical insights gained in this review are anticipated to provide a new research doorway to stimulate the future development and optimization of hollow fiber membranes.
Collapse
Affiliation(s)
- Hui Shen Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Siew Kei Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Leong Sing Soh
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Seang Uyin Hong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Xie Yuen Gok
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Shouliang Yi
- U.S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Rd, Pittsburgh, PA 15236, USA;
| | - Wai Fen Yong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
16
|
Li H, Zhang S, Sengupta B, Li H, Wang F, Li S, Yu M. Polystyrene sulfonate (PSS) stabilized polyethylenimine (PEI) membranes fabricated by spray coating for highly effective CO2/N2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Zhang S, Shen L, Deng H, Liu Q, You X, Yuan J, Jiang Z, Zhang S. Ultrathin Membranes for Separations: A New Era Driven by Advanced Nanotechnology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108457. [PMID: 35238090 DOI: 10.1002/adma.202108457] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Ultrathin membranes are at the forefront of membrane research, offering great opportunities in revolutionizing separations with ultrafast transport. Driven by advanced nanomaterials and manufacturing technology, tremendous progresses are made over the last 15 years in the fabrications and applications of sub-50 nm membranes. Here, an overview of state-of-the-art ultrathin membranes is first introduced, followed by a summary of the fabrication techniques with an emphasis on how to realize such extremely low thickness. Then, different types of ultrathin membranes, categorized based on their structures, that is, network, laminar, or framework structures, are discussed with a focus on the interplays among structure, fabrication methods, and separation performances. Recent research and development trends are highlighted. Meanwhile, the performances and applications of current ultrathin membranes for representative separations (gas separation and liquid separation) are thoroughly analyzed and compared. Last, the challenges in material design, structure construction, and coordination are given, in order to fully realize the potential of ultrathin membranes and facilitate the translation from scientific achievements to industrial productions.
Collapse
Affiliation(s)
- Shiyu Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Liang Shen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Hao Deng
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qinze Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Xinda You
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Jinqiu Yuan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Sui Zhang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
18
|
Rehman F, Memon FH, Ali A, Khan SM, Soomro F, Iqbal M, Thebo KH. Recent progress on fabrication methods of graphene-based membranes for water purification, gas separation, and energy sustainability. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Graphene-based layered materials have got significant interest in membrane technology for water desalination, gas separation, organic nanofiltration, pervaporation, proton exchange applications, etc. and show remarkable results. Up to date, various methods have been developed for fabrication of high performance membrane. Most of them are only suitable for research purposes, but not appropriate for mass transport barrier and membrane applications that require large-area synthesis. In this comprehensive review, we summarized the current synthesis and fabrication methods of graphene-based membranes. Emphasis will be given on fabrication of both graphene-based nanoporous and lamellar membranes. Finally, we discuss the current engineering hurdles and future research directions yet to be explored for fabrication of such membranes.
Collapse
Affiliation(s)
- Faisal Rehman
- Department of Mechatronics Engineering , College of EME, National University of Sciences and Technology (NUST) , Peshawar Road , Rawalpindi , Pakistan
| | - Fida Hussain Memon
- Department of Electrical Engineering , Sukkur IBA University , Sukkur , Sindh , Pakistan
| | - Akbar Ali
- Department of Molecular Engineering , Faculty of Process and Environmental Engineering, Lodz University of Technology , Lodz , Poland
| | - Shah Masaud Khan
- Department of Horticulture , Faculty of Basic Science and Applied Sciences, The University of Haripur KPK , Haripur , KPK , 22620 , Pakistan
| | - Faheeda Soomro
- Department of Human & Rehabilitation Sciences , Begum Nusrat Bhutto Women University , Sukkur , Pakistan
| | - Muzaffar Iqbal
- Department of Chemistry , Faculty of Natural Science, The University of Haripur KPK , Haripur , KPK , 22620 , Pakistan
| | - Khalid Hussain Thebo
- Institute of Metal Research, Chinese Academy of Sciences (CAS) , Shenyang , China
| |
Collapse
|
19
|
Chen J, Xu W, Li X, Wang C, Hu Z, Jia H. Combining bi-functional Pt/USY and electromagnetic induction for rapid in-situ adsorption-combustion cycling of gaseous organic pollutant. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128097. [PMID: 34952495 DOI: 10.1016/j.jhazmat.2021.128097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
By exploiting the superior adsorption capacity of ultra-stable Y-type zeolite (USY) and accurate input of energy by electromagnetic induction field (EMIF) technique, we successfully designed a highly energy-efficient system to eliminate gaseous toluene a common air pollutant. Pristine USY as adsorbent enriches gaseous toluene by a factor of fifteen, via room-temperature adsorption and then EMIF-driven thermal desorption. This operation model involving intermittent heating and mass transfer saves a lot of energy. Especially during temperature rising, 98.9% electric energy can be saved by the EMIF heating in comparison with conventional furnace approaches. In the bi-functional "adsorption-catalytic oxidation" 1Pt/USY, the concentrated toluene undergoes direct oxidation into CO2 rather than desorption when the EMIF heating starts, so one-step enrichment and mineralization are realized. In addition, the developed bi-functional system operates between adsorption and catalytic decomposition flexibly, which makes it ideal for cleaning VOCs emitted from intermittent sources.
Collapse
Affiliation(s)
- Jin Chen
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjian Xu
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaolan Li
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chunqi Wang
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resource and Environment, Fujian Agriculture and Forest University, Fuzhou 350002, China
| | - Zhongjian Hu
- Nanohmics, Inc., 6201 E. Oltorf St., Austin, TX 78741, USA
| | - Hongpeng Jia
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
20
|
Liu M, Nothling MD, Zhang S, Fu Q, Qiao GG. Thin film composite membranes for postcombustion carbon capture: Polymers and beyond. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Zhang N, Luo Y, Li Z, Yu H, Jiang E, Li Z, Dai Y, Bao J, Zhang X, He G. Molecular investigation on the mechanism of permselective transport of CO2/N2 mixture through graphene slit. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Mixed matrix membranes for post-combustion carbon capture: From materials design to membrane engineering. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Lecaros RLG, Matira AR, Tayo LL, Hung WS, Hu CC, Tsai HA, Lee KR, Lai JY. Homostructured graphene oxide-graphene quantum dots nanocomposite-based membranes with tunable interlayer spacing for the purification of butanol. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Afroj S, Britnell L, Hasan T, Andreeva DV, Novoselov KS, Karim N. Graphene-Based Technologies for Tackling COVID-19 and Future Pandemics. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2107407. [PMID: 34899114 PMCID: PMC8646295 DOI: 10.1002/adfm.202107407] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/27/2021] [Indexed: 05/06/2023]
Abstract
The COVID-19 pandemic highlighted the need for rapid tools and technologies to combat highly infectious viruses. The excellent electrical, mechanical and other functional properties of graphene and graphene-like 2D materials (2DM) can be utilized to develop novel and innovative devices to tackle COVID-19 and future pandemics. Here, the authors outline how graphene and other 2DM-based technologies can be used for the detection, protection, and continuous monitoring of infectious diseases including COVID-19. The authors highlight the potential of 2DM-based biosensors in rapid testing and tracing of viruses to enable isolation of infected patients, and stop the spread of viruses. The possibilities of graphene-based wearable devices are discussed for continuous monitoring of COVID-19 symptoms. The authors also provide an overview of the personal protective equipment, and potential filtration mechanisms to separate, destroy or degrade highly infectious viruses, and the potential of graphene and other 2DM to increase their efficiency, and enhance functional and mechanical properties. Graphene and other 2DM could not only play a vital role for tackling the ongoing COVID-19 pandemic but also provide technology platforms and tools for the protection, detection and monitoring of future viral diseases.
Collapse
Affiliation(s)
- Shaila Afroj
- Centre for Print Research The University of West of EnglandBristolBS16 1QYUK
| | - Liam Britnell
- Graphene Engineering and Innovation Centre (GEIC)The University of ManchesterManchesterM13 9PLUK
| | - Tahmid Hasan
- Department of Environmental Science and EngineeringBangladesh University of TextilesTejgaonDhaka 1208Bangladesh
| | - Daria V. Andreeva
- Department of Materials Science and EngineeringNational University of SingaporeSingaporeSingapore
- Institute for Functional Intelligent MaterialsNational University of SingaporeSingaporeSingapore
| | - Kostya S. Novoselov
- Department of Materials Science and EngineeringNational University of SingaporeSingaporeSingapore
- Institute for Functional Intelligent MaterialsNational University of SingaporeSingaporeSingapore
- Chongqing 2D Materials InstituteLiangjiang New AreaChongqing400714China
| | - Nazmul Karim
- Centre for Print Research The University of West of EnglandBristolBS16 1QYUK
| |
Collapse
|
25
|
Rehman F, Memon FH, Bhatti Z, Iqbal M, Soomro F, Ali A, Thebo KH. Graphene-based composite membranes for isotope separation: challenges and opportunities. REV INORG CHEM 2021. [DOI: 10.1515/revic-2021-0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
Graphene-based membranes have got significant attention in wastewater treatment, desalination, gas separation, pervaporation, fuel cell, energy storage applications due to their supreme properties. Recently, studies have confirmed that graphene based membranes can also use for separation of isotope due to their ideal thickness, large surface area, good affinity, 2D structure etc. Herein, we review the latest groundbreaking progresses in both theoretically and experimentally chemical science and engineering of both nanoporous and lamellar graphene-based membrane for separation of different isotopes. Especially focus will be given on the current issues, engineering hurdles, and limitations of membranes designed for isotope separation. Finally, we offer our experiences on how to overcome these issues, and present an ideas for future improvement and research directions. We hope, this article is provide a timely knowledge and information to scientific communities, and those who are already working in this direction.
Collapse
Affiliation(s)
- Faisal Rehman
- Department of Mechatronics Engineering , College of EME, National University of Sciences and Technology (NUST) , Peshawar Road , Rawalpindi , Pakistan
| | - Fida Hussain Memon
- Department of Electrical Engineering , Sukkur IBA University , Sindh , Pakistan
| | - Zubeda Bhatti
- Department of Physics and Electronics , Shah Abdul Latif University , Khairpur Mirs , 66020 , Pakistan
| | - Muzaffar Iqbal
- Department of Chemistry , Faculty of Natural Science, The University of Haripur KPK , Haripur , 22620 , Pakistan
| | - Faheeda Soomro
- Department of Linguistics and Human Sciences , Begum Nusrat Bhutto Women University , Sukkur Sindh Pakistan
| | - Akbar Ali
- Department of Molecular Engineering , Faculty of Process and Environmental Engineering, Lodz University of Technology , Lodz , Poland
| | - Khalid Hussain Thebo
- Institute of Metal Research, Chinese Academy of Sciences (UCAS) , Shenyang , China
| |
Collapse
|
26
|
Lee YY, Gurkan B. Graphene oxide reinforced facilitated transport membrane with poly(ionic liquid) and ionic liquid carriers for CO2/N2 separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119652] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Wang H, Zheng J, Zhao J, Jin W. Designing GO Channels with High Selectivity for CO 2 /N 2 Separation via Incorporating Metal Ions. Chem Asian J 2021; 16:3141-3150. [PMID: 34374219 DOI: 10.1002/asia.202100839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/09/2021] [Indexed: 11/11/2022]
Abstract
Graphene oxide (GO) membranes holds great potential for high-performance CO2 capture. Aiming at enhancing the CO2 separation performance and structural stability of GO membranes, functionalizing GO channels with metal ions confers a promising strategy. In this study, we reported the fabrication of metal ion-incorporated GO membranes with remarkably improved CO2 /N2 separation performance. The metal ions within GO channels contribute to facilitating CO2 transport, decreasing N2 solubility, hindering N2 diffusion, and form multiple interactions with GO nanosheets. After introducing Mg2+ ions, the CO2 /N2 separation factor of GO membrane is remarkably increased from 4 to 48.8 with the CO2 permeance increases 1.5 times. Moreover, the separation performance of the GO-Mg2+ membranes shows an excellent long-term stability owing to the structural robustness. This study could provide insights into the regulation of the microstructure of metal ion-functionalized GO membranes for highly selective transport of specific molecules.
Collapse
Affiliation(s)
- Haoyu Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing, 211816, P. R. China
| | - Jing Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing, 211816, P. R. China
| | - Jing Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing, 211816, P. R. China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road, Nanjing, 211816, P. R. China
| |
Collapse
|
28
|
Surface, textural and catalytic properties of pyridinium hydrogen sulfate ionic liquid heterogenized on activated carbon carrier. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Yu Y, Zhang X, Wang K, Wang Z, Sun H, Yang Y, Deng C, Huang Y, Wang T. Coexistence of transmission mechanisms for independent multi-parameter sensing in a silica capillary-based cascaded structure. OPTICS EXPRESS 2021; 29:27938-27950. [PMID: 34615198 DOI: 10.1364/oe.435097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The coexistence of transmission mechanisms, including Fabry-Perot (FP), Mach-Zehnder (MZ), and anti-resonant (AR), is demonstrated via a silica capillary-based cascaded structure. The analysis for MZ shows that one pathway is formed by the beam refracted into the silica capillary cladding from the air core, rather than being transmitted into the cladding directly at the splicing interface. Using the ray optics method, the two coexistence conditions are derived for FP and MZ, and for FP, MZ and AR, respectively. The existence percentages of the three mechanisms can be obtained using the fast Fourier transform. Finally, the coexistence of multiple transmission mechanisms is applied for independent multi-parameter sensing with the FP-based temperature sensitivity of 10.0 pm/°C and AR-based strain sensitivity of 1.33 nm/N. The third mechanism MZ interference can assist in verifying changes in both the temperature and axial strain. This shows the possibility to optimize the transmission spectra for independent multi-parameter sensing by tailoring the existence percentages of different mechanisms.
Collapse
|
30
|
Singh S, Varghese AM, Reinalda D, Karanikolos GN. Graphene - based membranes for carbon dioxide separation. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Deng J, Zou W, Mi J, Du Z, Kong P, Zhang C. Construction of Porous Polymer Beads for CO 2 Capture in a Fluidized Bed with High Stability. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jingqian Deng
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Wei Zou
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jianguo Mi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhongjie Du
- Sinochem Petrochemical Distribution Company LTD, Shanghai 201103, PR China
| | - Peng Kong
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chen Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
32
|
Constructing low-resistance and high-selectivity transport multi-channels in mixed matrix membranes for efficient CO2 separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119046] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Petukhov D, Kan A, Chumakov A, Konovalov O, Valeev R, Eliseev A. MXene-based gas separation membranes with sorption type selectivity. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118994] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Petukhov DI, Kapitanova OO, Eremina EA, Goodilin EA. Preparation, chemical features, structure and applications of membrane materials based on graphene oxide. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
|
36
|
Yuan Y, Qiao Z, Xu J, Wang J, Zhao S, Cao X, Wang Z, Guiver MD. Mixed matrix membranes for CO2 separations by incorporating microporous polymer framework fillers with amine-rich nanochannels. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118923] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Huang S, Li S, Villalobos LF, Dakhchoune M, Micari M, Babu DJ, Vahdat MT, Mensi M, Oveisi E, Agrawal KV. Millisecond lattice gasification for high-density CO 2- and O 2-sieving nanopores in single-layer graphene. SCIENCE ADVANCES 2021; 7:7/9/eabf0116. [PMID: 33627433 PMCID: PMC7904253 DOI: 10.1126/sciadv.abf0116] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/12/2021] [Indexed: 05/31/2023]
Abstract
Etching single-layer graphene to incorporate a high pore density with sub-angstrom precision in molecular differentiation is critical to realize the promising high-flux separation of similar-sized gas molecules, e.g., CO2 from N2 However, rapid etching kinetics needed to achieve the high pore density is challenging to control for such precision. Here, we report a millisecond carbon gasification chemistry incorporating high density (>1012 cm-2) of functional oxygen clusters that then evolve in CO2-sieving vacancy defects under controlled and predictable gasification conditions. A statistical distribution of nanopore lattice isomers is observed, in good agreement with the theoretical solution to the isomer cataloging problem. The gasification technique is scalable, and a centimeter-scale membrane is demonstrated. Last, molecular cutoff could be adjusted by 0.1 Å by in situ expansion of the vacancy defects in an O2 atmosphere. Large CO2 and O2 permeances (>10,000 and 1000 GPU, respectively) are demonstrated accompanying attractive CO2/N2 and O2/N2 selectivities.
Collapse
Affiliation(s)
- Shiqi Huang
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), 1950 Sion, Switzerland
| | - Shaoxian Li
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), 1950 Sion, Switzerland
| | - Luis Francisco Villalobos
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), 1950 Sion, Switzerland
| | - Mostapha Dakhchoune
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), 1950 Sion, Switzerland
| | - Marina Micari
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), 1950 Sion, Switzerland
| | - Deepu J Babu
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), 1950 Sion, Switzerland
| | - Mohammad Tohidi Vahdat
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), 1950 Sion, Switzerland
| | - Mounir Mensi
- Institut des Sciences et Ingénierie Chimiques (ISIC), EPFL, 1950 Sion, Switzerland
| | - Emad Oveisi
- Interdisciplinary Centre for Electron Microscopy (CIME), EPFL, 1015 Lausanne, Switzerland
| | - Kumar Varoon Agrawal
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), 1950 Sion, Switzerland.
| |
Collapse
|
38
|
Shi F, Sun J, Wang J, Liu M, Yan Z, Zhu B, Li Y, Cao X. MXene versus graphene oxide: Investigation on the effects of 2D nanosheets in mixed matrix membranes for CO2 separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118850] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Hafeez S, Safdar T, Pallari E, Manos G, Aristodemou E, Zhang Z, Al-Salem SM, Constantinou A. CO2 capture using membrane contactors: a systematic literature review. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1992-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractWith fossil fuel being the major source of energy, CO2 emission levels need to be reduced to a minimal amount namely from anthropogenic sources. Energy consumption is expected to rise by 48% in the next 30 years, and global warming is becoming an alarming issue which needs to be addressed on a thorough technical basis. Nonetheless, exploring CO2 capture using membrane contactor technology has shown great potential to be applied and utilised by industry to deal with post- and pre-combustion of CO2. A systematic review of the literature has been conducted to analyse and assess CO2 removal using membrane contactors for capturing techniques in industrial processes. The review began with a total of 2650 papers, which were obtained from three major databases, and then were excluded down to a final number of 525 papers following a defined set of criteria. The results showed that the use of hollow fibre membranes have demonstrated popularity, as well as the use of amine solvents for CO2 removal. This current systematic review in CO2 removal and capture is an important milestone in the synthesis of up to date research with the potential to serve as a benchmark databank for further research in similar areas of work. This study provides the first systematic enquiry in the evidence to research further sustainable methods to capture and separate CO2.
Collapse
|
40
|
|
41
|
Fang WZ, Peng L, Liu YJ, Wang F, Xu Z, Gao C. A Review on Graphene Oxide Two-dimensional Macromolecules: from Single Molecules to Macro-assembly. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-021-2515-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Cheng L, Song Y, Chen H, Liu G, Liu G, Jin W. g-C3N4 nanosheets with tunable affinity and sieving effect endowing polymeric membranes with enhanced CO2 capture property. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117200] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
Chuah CY, Nie L, Lee JM, Bae TH. The influence of cations intercalated in graphene oxide membranes in tuning H2/CO2 separation performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
44
|
Huang L, Jia W, Lin H. Etching and acidifying graphene oxide membranes to increase gas permeance while retaining molecular sieving ability. AIChE J 2020. [DOI: 10.1002/aic.17022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Liang Huang
- Department of Chemical and Biological Engineering University at Buffalo, The State University of New York Buffalo New York USA
| | - Weiguang Jia
- Department of Chemical and Biological Engineering University at Buffalo, The State University of New York Buffalo New York USA
| | - Haiqing Lin
- Department of Chemical and Biological Engineering University at Buffalo, The State University of New York Buffalo New York USA
| |
Collapse
|
45
|
Casadei R, Giacinti Baschetti M, Yoo MJ, Park HB, Giorgini L. Pebax ® 2533/Graphene Oxide Nanocomposite Membranes for Carbon Capture. MEMBRANES 2020; 10:membranes10080188. [PMID: 32824239 PMCID: PMC7464092 DOI: 10.3390/membranes10080188] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 11/16/2022]
Abstract
In this work, the behavior of new GO-based mixed matrix membranes was tested in view of their use as CO2-selective membrane in post combustion carbon capture applications. In particular, the new materials were obtained by mixing of Pebax® 2533 copolymer with different types of graphene oxide (GO). Pebax® 2533 has indeed lower selectivity, but higher permeability than Pebax® 1657, which is more commonly used for membranes, and it could therefore benefit from the addition of GO, which is endowed with very high selectivity of CO2 with respect to nitrogen. The mixed matrix membranes were obtained by adding different amounts of GO, from 0.02 to 1% by weight, to the commercial block copolymers. Porous graphene oxide (PGO) and GO functionalized with polyetheramine (PEAGO) were also considered in composites produced with similar procedure, with a loading of 0.02%wt. The obtained films were then characterized by using SEM, DSC, XPS analysis and permeability experiments. In particular, permeation tests with pure CO2 and N2 at 35°C and 1 bar of upstream pressure were conducted for the different materials to evaluate their separation performance. It has been discovered that adding these GO-based nanofillers to Pebax® 2533 matrix does not improve the ideal selectivity of the material, but it allows to increase CO2 permeability when a low filler content, not higher than 0.02 wt%, is considered. Among the different types of GO, then, porous GO seems the most promising as it shows CO2 permeability in the order of 400 barrer (with an increase of about 10% with respect to the unloaded block copolymer), obtained without reducing the CO2/N2 selectivity of the materials, which remained in the order of 25.
Collapse
Affiliation(s)
- Riccardo Casadei
- Department of Civil, Chemical, Environmental and Material Engineering (DICAM), University of Bologna, Via Terracini 28, 40131 Bologna, Italy;
| | - Marco Giacinti Baschetti
- Department of Civil, Chemical, Environmental and Material Engineering (DICAM), University of Bologna, Via Terracini 28, 40131 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-20-9-0408
| | - Myung Jin Yoo
- Department of Energy Engineering, Hanyang University, Seoul 133-791, Korea; (M.J.Y.); (H.B.P.)
| | - Ho Bum Park
- Department of Energy Engineering, Hanyang University, Seoul 133-791, Korea; (M.J.Y.); (H.B.P.)
| | - Loris Giorgini
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy;
| |
Collapse
|
46
|
Sivakumar M, Liu DK, Chiao YH, Hung WS. Synergistic effect of one-dimensional silk nanofiber and two-dimensional graphene oxide composite membrane for enhanced water purification. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118142] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
47
|
Cheng Y, Pu Y, Zhao D. Two‐Dimensional Membranes: New Paradigms for High‐Performance Separation Membranes. Chem Asian J 2020; 15:2241-2270. [DOI: 10.1002/asia.202000013] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Youdong Cheng
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore
| | - Yunchuan Pu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular EngineeringNational University of Singapore 4 Engineering Drive 4 117585 Singapore
| |
Collapse
|
48
|
Lin H, Li Y, Zhu J. Cross-linked GO membranes assembled with GO nanosheets of differently sized lateral dimensions for organic dye and chromium separation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117789] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Liu Y, Wu H, Min L, Song S, Yang L, Ren Y, Wu Y, Zhao R, Wang H, Jiang Z. 2D layered double hydroxide membranes with intrinsic breathing effect toward CO2 for efficient carbon capture. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117663] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Ying Y, Tong M, Ning S, Ravi SK, Peh SB, Tan SC, Pennycook SJ, Zhao D. Ultrathin Two-Dimensional Membranes Assembled by Ionic Covalent Organic Nanosheets with Reduced Apertures for Gas Separation. J Am Chem Soc 2020; 142:4472-4480. [DOI: 10.1021/jacs.9b13825] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yunpan Ying
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Minman Tong
- School of Chemistry and Materials Science, Jiangsu Normal University, No. 101 of Shanghai Road, Xuzhou 221116, China
| | - Shoucong Ning
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Sai Kishore Ravi
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Shing Bo Peh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Stephen John Pennycook
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|