1
|
Schubert L, Chen JL, Fritz T, Marxer F, Langner P, Hoffmann K, Gamiz-Hernandez AP, Kaila VRI, Schlesinger R, Heberle J. Proton Release Reactions in the Inward H + Pump NsXeR. J Phys Chem B 2023; 127:8358-8369. [PMID: 37729557 DOI: 10.1021/acs.jpcb.3c04100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Directional ion transport across biological membranes plays a central role in many cellular processes. Elucidating the molecular determinants for vectorial ion transport is key to understanding the functional mechanism of membrane-bound ion pumps. The extensive investigation of the light-driven proton pump bacteriorhodopsin from Halobacterium salinarum(HsBR) enabled a detailed description of outward proton transport. Although the structure of inward-directed proton pumping rhodopsins is very similar to HsBR, little is known about their protonation pathway, and hence, the molecular reasons for the vectoriality of proton translocation remain unclear. Here, we employ a combined experimental and theoretical approach to tracking protonation steps in the light-driven inward proton pump xenorhodopsin from Nanosalina sp. (NsXeR). Time-resolved infrared spectroscopy reveals the transient deprotonation of D220 concomitantly with deprotonation of the retinal Schiff base. Our molecular dynamics simulations support a proton release pathway from the retinal Schiff base via a hydrogen-bonded water wire leading to D220 that could provide a putative gating point for the proton release and with allosteric interactions to the retinal Schiff base. Our findings support the key role of D220 in mediating proton release to the cytoplasmic side and provide evidence that this residue is not the primary proton acceptor of the proton transiently released by the retinal Schiff base.
Collapse
Affiliation(s)
- Luiz Schubert
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195Berlin, Germany
| | - Jheng-Liang Chen
- Genetic Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195Berlin, Germany
| | - Tobias Fritz
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Florina Marxer
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195Berlin, Germany
| | - Pit Langner
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195Berlin, Germany
| | - Kirsten Hoffmann
- Genetic Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195Berlin, Germany
| | - Ana P Gamiz-Hernandez
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ramona Schlesinger
- Genetic Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195Berlin, Germany
| | - Joachim Heberle
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195Berlin, Germany
| |
Collapse
|
2
|
Brünig FN, Hillmann P, Kim WK, Daldrop JO, Netz RR. Proton-transfer spectroscopy beyond the normal-mode scenario. J Chem Phys 2022; 157:174116. [DOI: 10.1063/5.0116686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A stochastic theory is developed to predict the spectral signature of proton-transfer processes and is applied to infrared spectra computed from ab initio molecular-dynamics simulations of a single [Formula: see text] cation. By constraining the oxygen atoms to a fixed distance, this system serves as a tunable model for general proton-transfer processes with variable barrier height. Three spectral contributions at distinct frequencies are identified and analytically predicted: the quasi-harmonic motion around the most probable configuration, amenable to normal-mode analysis, the contribution due to transfer paths when the proton moves over the barrier, and a shoulder for low frequencies stemming from the stochastic transfer-waiting-time distribution; the latter two contributions are not captured by normal-mode analysis but exclusively reported on the proton-transfer kinetics. In accordance with reaction rate theory, the transfer-waiting-contribution frequency depends inversely exponentially on the barrier height, whereas the transfer-path-contribution frequency is rather insensitive to the barrier height.
Collapse
Affiliation(s)
- Florian N. Brünig
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Paul Hillmann
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Won Kyu Kim
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Jan O. Daldrop
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Roland R. Netz
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
3
|
Brünig FN, Rammler M, Adams EM, Havenith M, Netz RR. Spectral signatures of excess-proton waiting and transfer-path dynamics in aqueous hydrochloric acid solutions. Nat Commun 2022; 13:4210. [PMID: 35864099 PMCID: PMC9304333 DOI: 10.1038/s41467-022-31700-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/22/2022] [Indexed: 11/23/2022] Open
Abstract
The theoretical basis for linking spectral signatures of hydrated excess protons with microscopic proton-transfer mechanisms has so far relied on normal-mode analysis. We introduce trajectory-decomposition techniques to analyze the excess-proton dynamics in ab initio molecular-dynamics simulations of aqueous hydrochloric-acid solutions beyond the normal-mode scenario. We show that the actual proton transfer between two water molecules involves for relatively large water-water separations crossing of a free-energy barrier and thus is not a normal mode, rather it is characterized by two non-vibrational time scales: Firstly, the broadly distributed waiting time for transfer to occur with a mean value of 200-300 fs, which leads to a broad and weak shoulder in the absorption spectrum around 100 cm-1, consistent with our experimental THz spectra. Secondly, the mean duration of a transfer event of about 14 fs, which produces a rather well-defined spectral contribution around 1200 cm-1 and agrees in location and width with previous experimental mid-infrared spectra.
Collapse
Affiliation(s)
- Florian N Brünig
- Freie Universität Berlin, Department of Physics, 14195, Berlin, Germany
| | - Manuel Rammler
- Freie Universität Berlin, Department of Physics, 14195, Berlin, Germany
| | - Ellen M Adams
- Ruhr-Universität Bochum, Department of Physical Chemistry II, 44780, Bochum, Germany
| | - Martina Havenith
- Ruhr-Universität Bochum, Department of Physical Chemistry II, 44780, Bochum, Germany
| | - Roland R Netz
- Freie Universität Berlin, Department of Physics, 14195, Berlin, Germany.
| |
Collapse
|
4
|
Ultrafast proton-coupled isomerization in the phototransformation of phytochrome. Nat Chem 2022; 14:823-830. [PMID: 35577919 PMCID: PMC9252900 DOI: 10.1038/s41557-022-00944-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/01/2022] [Indexed: 11/08/2022]
Abstract
The biological function of phytochromes is triggered by an ultrafast photoisomerization of the tetrapyrrole chromophore biliverdin between two rings denoted C and D. The mechanism by which this process induces extended structural changes of the protein is unclear. Here we report ultrafast proton-coupled photoisomerization upon excitation of the parent state (Pfr) of bacteriophytochrome Agp2. Transient deprotonation of the chromophore's pyrrole ring D or ring C into a hydrogen-bonded water cluster, revealed by a broad continuum infrared band, is triggered by electronic excitation, coherent oscillations and the sudden electric-field change in the excited state. Subsequently, a dominant fraction of the excited population relaxes back to the Pfr state, while ~35% follows the forward reaction to the photoproduct. A combination of quantum mechanics/molecular mechanics calculations and ultrafast visible and infrared spectroscopies demonstrates how proton-coupled dynamics in the excited state of Pfr leads to a restructured hydrogen-bond environment of early Lumi-F, which is interpreted as a trigger for downstream protein structural changes.
Collapse
|
5
|
Yagi K, Sugita Y. Anharmonic Vibrational Calculations Based on Group-Localized Coordinates: Applications to Internal Water Molecules in Bacteriorhodopsin. J Chem Theory Comput 2021; 17:5007-5020. [PMID: 34296615 PMCID: PMC10986902 DOI: 10.1021/acs.jctc.1c00060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An efficient anharmonic vibrational method is developed exploiting the locality of molecular vibration. Vibrational coordinates localized to a group of atoms are employed to divide the potential energy surface (PES) of a system into intra- and inter-group contributions. Then, the vibrational Schrödinger equation is solved based on a PES, in which the inter-group coupling is truncated at the harmonic level while accounting for the intra-group anharmonicity. The method is applied to a pentagonal hydrogen bond network (HBN) composed of internal water molecules and charged residues in a membrane protein, bacteriorhodopsin. The PES is calculated by the quantum mechanics/molecular mechanics (QM/MM) calculation at the level of B3LYP-D3/aug-cc-pVDZ. The infrared (IR) spectrum is computed using a set of coordinates localized to each water molecule and amino acid residue by second-order vibrational quasi-degenerate perturbation theory (VQDPT2). Benchmark calculations show that the proposed method yields the N-D/O-D stretching frequencies with an error of 7 cm-1 at the cost reduced by more than five times. In contrast, the harmonic approximation results in a severe error of 150 cm-1. Furthermore, the size of QM regions is carefully assessed to find that the QM regions should include not only the pentagonal HBN itself but also its HB partners. VQDPT2 calculations starting from transient structures obtained by molecular dynamics simulations have shown that the structural sampling has a significant impact on the calculated IR spectrum. The incorporation of anharmonicity, sufficiently large QM regions, and structural samplings are of essential importance to reproduce the experimental IR spectrum. The computational spectrum paves the way for decoding the IR signal of strong HBNs and helps elucidate their functional roles in biomolecules.
Collapse
Affiliation(s)
- Kiyoshi Yagi
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yuji Sugita
- Theoretical
Molecular Science Laboratory, RIKEN Cluster
for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Computational
Biophysics Research Team, RIKEN Center for
Computational Science, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Laboratory
for Biomolecular Function Simulation, RIKEN
Center for Biosystems Dynamics Research, 1-6-5 Minatojima-Minamimachi,
Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
6
|
Kaur D, Khaniya U, Zhang Y, Gunner MR. Protein Motifs for Proton Transfers That Build the Transmembrane Proton Gradient. Front Chem 2021; 9:660954. [PMID: 34211960 PMCID: PMC8239185 DOI: 10.3389/fchem.2021.660954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Biological membranes are barriers to polar molecules, so membrane embedded proteins control the transfers between cellular compartments. Protein controlled transport moves substrates and activates cellular signaling cascades. In addition, the electrochemical gradient across mitochondrial, bacterial and chloroplast membranes, is a key source of stored cellular energy. This is generated by electron, proton and ion transfers through proteins. The gradient is used to fuel ATP synthesis and to drive active transport. Here the mechanisms by which protons move into the buried active sites of Photosystem II (PSII), bacterial RCs (bRCs) and through the proton pumps, Bacteriorhodopsin (bR), Complex I and Cytochrome c oxidase (CcO), are reviewed. These proteins all use water filled proton transfer paths. The proton pumps, that move protons uphill from low to high concentration compartments, also utilize Proton Loading Sites (PLS), that transiently load and unload protons and gates, which block backflow of protons. PLS and gates should be synchronized so PLS proton affinity is high when the gate opens to the side with few protons and low when the path is open to the high concentration side. Proton transfer paths in the proteins we describe have different design features. Linear paths are seen with a unique entry and exit and a relatively straight path between them. Alternatively, paths can be complex with a tangle of possible routes. Likewise, PLS can be a single residue that changes protonation state or a cluster of residues with multiple charge and tautomer states.
Collapse
Affiliation(s)
- Divya Kaur
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY, United States.,Department of Physics, City College of New York, New York, NY, United States
| | - Umesh Khaniya
- Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| | - Yingying Zhang
- Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| | - M R Gunner
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY, United States.,Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
7
|
|
8
|
Liu YY, Hua X, Zhang Z, Zhang J, Zhang S, Hu P, Long YT. pH-Dependent Water Clusters in Photoacid Solution: Real-Time Observation by ToF-SIMS at a Submicropore Confined Liquid-Vacuum Interface. Front Chem 2020; 8:731. [PMID: 32974284 PMCID: PMC7472850 DOI: 10.3389/fchem.2020.00731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/15/2020] [Indexed: 11/13/2022] Open
Abstract
Water clusters are ubiquitously formed in aqueous solutions by hydrogen bonding, which is quite sensitive to various environment factors such as temperature, pressure, electrolytes, and pH. Investigation of how the environment has impact on water structure is important for further understanding of the nature of water and the interactions between water and solutes. In this work, pH-dependent water structure changes were studied by monitoring the changes for the size distribution of protonated water clusters by in-situ liquid ToF-SIMS. In combination with a light illumination system, in-situ liquid ToF-SIMS was used to real-time measure the changes of a light-activated organic photoacid under different light illumination conditions. Thus, the proton transfer and pH-mediated water cluster changes were analyzed in real-time. It was found that higher concentration of free protons could lead to a strengthened local hydrogen bonding network as well as relatively larger protonated water clusters in both organic acid and inorganic acid. Besides, the accumulation of protons at the liquid-vacuum interface under light illumination was observed owing to the affinity of organic molecules to the low-pressure gas phase. The application of in-situ liquid ToF-SIMS analysis in combination with in-situ light illumination system opened up an avenue to real-time investigate light-activated reactions. Besides, the results regarding water structure changes in acidic solutions showed important insights in related atmospheric and physiochemical processes.
Collapse
Affiliation(s)
- Ying-Ya Liu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Xin Hua
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhiwei Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Junji Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Shaoze Zhang
- National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming, China.,Engineering Laboratory for Advanced Battery and Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, China
| | - Ping Hu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
9
|
Abstract
Infrared difference spectroscopy probes vibrational changes of proteins upon their perturbation. Compared with other spectroscopic methods, it stands out by its sensitivity to the protonation state, H-bonding, and the conformation of different groups in proteins, including the peptide backbone, amino acid side chains, internal water molecules, or cofactors. In particular, the detection of protonation and H-bonding changes in a time-resolved manner, not easily obtained by other techniques, is one of the most successful applications of IR difference spectroscopy. The present review deals with the use of perturbations designed to specifically change the protein between two (or more) functionally relevant states, a strategy often referred to as reaction-induced IR difference spectroscopy. In the first half of this contribution, I review the technique of reaction-induced IR difference spectroscopy of proteins, with special emphasis given to the preparation of suitable samples and their characterization, strategies for the perturbation of proteins, and methodologies for time-resolved measurements (from nanoseconds to minutes). The second half of this contribution focuses on the spectral interpretation. It starts by reviewing how changes in H-bonding, medium polarity, and vibrational coupling affect vibrational frequencies, intensities, and bandwidths. It is followed by band assignments, a crucial aspect mostly performed with the help of isotopic labeling and site-directed mutagenesis, and complemented by integration and interpretation of the results in the context of the studied protein, an aspect increasingly supported by spectral calculations. Selected examples from the literature, predominately but not exclusively from retinal proteins, are used to illustrate the topics covered in this review.
Collapse
|
10
|
S P, V S B. The influence of molecular vicinity (expressed in terms of dielectric constant) on the infrared spectra of embedded species in ices and solid matrices. RSC Adv 2020; 10:5328-5338. [PMID: 35498323 PMCID: PMC9049193 DOI: 10.1039/c9ra10136e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/24/2020] [Indexed: 11/21/2022] Open
Abstract
In this theoretical work we evaluate how the chemical environment influences some features presented in the infrared spectrum, such as band intensities and band location of embedded species in icy matrices. The calculations were performed employing the Polarized Continuum Model (PCM) approach with the second-order Møller-Plesset perturbation theory (MP2) level using the Gaussian 09 package. Here, we simulate the effects of molecular vicinity around embedded species in terms of the effects of the dielectric constant (ε) of the icy and solid samples. Gas phase calculation was also performed for comparison purpose. The investigated embedded single molecules were CO, CO2, CH4, NH3, SO2 HCOOH, CH3OH and also H2O. The results suggest that for most vibrational modes, the strengths of IR bands show an increase with ε, which implies they also decrease with respect to porosity. The frequency shifts showed opposite behavior in relation to the band strengths, with few exceptions. A correlation between calculated band intensities with the band strengths A (taken from literature) was determined and described by a linear function I ∼ 6 × 1018 A [km mol-1], with A in unity of cm per molecule. In addition, an associative exponential function was adjusted to the studied dataset to characterize the evolution of frequency-shift and intensity-shift and band strength ratio as function of the dielectric constant. Since astrophysical ice mantles over cold dust grains can vastly vary in composition in space (having different dielectric constants) they are a challenge to be well characterized. Therefore, this work can help the astrochemistry community to better understand astrophysical ices and its observations in the infrared.
Collapse
Affiliation(s)
- Pilling S
- Universidade do Vale do Paraíba - UNIVAP, Laboratório de Astroquímica e Astrobiologia - LASA Av. Shishima Hifumi, 2911, Urbanova São José dos Campos SP Brazil
| | - Bonfim V S
- Universidade do Vale do Paraíba - UNIVAP, Laboratório de Astroquímica e Astrobiologia - LASA Av. Shishima Hifumi, 2911, Urbanova São José dos Campos SP Brazil
| |
Collapse
|
11
|
Abstract
Potential energy surfaces of protonated acetonitrile clusters have been explored to locate global and local minima energy structures. The structures are stabilized by strong hydrogen bonds, anti-parallel dimers, dipole–dipole and CH⋯N interactions.
Collapse
Affiliation(s)
- Alhadji Malloum
- Department of Chemistry
- University of the Free State
- Bloemfontein
- South Africa
- Department of Physics
| | - Jeanet Conradie
- Department of Chemistry
- University of the Free State
- Bloemfontein
- South Africa
| |
Collapse
|
12
|
Quaroni L. Characterization of Intact Eukaryotic Cells with Subcellular Spatial Resolution by Photothermal-Induced Resonance Infrared Spectroscopy and Imaging. Molecules 2019; 24:E4504. [PMID: 31835358 PMCID: PMC6943681 DOI: 10.3390/molecules24244504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Photothermal-induced resonance (PTIR) spectroscopy and imaging with infrared light has seen increasing application in the molecular spectroscopy of biological samples. The appeal of the technique lies in its capability to provide information about IR light absorption at a spatial resolution better than that allowed by light diffraction, typically below 100 nm. In the present work, we tested the capability of the technique to perform measurements with subcellular resolution on intact eukaryotic cells, without drying or fixing. We demonstrate the possibility of obtaining PTIR images and spectra from the nucleus and multiple organelles with high resolution, better than that allowed by diffraction with infrared light. We obtain particularly strong signal from bands typically assigned to acyl lipids and proteins. We also show that while a stronger signal is obtained from some subcellular structures, other large subcellular components provide a weaker or undetectable PTIR response. The mechanism that underlies such variability in response is presently unclear. We propose and discuss different possibilities, addressing thermomechanical, geometrical, and electrical properties of the sample and the presence of cellular water, from which the difference in response may arise.
Collapse
Affiliation(s)
- Luca Quaroni
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland; ; Tel.: +48-12-6862520
- Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Kraków, Poland
| |
Collapse
|
13
|
Tripathi R, Forbert H, Marx D. Settling the Long-Standing Debate on the Proton Storage Site of the Prototype Light-Driven Proton Pump Bacteriorhodopsin. J Phys Chem B 2019; 123:9598-9608. [DOI: 10.1021/acs.jpcb.9b09608] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Kappler J, Hinrichsen VB, Netz RR. Non-Markovian barrier crossing with two-time-scale memory is dominated by the faster memory component. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:119. [PMID: 31494784 DOI: 10.1140/epje/i2019-11886-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
We investigate non-Markovian barrier-crossing kinetics of a massive particle in one dimension in the presence of a memory function that is the sum of two exponentials with different memory times, [Formula: see text] and [Formula: see text] . Our Langevin simulations for the special case where both exponentials contribute equally to the total friction show that the barrier-crossing time becomes independent of the longer memory time if at least one of the two memory times is larger than the intrinsic diffusion time. When we associate memory effects with coupled degrees of freedom that are orthogonal to a one-dimensional reaction coordinate, this counterintuitive result shows that the faster orthogonal degrees of freedom dominate barrier-crossing kinetics in the non-Markovian limit and that the slower orthogonal degrees become negligible, quite contrary to the standard time-scale separation assumption and with important consequences for the proper setup of coarse-graining procedures in the non-Markovian case. By asymptotic matching and symmetry arguments, we construct a crossover formula for the barrier crossing time that is valid for general multi-exponential memory kernels. This formula can be used to estimate barrier-crossing times for general memory functions for high friction, i.e. in the overdamped regime, as well as for low friction, i.e. in the inertial regime. Typical examples where our results are important include protein folding in the high-friction limit and chemical reactions such as proton-transfer reactions in the low-friction limit.
Collapse
Affiliation(s)
- Julian Kappler
- Freie Universität Berlin, Fachbereich Physik, Berlin, Germany
| | | | - Roland R Netz
- Freie Universität Berlin, Fachbereich Physik, Berlin, Germany.
| |
Collapse
|
15
|
Mani D, de Tudela RP, Schwan R, Pal N, Körning S, Forbert H, Redlich B, van der Meer AFG, Schwaab G, Marx D, Havenith M. Acid solvation versus dissociation at "stardust conditions": Reaction sequence matters. SCIENCE ADVANCES 2019; 5:eaav8179. [PMID: 31187059 PMCID: PMC6555628 DOI: 10.1126/sciadv.aav8179] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/02/2019] [Indexed: 05/09/2023]
Abstract
Chemical reactions at ultralow temperatures are of fundamental importance to primordial molecular evolution as it occurs on icy mantles of dust nanoparticles or on ultracold water clusters in dense interstellar clouds. As we show, studying reactions in a stepwise manner in ultracold helium nanodroplets by mass-selective infrared (IR) spectroscopy provides an avenue to mimic these "stardust conditions" in the laboratory. In our joint experimental/theoretical study, in which we successively add H2O molecules to HCl, we disclose a unique IR fingerprint at 1337 cm-1 that heralds hydronium (H3O+) formation and, thus, acid dissociation generating solvated protons. In stark contrast, no reaction is observed when reversing the sequence by allowing HCl to interact with preformed small embryonic ice-like clusters. Our ab initio simulations demonstrate that not only reaction stoichiometry but also the reaction sequence needs to be explicitly considered to rationalize ultracold chemistry.
Collapse
Affiliation(s)
- Devendra Mani
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | | | - Raffael Schwan
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Nitish Pal
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Saskia Körning
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Harald Forbert
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Britta Redlich
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, 6325 ED Nijmegen, Netherlands
| | - A. F. G. van der Meer
- FELIX Laboratory, Institute for Molecules and Materials, Radboud University, 6325 ED Nijmegen, Netherlands
| | - Gerhard Schwaab
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
- Corresponding author. (M.H.); (D.M.)
| | - Martina Havenith
- Lehrstuhl für Physikalische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
- Corresponding author. (M.H.); (D.M.)
| |
Collapse
|
16
|
Kang T, Wang Y, Guo F, Liu C, Zhao J, Yang J, Lin H, Qiu Y, Shen Y, Lu W, Chen L. Self-Assembled Monolayer Enables Slurry-Coating of Li Anode. ACS CENTRAL SCIENCE 2019; 5:468-476. [PMID: 30937374 PMCID: PMC6439463 DOI: 10.1021/acscentsci.8b00845] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Indexed: 05/07/2023]
Abstract
Li metal has long been considered as the ultimate anodic material for high-energy-density batteries. Protection of Li metal in electrochemical cycling and in the manufacturing environment is critical for practical applications. Here, we present the passivation of the Li metal-carbon nanotube (CNT) composite with molecular self-assembly of a long-chain aliphatic phosphonic acid. The dynamics of the self-assembly process is investigated with sum-frequency generation spectroscopy (SFG). The aliphatic phosphonic acid molecules self-assemble on the Li metal surface via the lithium phosphate bonding, while the well-aligned long chains of the molecules help to prevent corrosion of lithium by oxygen and water in the air. As a result, the self-assembled monolayer (SAM) passivated Li-CNT composite displays excellent stability in dry or even humid air, and could be slurry-coated with organic solvents. The resulting slurry-coated Li anode exhibits a high Coulombic efficiency of 98.8% under a 33% depth of discharge (DOD) at a 1C rate in full battery cycling. The concept of molecular self-assembly on Li metal and the stability of the resulting SAM layer open vast possibilities of designed reagents for surface passivation of Li, which may eventually pave the way for practical application of Li metal in secondary batteries.
Collapse
Affiliation(s)
- Tuo Kang
- Shenzhen
Engineering Lab of Flexible Transparent Conductive Films, Department
of Materials Science and Engineering, Harbin
Institute of Technology, Shenzhen 518055, China
| | - Yalong Wang
- China
Energy Lithium Co., No.
100, The Ninth Avenue of Xinye, West TEDA, Tianjin 300462, China
| | - Feng Guo
- i-Lab,
CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of
Sciences, Suzhou 215123, China
| | - Chenghao Liu
- China
Energy Lithium Co., No.
100, The Ninth Avenue of Xinye, West TEDA, Tianjin 300462, China
| | - Jianghui Zhao
- i-Lab,
CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of
Sciences, Suzhou 215123, China
| | - Jin Yang
- i-Lab,
CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of
Sciences, Suzhou 215123, China
| | - Hongzhen Lin
- i-Lab,
CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of
Sciences, Suzhou 215123, China
| | - Yejun Qiu
- Shenzhen
Engineering Lab of Flexible Transparent Conductive Films, Department
of Materials Science and Engineering, Harbin
Institute of Technology, Shenzhen 518055, China
- E-mail:
| | - Yanbin Shen
- i-Lab,
CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of
Sciences, Suzhou 215123, China
- E-mail:
| | - Wei Lu
- i-Lab,
CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of
Sciences, Suzhou 215123, China
| | - Liwei Chen
- i-Lab,
CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of
Sciences, Suzhou 215123, China
- E-mail:
| |
Collapse
|
17
|
Pylaeva S, Brehm M, Sebastiani D. Salt Bridge in Aqueous Solution: Strong Structural Motifs but Weak Enthalpic Effect. Sci Rep 2018; 8:13626. [PMID: 30206276 PMCID: PMC6133928 DOI: 10.1038/s41598-018-31935-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/29/2018] [Indexed: 12/03/2022] Open
Abstract
Salt bridges are elementary motifs of protein secondary and tertiary structure and are commonly associated with structural driving force that increases stability. Often found on the interface to the solvent, they are highly susceptible to solvent–solute interactions, primarily with water but also with other cosolvents (especially ions). We have investigated the interplay of an Arginine–Aspartic acid salt bridge with simple salt ions in aqueous solution by means of molecular dynamics simulations. Besides structural and dynamical features at equilibrium, we have computed the mean force along the dissociation pathway of the salt bridge. We demonstrate that solvated ions influence the behavior of the salt bridge in a very specific and local way, namely the formation of tight ionic pairs Li+/Na+–Asp−. Moreover, our findings show that the enthalpic relevance of the salt bridge is minor, regardless of the presence of solvated ions.
Collapse
Affiliation(s)
- Svetlana Pylaeva
- Martin Luther University Halle-Wittenberg, Institute of Physical Chemistry, 06120, Halle, Saale, Germany
| | - Martin Brehm
- Martin Luther University Halle-Wittenberg, Institute of Physical Chemistry, 06120, Halle, Saale, Germany
| | - Daniel Sebastiani
- Martin Luther University Halle-Wittenberg, Institute of Physical Chemistry, 06120, Halle, Saale, Germany.
| |
Collapse
|