1
|
Jiang Y, Li W, Li X, Liao Y, Liu X, Yu J, Xia S, Li W, Zhao B, Zhang J. Iodine-doped carbon nanotubes boosting the adsorption effect and conversion kinetics of lithium-sulfur batteries. J Colloid Interface Sci 2024; 672:287-298. [PMID: 38843681 DOI: 10.1016/j.jcis.2024.05.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 07/07/2024]
Abstract
Compared with lithium-ion batteries (LIBs), lithium-sulfur batteries (LSBs), based on electrochemical reactions involving multi-step 16-electron transformations provide higher specific capacity (1672 mAh g-1) and specific energy (2600 Wh kg-1), exhibiting great potential in the field of energy storage. However, the inherent insulation of sulfur, slow electrochemical reaction kinetics and detrimental shuttle-effect of lithium polysulfides (LiPSs) restrict the development of LSBs in practical applications. Herein, the iodine-doped carbon nanotubes (I-CNTs) is firstly reported as sulfur host material to the enhance the adsorption-conversion kinetics of LSBs. Iodine doping can significantly improve the polarity of I-CNTs. Iodine atoms with lone pair electrons (Lewis base) in iodine-doped CNTs can interact with lithium cations (Lewis acidic) in LiPSs, thereby anchoring polysulfides and suppressing subsequent shuttling behavior. Moreover, the charge transfer between iodine species (electron acceptor) and CNTs (electron donor) decreases the gap band and subsequently improves the conductivity of I-CNTs. The enhanced adsorption effect and conductivity are beneficial for accelerating reaction kinetics and enhancing electrocatalytic activity. The in-situ Raman spectroscopy, quasi in-situ electrochemical impedance spectroscopy (EIS) and Li2S potentiostatic deposition current-time (i-t) curves were conducted to verify mechanism of complex sulfur reduction reaction (SRR). Owing to above advantages, the I-CNTs@S composite cathode exhibits an ultrahigh initial capacity of 1326 mAh g-1 as well as outstanding cyclicability and rate performance. Our research results provide inspirations for the design of multifunctional host material for sulfur/carbon composite cathodes in LSBs.
Collapse
Affiliation(s)
- Yong Jiang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wenzhuo Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xue Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yalan Liao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoyu Liu
- College of Sciences/Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China.
| | - Jiaqi Yu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shuixin Xia
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Wenrong Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; College of Sciences/Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
| | - Bing Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Jiujun Zhang
- College of Sciences/Institute for Sustainable Energy, Shanghai University, Shanghai 200444, China
| |
Collapse
|
2
|
Lin Q, Kundu D, Skyllas-Kazacos M, Lu J, Zhao D, Amine K, Dai L, Wang DW. Perspective on Lewis Acid-Base Interactions in Emerging Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406151. [PMID: 39030779 DOI: 10.1002/adma.202406151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Indexed: 07/22/2024]
Abstract
Lewis acid-base interactions are common in chemical processes presented in diverse applications, such as synthesis, catalysis, batteries, semiconductors, and solar cells. The Lewis acid-base interactions allow precise tuning of material properties from the molecular level to more aggregated and organized structures. This review will focus on the origin, development, and prospects of applying Lewis acid-base interactions for the materials design and mechanism understanding in the advancement of battery materials and chemistries. The covered topics relate to aqueous batteries, lithium-ion batteries, solid-state batteries, alkali metal-sulfur batteries, and alkali metal-oxygen batteries. In this review, the Lewis acid-base theories will be first introduced. Thereafter the application strategies for Lewis acid-base interactions in solid-state and liquid-based batteries will be introduced from the aspects of liquid electrolyte, solid polymer electrolyte, metal anodes, and high-capacity cathodes. The underlying mechanism is highlighted in regard to ion transport, electrochemical stability, mechanical property, reaction kinetics, dendrite growth, corrosion, and so on. Last but not least, perspectives on the future directions related to Lewis acid-base interactions for next-generation batteries are like to be shared.
Collapse
Affiliation(s)
- Qiaowei Lin
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518071, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518071, China
| | - Dipan Kundu
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Maria Skyllas-Kazacos
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai, 200433, China
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Liming Dai
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Da-Wei Wang
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518071, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518071, China
| |
Collapse
|
3
|
Javaregowda BH, Kargude R, Birajdar S, Shivankar B, Krishnamurty S, Jones LA, Caruso RA, Krishnamoorthy K. Synergistic Effect of Lactam and Pyridine Nitrogen on Polysulfide Chemisorption and Electrocatalysis in Lithium Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42059-42068. [PMID: 39102309 DOI: 10.1021/acsami.4c05128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Sulfur undergoes various changes, including the formation of negative charge-bearing lithium polysulfides during the operation of Li-S batteries. Dissolution of some of the polysulfides in battery electrolytes is one of the reasons for the poor performance of Li-S batteries. The charge injection into the sulfur and polysulfides from the electrode is also a problem. To address these issues, a small-molecule additive, 3,6-di(pyridin-4-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione, was designed and synthesized with carbonyl oxygen atoms and two types of nitrogen. The pyridinic nitrogen increases the electronegativity of the carbonyl oxygen atoms. The pyridinic nitrogen, carbonyl oxygen, and lactam nitrogen provide multiple binding sites concurrently to the polysulfides, which increases the binding efficiency between the additive and polysulfides. A control molecule without the pyridine moiety displayed decreased binding to lithium polysulfides. Furthermore, the band edges of lithium polysulfide and 3,6-di(pyridin-4-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione are commensurate for efficient charge transfer between them, leading to the efficient electrocatalysis of lithium polysulfides. The cyclic voltammogram of the Li-S battery fabricated with 3,6-di(pyridin-4-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione exhibited sharp and well-defined peaks, confirming the formation of Li2Sy (where y varies between one and eight) from S8. These Li-S batteries showed a specific capacity of 950 mA h/g at 0.5 C, with a capacity retention of 70% at the 300th cycle. The pyridine-free control molecule, 3,6-diphenyl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione, showed relatively poor performance in a Li-S battery.
Collapse
Affiliation(s)
- Bharathkumar H Javaregowda
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne 3001, Victoria, Australia
| | - Radhakisan Kargude
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Sarika Birajdar
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Bhavana Shivankar
- Academy of Scientific and Innovative Research, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Sailaja Krishnamurty
- Academy of Scientific and Innovative Research, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Lathe A Jones
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne 3001, Victoria, Australia
| | - Rachel A Caruso
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne 3001, Victoria, Australia
| | - Kothandam Krishnamoorthy
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, Kamla Nehru Nagar, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
4
|
Wang Z, Zhang Y, Pan Y, Yu H, Li C, Wang S, Ma Y, Song D, Zhang H, Shi X, Zhang L. Polyacrylonitrile Based Triblock Copolymer Binder Enabling Excellent Performance toward LiNi 0.5Mn 1.5O 4 and Sulfur Based Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39942-39951. [PMID: 39023134 DOI: 10.1021/acsami.4c03545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
There is an urgent need for lithium-ion batteries with high energy density to meet the increasing demand for advanced devices and ecofriendly electric vehicles. Spinel LiNi0.5Mn1.5O4 (LNMO) is the most promising cathode material for achieving high energy density due to its high operating voltage (4.75 V vs Li/Li+) and impressive capacity of 147 mAh g-1. However, the binders conventionally used are prone to high potential and oxidation at the cathode side, resulting in a loss of the ability to bond active material and conductive agent integrity. This can lead to severe capacity fading and irreversible battery failure. This study demonstrates that incorporating acrylic anhydride and methyl methacrylate into conventional acrylonitrile through solution polymerization improves the binding energy and voltage resistance. The results indicate that the triblock poly(acrylonitrile-methyl methacrylate-acrylic anhydride) (PAMA) binder has a much higher peeling strength (0.506 N cm-1) compared to its polyvinylidene fluoride (PVDF) counterpart (0.3 N cm-1), making it a more feasible strategy. When assembled with LiNi0.5Mn1.5O4, the PAMA based electrode maintains a capacity retention of 70.7% after 800 cycles at 0.1 C, which is significantly higher than the 33.9% retention of the PVDFbased electrode. This is due to the large number of polar groups, including ─C≡N and ─C═O, on PAMA, which are conducive to adsorbing lithium polysulfide. The S@PAMA electrode is tested and maintained a capacity value of 628.7 mAh g-1 after long-term cycling, confirming its ability to effectively suppress the shuttle effect.
Collapse
Affiliation(s)
- Zhaokun Wang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yan Zhang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yanrui Pan
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hao Yu
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Chen Li
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Su Wang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yue Ma
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Dawei Song
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Hongzhou Zhang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xixi Shi
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Lianqi Zhang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
5
|
Yao W, Liao K, Lai T, Sul H, Manthiram A. Rechargeable Metal-Sulfur Batteries: Key Materials to Mechanisms. Chem Rev 2024; 124:4935-5118. [PMID: 38598693 DOI: 10.1021/acs.chemrev.3c00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Rechargeable metal-sulfur batteries are considered promising candidates for energy storage due to their high energy density along with high natural abundance and low cost of raw materials. However, they could not yet be practically implemented due to several key challenges: (i) poor conductivity of sulfur and the discharge product metal sulfide, causing sluggish redox kinetics, (ii) polysulfide shuttling, and (iii) parasitic side reactions between the electrolyte and the metal anode. To overcome these obstacles, numerous strategies have been explored, including modifications to the cathode, anode, electrolyte, and binder. In this review, the fundamental principles and challenges of metal-sulfur batteries are first discussed. Second, the latest research on metal-sulfur batteries is presented and discussed, covering their material design, synthesis methods, and electrochemical performances. Third, emerging advanced characterization techniques that reveal the working mechanisms of metal-sulfur batteries are highlighted. Finally, the possible future research directions for the practical applications of metal-sulfur batteries are discussed. This comprehensive review aims to provide experimental strategies and theoretical guidance for designing and understanding the intricacies of metal-sulfur batteries; thus, it can illuminate promising pathways for progressing high-energy-density metal-sulfur battery systems.
Collapse
Affiliation(s)
- Weiqi Yao
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kameron Liao
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tianxing Lai
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyunki Sul
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Arumugam Manthiram
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Wang J, Xu Y, Xu Z, Shan Y, Yang J, Luo Z, Yang H, Guo X, Lu J. The Voltage-Adaptive Effect in Lithium-Sulfur Batteries Integrated with an Electron-Conductive Interlayer. SMALL METHODS 2023; 7:e2300662. [PMID: 37526329 DOI: 10.1002/smtd.202300662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/20/2023] [Indexed: 08/02/2023]
Abstract
Lithium-sulfur (Li-S) batteries are considered as one of the top competitors to go beyond Li-ion batteries. However, the shuttle effect triggered by soluble lithium polysulfides (LPSs) brings great troubles for understanding the solid-liquid-solid conversion process of the sulfur cathode. Herein, a new characterization technique is developed to deepen the understanding of such soluble LPSs shuttling, by integrating an electron-conductive interlayer. The voltage of the interlayer exhibits a voltage-adaptive effect to the cathode, indicating the true dependence of the open-circuit voltages on the LPSs instead of on the solid cathodes. Furthermore, a quantitative method can be introduced to monitor the shuttling LPSs by such interlayer design, and it shows great potential to be a new standard technique, providing direct comparison of the shuttle effect between different studies. The newly developed interlayer design paves an avenue to gain new insight into the reaction process and improve the performance of Li-S batteries.
Collapse
Affiliation(s)
- Junzhang Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yunkai Xu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhou Xu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yunpeng Shan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jingting Yang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhongkuan Luo
- Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, 310058, China
| | - Hui Yang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xingzhong Guo
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
7
|
Zheng Q, Hou Q, Shu Z, Liu G, Fan X, Wang K, Fan J, Yuan R, Zheng M, Dong Q. An Endogenous Prompting Mechanism for Sulfur Conversions Via Coupling with Polysulfides in Li-S Batteries. Angew Chem Int Ed Engl 2023; 62:e202308726. [PMID: 37469106 DOI: 10.1002/anie.202308726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
The sluggish kinetics process and shuttling of soluble intermediates present in complex conversion between sulfur and lithium sulfide severely limit the practical application of lithium-sulfur batteries. Herein, by introducing a designated functional organic molecule to couple with polysulfide intermediators, an endogenous prompting mechanism of sulfur conversions has thus been created leading to an alternative sulfur-electrode process, in another words, to build a fast "internal cycle" of promotors that can promote the slow "external cycle" of sulfur conversions. The coupling-intermediators between the functional organic molecule and polysulfides, organophosphorus polysulfides, to be the "promotors" for sulfur conversions, are not only insoluble in the electrolyte but also with higher redox-activity. So the sulfur-electrode process kinetics is greatly improved and the shuttle effect is eliminated simultaneously by this strategy. Meanwhile, with the endogenous prompting mechanism, the morphology of the final discharge product can be modified into a uniform covering film, which is more conducive to its decomposition when charging. Benefiting from the effective mediation of reaction kinetics and control of intermediates solubility, the lithium-sulfur batteries can act out excellent rate performance and cycling stability.
Collapse
Affiliation(s)
- Qingyi Zheng
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Qing Hou
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhenghao Shu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Guoqing Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaoxiang Fan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Kun Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jingmin Fan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ruming Yuan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Mingsen Zheng
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Quanfeng Dong
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
8
|
Lin P, Qi Y, Guo D, Wang X, Fang G, Chen X, Wang S. Bivalent Cobalt as Efficient Catalyst Intercalation Layer Improves Polysulfide Conversion in Lithium-Sulfur Batteries. CHEMSUSCHEM 2023; 16:e202202379. [PMID: 36872289 DOI: 10.1002/cssc.202202379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/21/2023] [Indexed: 06/10/2023]
Abstract
Herein, we investigated in detail the effect of metal valences in different cobalt-based organic framework compounds on the kinetics of sulfur reaction in lithium-sulfur batteries (LSBs). On this basis, two organic framework compounds of zeolite-imidazole-based cobalt organic framework compound (Co-ZIF) and tetrakis(4-benzoic acid) porphyrinato-CoIII chloride [Co-TBP(III)] with different valences were constructed as the functional intercalation separators of LSBs, and explored the effects of different valences on improving the reaction kinetics of polysulfides and inhibiting the shuttle effect. Experiments and theoretical calculations prove that CoII exhibits the best catalytic activity. This is mainly due to the fact that +2 valence shows a strong adsorption energy for polysulfides and a higher Fermi level compared with +3 valence, thus improving the efficiency of the rapid catalytic conversion of sulfur species. As expected, the discharge specific capacity of Co-ZIF as the catalytic layer of the LSBs reached 772.7 mAh g-1 at a high current density of 5 C. More importantly, the initial specific capacity is 839.6 mAh g-1 at high current 3 C, and after 720 cycles, the attenuation rate of per cycle is only 0.092 %, and the coulombic efficiency remains above 92 %.
Collapse
Affiliation(s)
- Peirong Lin
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Yuheng Qi
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Daying Guo
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang, 325035, P. R. China
| | - Xueyu Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Guoyong Fang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Xi'an Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Shun Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| |
Collapse
|
9
|
Gao R, Ji S, Wang F, Wang K, Wang H, Ma X, Linkov V, Wang X, Wang R. Enhancement of Organic Oxygen Atoms on Metal Cobalt for Sulfur Adsorption and Catalytic Polysulfide Conversion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20141-20150. [PMID: 37058551 DOI: 10.1021/acsami.3c01801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Metals and their compounds effectively suppress the polysulfide shuttle effect on the cathodes of a lithium-sulfur (Li-S) battery by chemisorbing polysulfides and catalyzing their conversion. However, S fixation on currently available cathode materials is below the requirements of large-scale practical application of this battery type. In this study, perylenequinone was utilized to improve polysulfide chemisorption and conversion on cobalt (Co)-containing Li-S battery cathodes. According to IGMH analysis, the binding energies of DPD and carbon materials as well as polysulfide adsorption were significantly enhanced in the presence of Co. According to in situ Fourier transform infrared spectroscopy, the hydroxyl and carbonyl groups in perylenequinone are able to form O-Li bonds with Li2Sn, facilitating chemisorption and catalytic conversion of polysulfides on metallic Co. The newly prepared cathode material demonstrated superior rate and cycling performances in the Li-S battery. It exhibited an initial discharge capacity of 780 mAh g-1 at 1 C and a minimum capacity decay rate of only 0.041% over 800 cycles. Even with a high S loading, the cathode material maintained an impressive capacity retention rate of 73% after 120 cycles at 0.2 C.
Collapse
Affiliation(s)
- Ruili Gao
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shan Ji
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Fanghui Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kunpeng Wang
- Key Laboratory of Opticelectric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hui Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xianguo Ma
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| | - Vladimir Linkov
- South African Institute for Advanced Materials Chemistry, Univerisity of the Western Cape, Cape Town 7535, South Africa
| | - Xuyun Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rongfang Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
10
|
Deng Q, Dong X, Shen PK, Zhu J. Li-S Chemistry of Manganese Phosphides Nanoparticles With Optimized Phase. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207470. [PMID: 36737850 PMCID: PMC10037994 DOI: 10.1002/advs.202207470] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Indexed: 06/18/2023]
Abstract
The targeted synthesis of manganese phosphides with target phase remains a huge challenge because of their various stoichiometries and phase-dependent physicochemical properties. In this study, phosphorus-rich MnP, manganese-rich Mn2 P, and their heterostructure MnP-Mn2 P nanoparticles evenly dispersed on porous carbon are accurately synthesized by a convenient one-pot heat treatment of phosphate resin combined with Mn2+ . Moreover, their electrochemical properties are systematically investigated as sulfur hosts in lithium-sulfur batteries. Density functional theory calculations demonstrate the superior adsorption, catalysis capabilities, and electrical conductivity of MnP-Mn2 P/C, compared with MnP/C and Mn2 P/C. The MnP-Mn2 P/C@S exhibits an excellent capacity of 763.3 mAh g-1 at 5 C with a capacity decay rate of only 0.013% after 2000 cycles. A phase evolution product (MnS) of MnP-Mn2 P/C@S is detected during the catalysis of MnP-Mn2 P/C with polysulfides redox through in situ X-ray diffraction and Raman spectroscopy. At a sulfur loading of up to 8 mg cm-2 , the MnP-Mn2 P/C@S achieves an area capacity of 6.4 mAh cm-2 at 0.2 C. A pouch cell with the MnP-Mn2 P/C@S cathode exhibits an initial energy density of 360 Wh kg-1 .
Collapse
Affiliation(s)
- Qiao Deng
- School of ResourcesEnvironment and MaterialsCollaborative Innovation Center of Sustainable Energy MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi UniversityNanning530004P. R. China
| | - Xinji Dong
- School of ResourcesEnvironment and MaterialsCollaborative Innovation Center of Sustainable Energy MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi UniversityNanning530004P. R. China
| | - Pei Kang Shen
- School of ResourcesEnvironment and MaterialsCollaborative Innovation Center of Sustainable Energy MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi UniversityNanning530004P. R. China
| | - Jinliang Zhu
- School of ResourcesEnvironment and MaterialsCollaborative Innovation Center of Sustainable Energy MaterialsState Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite StructuresGuangxi UniversityNanning530004P. R. China
| |
Collapse
|
11
|
Zhang Y, Guo C, Zhou J, Yao X, Li J, Zhuang H, Chen Y, Chen Y, Li SL, Lan YQ. Anisotropically Hybridized Porous Crystalline Li-S Battery Separators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206616. [PMID: 36440668 DOI: 10.1002/smll.202206616] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Anisotropically hybridized porous crystalline Li-S battery separators based on porous crystalline materials that can meet the multiple functionalities of both anodic and cathodic sides are much desired for Li-S battery yet still challenging in directional design. Here, an anisotropically hybridized separator (CPM) based on an ionic liquid-modified porphyrin-based covalent-organic framework (COF-366-OH-IL) and catalytically active metal-organic framework (Ni3 (HITP)2 ) that can integrate the lithium-polysulfides (LiPSs) adsorption/catalytic conversion and ion-conduction sites together to directionally meet the requirements of electrodes is reported. Remarkably, the-obtained separator exhibits an exceptional high Li+ transference-number (tLi+ = 0.8), ultralow polarization-voltage (<30 mV), high initial specific-capacity (921.38 mAh g-1 at 1 C), and stable cycling-performance, much superior to polypropylene and monolayer-modified separators. Moreover, theoretical calculations confirm the anisotropic effect of CPM on the anodic side (e.g., Li+ transfer, LiPSs adsorption, and anode-protection) and cathodic side (e.g., LiPSs adsorption/catalysis). This work might provide a new perspective for separator exploration.
Collapse
Affiliation(s)
- Yuluan Zhang
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| | - Can Guo
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| | - Jie Zhou
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| | - Xiaoman Yao
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| | - Jie Li
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| | - Huifen Zhuang
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| | - Yuting Chen
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| | - Yifa Chen
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| | - Shun-Li Li
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), and Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
12
|
Atomic Fe on hierarchically ordered porous carbon towards High-performance Lithium-sulfur batteries. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2022.117046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Wang Z, Liu Y, Ni J, You Y, Cai Y, Zhang H. Self-Assembled Networks for Regulating Lithium Polysulfides in Lithium-Sulfur Batteries. CHEMSUSCHEM 2022; 15:e202201670. [PMID: 36151588 DOI: 10.1002/cssc.202201670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Inhibiting the shuttle effect caused by soluble lithium polysulfides (LiPSs) is of importance for lithium-sulfur (Li-S) batteries. Here, a strategy was developed to construct protective layers by self-assembly networks to regulate the LiPSs. 2,5-Dichloropyridine (25DCP) holds two kinds of functional groups. Among them, the two C-Cl bonds were nucleophilic substituted by S in LiPSs to form long chains. The pyridine N interacted with Li in other LiPSs via Li bonds to form a short chain. As a result, the long chains were cross-linked by the short chain to form an insoluble network. The as-prepared network covered the sulfur electrode interface to suppress the shuttle effect of the subsequently generated LiPSs. Furthermore, 25DCP improved the redox dynamics by changing the energy level and electronic structure of the sulfur species. Therefore, the Li-S batteries with 25DCP exhibited good electrochemical performance. This work provides a feasible strategy for regulating the LiPSs.
Collapse
Affiliation(s)
- Zhihua Wang
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, 213000, Changzhou, P.R. China
| | - Yilin Liu
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, 213000, Changzhou, P.R. China
| | - Junze Ni
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, 213000, Changzhou, P.R. China
| | - Yingying You
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, 213000, Changzhou, P.R. China
| | - Yingying Cai
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, 213000, Changzhou, P.R. China
| | - Hanping Zhang
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, 213000, Changzhou, P.R. China
| |
Collapse
|
14
|
Wang Z, You Y, Cai Y, Ni J, Liu Y, Zhang H. Cluster-type Lithium Polysulfides Regulator for High Performance Lithium-Sulfur Batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Xiao R, Luo D, Wang J, Lu H, Ma H, Akinoglu EM, Jin M, Wang X, Zhang Y, Chen Z. Oxidation States Regulation of Cobalt Active Sites through Crystal Surface Engineering for Enhanced Polysulfide Conversion in Lithium-Sulfur Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202352. [PMID: 36109171 PMCID: PMC9631056 DOI: 10.1002/advs.202202352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/31/2022] [Indexed: 06/15/2023]
Abstract
In this work, unique Co3 O4 /N-doped reduced graphene oxide (Co3 O4 /N-rGO) composites as favorable sulfur immobilizers and promoters for lithium-sulfur (Li-S) batteries are developed. The prepared Co3 O4 nanopolyhedrons (Co3 O4 -NP) and Co3 O4 nanocubes mainly expose (112) and (001) surfaces, respectively, with different atomic configurations of Co2+ /Co3+ sites. Experiments and theoretical calculations confirm that the octahedral coordination Co3+ (Co3+ Oh ) sites with different oxidation states from tetrahedral coordination Co2+ sites optimize the adsorption and catalytic conversion of lithium polysulfides. Specially, the Co3 O4 -NP crystals loaded on N-rGO expose (112) planes with ample Co3+ Oh active sites, exhibiting stronger adsorbability and superior catalytic activity for polysulfides, thus inhibiting the shuttle effect. Therefore, the S@Co3 O4 -NP/N-rGO cathodes deliver excellent electrochemical properties, for example, stable cyclability at 1 C with a low capacity decay rate of 0.058% over 500 cycles, superb rate capability up to 3 C, and high areal capacity of 4.1 mAh cm-2 . This catalyst's design incorporating crystal surface engineering and oxidation state regulation strategies also provides new approaches for addressing the complicated issues of Li-S batteries.
Collapse
Affiliation(s)
- Rujian Xiao
- South China Academy of Advanced OptoelectronicsSchool of Information and Optoelectronic Science and EngineeringSouth China Normal UniversityGuangdong510006China
| | - Dan Luo
- South China Academy of Advanced OptoelectronicsSchool of Information and Optoelectronic Science and EngineeringSouth China Normal UniversityGuangdong510006China
- Department of Chemical EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| | - Jiayi Wang
- South China Academy of Advanced OptoelectronicsSchool of Information and Optoelectronic Science and EngineeringSouth China Normal UniversityGuangdong510006China
| | - Han Lu
- International Academy of Optoelectronics at ZhaoqingSouth China Normal UniversityZhaoqing526060China
| | - Heng Ma
- School of Materials Science and EngineeringHebei University of TechnologyTianjin300130China
| | - Eser Metin Akinoglu
- International Academy of Optoelectronics at ZhaoqingSouth China Normal UniversityZhaoqing526060China
| | - Mingliang Jin
- South China Academy of Advanced OptoelectronicsSchool of Information and Optoelectronic Science and EngineeringSouth China Normal UniversityGuangdong510006China
- International Academy of Optoelectronics at ZhaoqingSouth China Normal UniversityZhaoqing526060China
| | - Xin Wang
- South China Academy of Advanced OptoelectronicsSchool of Information and Optoelectronic Science and EngineeringSouth China Normal UniversityGuangdong510006China
- International Academy of Optoelectronics at ZhaoqingSouth China Normal UniversityZhaoqing526060China
| | - Yongguang Zhang
- International Academy of Optoelectronics at ZhaoqingSouth China Normal UniversityZhaoqing526060China
- School of Materials Science and EngineeringHebei University of TechnologyTianjin300130China
| | - Zhongwei Chen
- Department of Chemical EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| |
Collapse
|
16
|
Liu G, Wan J, Shi Y, Guo H, Song Y, Jiang K, Guo Y, Wen R, Wan L. Direct Tracking of Additive‐Regulated Evolution on the Lithium Anode in Quasi‐Solid‐State Lithium–Sulfur Batteries. ADVANCED ENERGY MATERIALS 2022; 12. [DOI: 10.1002/aenm.202201411] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 10/10/2024]
Abstract
AbstractThe complicated problems confronted by lithium (Li) anode hinder the practical application of quasi‐solid‐state lithium‐sulfur (QSSLS) batteries. However, the interfacial processes and reaction mechanisms, which are still vague, pose challenges to disclose. Herein, the insoluble sulfides stacking and Li dendrites growth on the Li anode are real‐time monitored via in‐situ atomic force microscopy inside the working QSSLS batteries. In the LiNO3‐added electrolyte, it is detected that the formation process of solid electrolyte interphase (SEI) involves two stages, forming loose nanoparticles (NPs, ≈102 nm) at the open circuit potential and dense NPs (≈74 nm) during discharging owing to the synergism of Li polysulfides (LiPSs) and LiNO3. The compact SEI film not only blocks the erosion of LiPSs but also homogenizes the Li deposition behaviors, leading to the electrochemical performance enhancement of QSSLS batteries. These straightforward insights uncover the additive‐manipulated morphological/chemical evolution and interfacial properties and thus facilitate the improvement of QSSLS batteries.
Collapse
Affiliation(s)
- Gui‐Xian Liu
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Jing Wan
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Yang Shi
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Hui‐Juan Guo
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Yue‐Xian Song
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Ke‐Cheng Jiang
- Dongguan TAFEL New Energy Technology Co., Ltd Dongguan 523000 China
| | - Yu‐Guo Guo
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Rui Wen
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Li‐Jun Wan
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
17
|
Qi Y, Li N, Zhang K, Yang Y, Ren Z, You J, Hou Q, Shen C, Jin T, Peng Z, Xie K. Dynamic Liquid Metal Catalysts for Boosted Lithium Polysulfides Redox Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204810. [PMID: 35953449 DOI: 10.1002/adma.202204810] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Designing efficient electrocatalysts with high electroconductivity, strong chemisorption, and superior catalytical efficiency to realize rapid kinetics of the lithium polysulfides (LiPSs) conversion process is crucial for practical lithium-sulfur (Li-S) battery applications. Unfortunately, most current electrocatalysts cannot maintain long-term stability due to the possible failure of catalytic sites. Herein, a novel dynamic electrocatalytic strategy with the liquid metal (i.e., gallium-tin, EGaSn) to facilitate LiPSs redox reaction is reported. The combined theoretical simulations and microstructure experiment analysis reveal that Sn atoms dynamically distributed in the liquid Ga matrix act as the main active catalytic center. Meanwhile, Ga provides a uniquely dynamic environment to maintain the long-term integrity of the catalytic system. With the participation of EGaSn, a tailor-made 2 Ah Li-S pouch cell with a specific energy density of 307.7 Wh kg-1 is realized. This work opens up new opportunities for liquid-phase binary alloys as electrocatalysts for high-specific-energy Li-S batteries.
Collapse
Affiliation(s)
- Yaqin Qi
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Nan Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Kun Zhang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Yong Yang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Zengying Ren
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Jingyuan You
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Qian Hou
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Chao Shen
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Ting Jin
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| | - Zuling Peng
- CALB Technology Co., Ltd., No.1 Jiangdong Avenue, Jintan District, Changzhou, 213200, China
| | - Keyu Xie
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China
| |
Collapse
|
18
|
Liu L, Li Y, Zhang Y, Qiao Z, Lin L, Yan X, Meng Z, Huang Y, Lin J, Wang L, Sa B, Xie Q, Peng DL. CoP@C with chemisorption-catalysis effect toward lithium polysulfides as multifunctional interlayer for high-performance lithium-sulfur batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Jiang C, Li L, Jia Q, Tang M, Fan K, Chen Y, Zhang C, Mao M, Ma J, Hu W, Wang C. In Situ Synthesis of Organopolysulfides Enabling Spatial and Kinetic Co-Mediation of Sulfur Chemistry. ACS NANO 2022; 16:9163-9171. [PMID: 35603921 DOI: 10.1021/acsnano.2c01390] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Li-S batteries have been regarded as one of the most promising alternatives of the next-generation Li batteries. However, the dissolution and shuttling of lithium polysulfides lead to low cycle stability and low Coulombic efficiency, which intensively hinder the practical application of Li-S batteries. Herein, we propose a strategy to simultaneously promote the redox kinetics and inhibit the shuttle of lithium polysulfides, through in situ synthesis of insoluble organopolysulfides by adding a special additive. Attractively, the thus-formed insoluble organopolysulfides in the form of nanoparticle aggregates are also capable of adsorbing unconverted lithium polysulfides and hence effectively spatially suppress the shuttle effect. Furthermore, the organopolysulfides served as active redox mediators, showing faster redox kinetics of S chemistry than that of lithium polysulfides. As a result, the Li-S batteries showed impressive capacity, improved rate performance, and long cycling stability even under lean-electrolyte and high sulfur loading conditions.
Collapse
Affiliation(s)
- Cheng Jiang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lulu Li
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingqing Jia
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Mi Tang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kun Fan
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuan Chen
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chenyang Zhang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Minglei Mao
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jing Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University, Tianjin 300072, China
| | - Chengliang Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
- Wenzhou Advanced Manufacturing Technology Research Institute, Huazhong University of Science and Technology, Wenzhou 325035, China
| |
Collapse
|
20
|
Wang Z, Hu J, Liu J, Lim YV, Song H, Wang Y, He T, Huang C, Yan X, Zhang D, Huang S. Polysulfide Regulation by Hypervalent Iodine Compounds for Durable and Sustainable Lithium-Sulfur Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106716. [PMID: 35218141 DOI: 10.1002/smll.202106716] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Herein, a type of hypervalent iodine compound-iodosobenzene (PhIO)-is proposed to regulate the LiPSs electrochemistry and enhance the performance of Li-S battery. PhIO owns the practical advantages of low-cost, commercial availability, environmental friendliness and chemical stability. The lone pair electrons of oxygen atoms in PhIO play a critical role in forming a strong Lewis acid-base interaction with terminal Li in LiPSs. Moreover, the commercial PhIO can be easily converted to nanoparticles (≈20 nm) and uniformly loaded on a carbon nanotube (CNT) scaffold, ensuring sufficient chemisorption for LiPSs. The integrated functional PhIO@CNT interlayer affords a LiPSs-concentrated shield that not only strongly obstructs the LiPSs penetration but also significantly enhances the electrolyte wettability and Li+ conduction. The PhIO@CNT interlayer also serves as a "vice current collector" to accommodate various LiPSs and render smooth LiPSs transformation, which suppresses insulating Li2 S2 /Li2 S layer formation and facilitates Li+ diffusion. The Li-S battery based on PhIO@CNT interlayer (6 wt% PhIO) exhibits stable cycling over 1000 cycles (0.033% capacity decay per cycle) and excellent rate performance (686.6 mAh g-1 at 3 C). This work demonstrates the great potential of PhIO in regulating LiPSs and provides a new avenue towards the low-cost and sustainable application of Li-S batteries.
Collapse
Affiliation(s)
- Zhouhao Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Junping Hu
- Key Laboratory of Optoelectronic Materials and New Energy Technology & Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials, Nanchang Institute of Technology, Nanchang, 330099, China
| | - Jing Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei, 430070, China
| | - Yew Von Lim
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Haobin Song
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Ye Wang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Tingting He
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Chunlai Huang
- Key Laboratory of Optoelectronic Materials and New Energy Technology & Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials, Nanchang Institute of Technology, Nanchang, 330099, China
| | - Xinwen Yan
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Daohong Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Shaozhuan Huang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
| |
Collapse
|
21
|
Lee S, Sim K, Kwon J, Seok D, Eom K. Unraveling the effect of disproportionation of lithium polysulfides on the electrochemical reaction and S utilization in lithium-sulfur battery. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Kang J, Tian X, Yan C, Wei L, Gao L, Ju J, Zhao Y, Deng N, Cheng B, Kang W. Customized Structure Design and Functional Mechanism Analysis of Carbon Spheres for Advanced Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104469. [PMID: 35015928 DOI: 10.1002/smll.202104469] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/16/2021] [Indexed: 06/14/2023]
Abstract
Lithium-sulfur batteries (LSBs) are attracting much attention due to their high theoretical energy density and are considered to be the predominant competitors for next-generation energy storage systems. The practical commercial application of LSBs is mainly hindered by the severe "shuttle effect" of the lithium polysulfides (LiPSs) and the serious damage of lithium dendrites. Various carbon materials with different characteristics have played an important role in overcoming the above-mentioned problems. Carbon spheres (CSs) are extensively explored to enhance the performance of LSBs owing to their superior structures. The review presents the state-of-the-art advances of CSs for advanced high-energy LSBs, including their preparation strategies and applications in inhibiting the "shuttle effect" of the LiPSs and protecting lithium anodes. The unique restriction effect of CSs on LiPSs is explained from three working mechanisms: physical confinement, chemical interaction, and catalytic conversion. From the perspective of interfacial engineering and 3D structure designing, the protective effect of CSs on the lithium anode is also analyzed. Not only does this review article contain a summary of CSs in LSBs, but also future directions and prospects are discussed. The systematic discussions and suggested directions can enlighten thoughts in the reasonable design of CSs for LSBs in near future.
Collapse
Affiliation(s)
- Junbao Kang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Xiaohui Tian
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Chenzheng Yan
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Liying Wei
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Lu Gao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Jingge Ju
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Yixia Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Nanping Deng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
- School of Material Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
- School of Material Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
23
|
Sun K, Wang C, Dong Y, Guo P, Cheng P, Fu Y, Liu D, He D, Das S, Negishi Y. Ion-Selective Covalent Organic Framework Membranes as a Catalytic Polysulfide Trap to Arrest the Redox Shuttle Effect in Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4079-4090. [PMID: 35005891 DOI: 10.1021/acsami.1c20398] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the wake of shaping the energy future through materials innovation, lithium-sulfur batteries (LSBs) are top-of-the-line energy storage system attributed to their high theoretical energy density and specific capacity inclusive of low material costs. Despite their strengths, LSBs suffer from the cross-over of soluble polysulfide redox species to the anode, entailing fast capacity fading and inferior cycling stability. Adding to the concern, the insulating character of polysulfides lends to sluggish reaction kinetics. To address these challenges, we construct optimized polysulfide blockers-cum-conversion catalysts by accommodating the battery separator with covalent organic framework@Graphene (COF@G) composites. We settle on a crystalline TAPP-ETTB COF in the interest of its nitrogen-enriched scaffold with a regular pore geometry, providing ample lithiophilic sites for strong chemisorption and catalytic effect to polysulfides. On another front, graphene enables high electron mobility, boosting the sulfur redox kinetics. Consequently, a lithium-sulfur battery with a TAPP-ETTB COF@G-based separator demonstrates a high reversible capacity of 1489.8 mA h g-1 at 0.2 A g-1 after the first cycle and good cyclic performance (920 mA h g-1 after 400 cycles) together with excellent rate performance (827.7 mA h g-1 at 2 A g-1). The scope and opportunities to harness the designability and synthetic structural control in crystalline organic materials is a promising domain at the interface of sustainable materials, energy storage, and Li-S chemistry.
Collapse
Affiliation(s)
- Kai Sun
- School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chen Wang
- Department of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yan Dong
- Department of Bioengineering, Zunyi Medical University, Zhuhai 519000, China
| | - Pengqian Guo
- School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Pu Cheng
- School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yujun Fu
- School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Dequan Liu
- School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Deyan He
- School of Physical Science and Technology, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, P. R. China
| | - Saikat Das
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
24
|
Guo C, Liu M, Gao G, Tian X, Zhou J, Dong L, Li Q, Chen Y, Li S, Lan Y. Anthraquinone Covalent Organic Framework Hollow Tubes as Binder Microadditives in Li−S Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Can Guo
- School of Chemistry National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs Engineering Research Center of MTEES (Ministry of Education) Key Lab. of ETESPG(GHEI) South China Normal University Guangzhou 510006 P. R. China
| | - Ming Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Guang‐Kuo Gao
- School of Chemistry National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs Engineering Research Center of MTEES (Ministry of Education) Key Lab. of ETESPG(GHEI) South China Normal University Guangzhou 510006 P. R. China
| | - Xi Tian
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Jie Zhou
- School of Chemistry National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs Engineering Research Center of MTEES (Ministry of Education) Key Lab. of ETESPG(GHEI) South China Normal University Guangzhou 510006 P. R. China
| | - Long‐Zhang Dong
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Qi Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Yifa Chen
- School of Chemistry National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs Engineering Research Center of MTEES (Ministry of Education) Key Lab. of ETESPG(GHEI) South China Normal University Guangzhou 510006 P. R. China
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Shun‐Li Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China
| | - Ya‐Qian Lan
- School of Chemistry National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs Engineering Research Center of MTEES (Ministry of Education) Key Lab. of ETESPG(GHEI) South China Normal University Guangzhou 510006 P. R. China
| |
Collapse
|
25
|
Ren S, Sang P, Guo W, Fu Y. Organosulfur polymer-based cathode materials for rechargeable batteries. Polym Chem 2022. [DOI: 10.1039/d2py00823h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Organosulfur polymer cathode materials have shown promising electrochemical performances in rechargeable batteries. This review covers recent developments of the polymer cathodes and the remaining challenges and future prospects are discussed.
Collapse
Affiliation(s)
- Siyuan Ren
- College of chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Pengfei Sang
- College of chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Wei Guo
- College of chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yongzhu Fu
- College of chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
26
|
Zhang Q, Huang Q, Hao S, Deng S, He Q, Lin Z, Yang Y. Polymers in Lithium-Sulfur Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103798. [PMID: 34741443 PMCID: PMC8805586 DOI: 10.1002/advs.202103798] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/29/2021] [Indexed: 05/15/2023]
Abstract
Lithium-sulfur batteries (LSBs) hold great promise as one of the next-generation power supplies for portable electronics and electric vehicles due to their ultrahigh energy density, cost effectiveness, and environmental benignity. However, their practical application has been impeded owing to the electronic insulation of sulfur and its intermediates, serious shuttle effect, large volume variation, and uncontrollable formation of lithium dendrites. Over the past decades, many pioneering strategies have been developed to address these issues via improving electrodes, electrolytes, separators and binders. Remarkably, polymers can be readily applied to all these aspects due to their structural designability, functional versatility, superior chemical stability and processability. Moreover, their lightweight and rich resource characteristics enable the production of LSBs with high-volume energy density at low cost. Surprisingly, there have been few reviews on development of polymers in LSBs. Herein, breakthroughs and future perspectives of emerging polymers in LSBs are scrutinized. Significant attention is centered on recent implementation of polymers in each component of LSBs with an emphasis on intrinsic mechanisms underlying their specific functions. The review offers a comprehensive overview of state-of-the-art polymers for LSBs, provides in-depth insights into addressing key challenges, and affords important resources for researchers working on electrochemical energy systems.
Collapse
Affiliation(s)
- Qing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials ScienceHubei Engineering Technology Research Centre of Energy Polymer MaterialsSouth‐Central University for NationalitiesWuhan430074China
| | - Qihua Huang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials ScienceHubei Engineering Technology Research Centre of Energy Polymer MaterialsSouth‐Central University for NationalitiesWuhan430074China
| | - Shu‐Meng Hao
- School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Shuyi Deng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials ScienceHubei Engineering Technology Research Centre of Energy Polymer MaterialsSouth‐Central University for NationalitiesWuhan430074China
| | - Qiming He
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials ScienceHubei Engineering Technology Research Centre of Energy Polymer MaterialsSouth‐Central University for NationalitiesWuhan430074China
| | - Zhiqun Lin
- School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Yingkui Yang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials ScienceHubei Engineering Technology Research Centre of Energy Polymer MaterialsSouth‐Central University for NationalitiesWuhan430074China
| |
Collapse
|
27
|
Wu G, Lv W, Li X, Zhang W, Li Z. Metal-Organic Framework Structure with Fe-Co-Se (MIL-88A/Fe-Co@Se) as a Cathode for Aluminum Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61107-61115. [PMID: 34919372 DOI: 10.1021/acsami.1c18131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rechargeable aluminum-ion batteries have received more and more attention because of their high theoretical energy density, high safety, and reasonable price. The cathode material of aluminum batteries is one of the key bottlenecks that limits their development. Although there are many reports on aluminum battery cathode materials, many of these reports fail to simultaneously solve the poor cycling stability and low specific capacity of aluminum batteries. Therefore, we formed YSNT@Se hybrids by compounding the MOFs─MIL-88A@Fe-Co hydroxide yolk-shell nanotubes (YSNTs) with selenium for the first time. It was finally determined that the FeSe2 in YSNT@Se is the main redox reaction participant during charging/discharging. In the charge/discharge of YSNT@Se 500 °C, it achieved a first cycle discharge specific capacity of 292.21 mA h g-1. After 500 cycles, the discharge capacity was 233.34 mA h g-1 and the capacity retention rate reached 79.85%. This result proves that the redox process is highly reversible at the same time. This work makes it possible for aluminum batteries to have a high cycling performance and a high capacity and broadens the research direction of cathode materials for aluminum batteries.
Collapse
Affiliation(s)
- Gaohong Wu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Wenrong Lv
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Xiaoxiao Li
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Wenming Zhang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Zhanyu Li
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| |
Collapse
|
28
|
Wu P, Dong M, Tan J, Kang DA, Yu C. Revamping Lithium-Sulfur Batteries for High Cell-Level Energy Density by Synergistic Utilization of Polysulfide Additives and Artificial Solid-Electrolyte Interphase Layers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104246. [PMID: 34608672 DOI: 10.1002/adma.202104246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Despite the high theoretical capacity of lithium-sulfur (Li-S) batteries, a high cell-level energy density and a long cycling life are barely achieved, mainly due to the large electrolyte-to-sulfur ratio, polysulfide (PS) shuttle causing the loss of active sulfur, and the formation of passivation layers on the Li anode. To raise the energy density, holding PS in the cathode has been the most popular approach. Still, it has failed, particularly, when the sulfur loading is high enough to have energy densities similar to those of commercial Li-ion batteries. Here, a practical approach of achieving high "cell-level" energy densities is attempted using lithium PS (LPS)-containing electrolytes instead of a pure electrolyte, reducing the electrolyte-to-sulfur ratio and PS diffusion out of the cathode due to concentration differences. Meanwhile, the persistent problems including PS passivation and Li dendrites are suppressed using Li2 S-phobic artificial solid-electrolyte interphase (A-SEI) layers on Li metal. The synergistic effects from the LPS additives and A-SEI result in a superior cell-level volumetric energy density of 650 Wh L-1 as well as large cumulative energy densities considering cycling life. This approach provides an important stepping stone to realize commercial Li-S batteries rivaling the current Li-ion batteries.
Collapse
Affiliation(s)
- Peng Wu
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Mingxin Dong
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Jian Tan
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Dongyun Aiden Kang
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Choongho Yu
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
29
|
Duan H, Li K, Xie M, Chen JM, Zhou HG, Wu X, Ning GH, Cooper AI, Li D. Scalable Synthesis of Ultrathin Polyimide Covalent Organic Framework Nanosheets for High-Performance Lithium-Sulfur Batteries. J Am Chem Soc 2021; 143:19446-19453. [PMID: 34731564 DOI: 10.1021/jacs.1c08675] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Development of new porous materials as hosts to suppress the dissolution and shuttle of lithium polysulfides is beneficial for constructing highly efficient lithium-sulfur batteries (LSBs). Although 2D covalent organic frameworks (COFs) as host materials exhibit promising potential for LSBs, their performance is still not satisfactory. Herein, we develop polyimide COFs (PI-COF) with a well-defined lamellar structure, which can be exfoliated into ultrathin (∼1.2 nm) 2D polyimide nanosheets (PI-CONs) with a large size (∼6 μm) and large quantity (40 mg/batch). Explored as new sulfur host materials for LSBs, PI-COF and PI-CONs deliver high capacities (1330 and 1205 mA h g-1 at 0.1 C, respectively), excellent rate capabilities (620 and 503 mA h g-1 at 4 C, respectively), and superior cycling stability (96% capacity retention at 0.2 C for PI-CONs) by virtue of the synergy of robust conjugated porous frameworks and strong oxygen-lithium interactions, surpassing the vast majority of organic/polymeric lithium-sulfur battery cathodes ever reported. Our finding demonstrates that ultrathin 2D COF nanosheets with carbonyl groups could be promising host materials for LSBs with excellent electrochemical performance.
Collapse
Affiliation(s)
- Haiyan Duan
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China.,Department of Chemistry and Materials Innovation Factory and Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool L69 7ZD, United Kingdom.,State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Ke Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials and Bio-Engineering Research (AMBER) Centre, Trinity College Dublin, Dublin 2, Ireland
| | - Mo Xie
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Jia-Ming Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Hou-Gan Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Xiaofeng Wu
- Department of Chemistry and Materials Innovation Factory and Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Andrew I Cooper
- Department of Chemistry and Materials Innovation Factory and Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
30
|
Ren H, Wang Z, Guo S, Guo W, Tian G, Tian B. Ultrafast stimulated resonance Raman signatures of lithium polysulfides for shuttling effect characterization: An ab initio study. J Chem Phys 2021; 155:174301. [PMID: 34742224 DOI: 10.1063/5.0070577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The shuttling effect is a crucial obstacle to the practical deployment of lithium sulfur batteries (LSBs). This can be ascribed to the generation of lithium polysulfide (LiPS) redox intermediates that are soluble in the electrolyte. The detailed mechanism of the shuttling, including the chemical structures responsible for the loss of effective mass and the dynamics/kinetics of the redox reactions, are not clear so far. To obtain this microscopic information, characterization techniques with high spatial and temporal resolutions are required. Here, we propose that resonance Raman spectroscopy combined with ultrafast broadband pulses is a powerful tool to reveal the mechanism of the shuttling effect. By combining the chemical bond level spatial resolution of resonance Raman and the femtosecond scale temporal resolution of the ultrafast pulses, this novel technique holds the potential of capturing the spectroscopic fingerprints of the LiPS intermediates during the working stages of LSBs. Using ab initio simulations, we show that, in addition to the excitation energy selective enhancement, resonance Raman signals of different LiPS intermediates are also characteristic and distinguishable. These results will facilitate the real-time in situ monitoring of LiPS species and reveal the underlying mechanism of the shuttling effect.
Collapse
Affiliation(s)
- Hao Ren
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, People's Republic of China
| | - Zhengjie Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, People's Republic of China
| | - Sibei Guo
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, People's Republic of China
| | - Wenyue Guo
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, People's Republic of China
| | - Guangjun Tian
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Baoling Tian
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, People's Republic of China
| |
Collapse
|
31
|
Gao X, Zheng X, Tsao Y, Zhang P, Xiao X, Ye Y, Li J, Yang Y, Xu R, Bao Z, Cui Y. All-Solid-State Lithium-Sulfur Batteries Enhanced by Redox Mediators. J Am Chem Soc 2021; 143:18188-18195. [PMID: 34677957 DOI: 10.1021/jacs.1c07754] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Redox mediators (RMs) play a vital role in some liquid electrolyte-based electrochemical energy storage systems. However, the concept of redox mediator in solid-state batteries remains unexplored. Here, we selected a group of RM candidates and investigated their behaviors and roles in all-solid-state lithium-sulfur batteries (ASSLSBs). The soluble-type quinone-based RM (AQT) shows the most favorable redox potential and the best redox reversibility that functions well for lithium sulfide (Li2S) oxidation in solid polymer electrolytes. Accordingly, Li2S cathodes with AQT RMs present a significantly reduced energy barrier (average oxidation potential of 2.4 V) during initial charging at 0.1 C at 60 °C and the following discharge capacity of 1133 mAh gs-1. Using operando sulfur K-edge X-ray absorption spectroscopy, we directly tracked the sulfur speciation in ASSLSBs and proved that the solid-polysulfide-solid reaction of Li2S cathodes with RMs facilitated Li2S oxidation. In contrast, for bare Li2S cathodes, the solid-solid Li2S-sulfur direct conversion in the first charge cycle results in a high energy barrier for activation (charge to ∼4 V) and low sulfur utilization. The Li2S@AQT cell demonstrates superior cycling stability (average Coulombic efficiency 98.9% for 150 cycles) and rate capability owing to the effective AQT-enhanced Li-S reaction kinetics. This work reveals the evolution of sulfur species in ASSLSBs and realizes the fast Li-S reaction kinetics by designing an effective sulfur speciation pathway.
Collapse
Affiliation(s)
- Xin Gao
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Xueli Zheng
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yuchi Tsao
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Pu Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Xin Xiao
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yusheng Ye
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jun Li
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.,Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yufei Yang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Rong Xu
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.,Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
32
|
Guo C, Liu M, Gao GK, Tian X, Zhou J, Dong LZ, Li Q, Chen Y, Li SL, Lan YQ. Anthraquinone Covalent Organic Framework Hollow Tubes as Binder Microadditives in Li-S Batteries. Angew Chem Int Ed Engl 2021; 61:e202113315. [PMID: 34716649 DOI: 10.1002/anie.202113315] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 11/06/2022]
Abstract
The exploration of new application forms of covalent organic frameworks (COFs) in Li-S batteries that can overcome drawbacks like low conductivity or high loading when typically applied as sulfur host materials (mostly ≈20 to ≈40 wt % loading in cathode) is desirable to maximize their low-density advantage to obtain lightweight, portable, or high-energy-density devices. Here, we establish that COFs could have implications as microadditives of binders (≈1 wt % in cathode), and a series of anthraquinone-COF based hollow tubes have been prepared as model microadditives. The microadditives can strengthen the basic properties of the binder and spontaneously immobilize and catalytically convert lithium polysulfides, as proved by density functional calculations, thus showing almost doubly enhanced reversible capacity compared with that of the bare electrode.
Collapse
Affiliation(s)
- Can Guo
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| | - Ming Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Guang-Kuo Gao
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| | - Xi Tian
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jie Zhou
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| | - Long-Zhang Dong
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Qi Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yifa Chen
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China.,Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Shun-Li Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
33
|
Zhao C, Zhou Y, Shi T, Guo D, Yin H, Song C, Qin L, Wang Z, Shao H, Yu K. Employing synergetic effect of ZnSe quantum dots and layered Ni(OH) 2to boost the performance of lithium-sulfur cathodes. NANOTECHNOLOGY 2021; 32:505406. [PMID: 34555827 DOI: 10.1088/1361-6528/ac2982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The low sulfur utilization, cycling instability, and sluggish kinetics are the critical obstructions to practical applications of lithium-sulfur batteries (LSBs). Constructing sulfur hosts with high conductivity, suppressed shuttle effect, and rapid kinetics is essential for their practical application in LSBs. Here, we synthetically utilized the merits of ZnSe quantum dots (QDs) and layered Ni(OH)2to boost the performance of LSBs. A novel core-shell ZnSe-CNTs/S@Ni(OH)2was constructed using the ZnSe-CNTs network as framework to load sulfur and following with Ni(OH)2encapsulation. The CNT network decorated with ZnSe QDs not only serves as a conductive framework providing fast electron/ion transfer channels, but also limits polysulfide diffusion physically and chemically. Layered Ni(OH)2, the wrinkled encapsulation, not only permits fast electron/ion transfer, but also buffers the expansion, confines active materials, and limits the polysulfide dissolution chemically. When used as a cathode, ZnSe-CNTs/S@Ni(OH)2presents enhanced electrochemistry performance compared with ZnSe-CNTs/S and CNTs/S. The average specific capacity decreases from 1021.9 mAh g-1at 0.2 C to 665.0 mAh g-1at 2 C, showing rate capacity much higher than ZnSe-CNTs/S and CNTs/S. After 150 cycles, the capacity at 0.5 C slowly reduces from 926.7 to 789.0 mAh g-1, showing high retention of 85.1%. Therefore, our investigation provides a new strategy to construct a promising sulfur cathode for LSBs.
Collapse
Affiliation(s)
- Chenyuan Zhao
- School of Information Science and Technology, Nantong University, Nantong 226019, People's Republic of China
| | - Yuxiang Zhou
- School of Information Science and Technology, Nantong University, Nantong 226019, People's Republic of China
| | - Tianyu Shi
- School of Information Science and Technology, Nantong University, Nantong 226019, People's Republic of China
| | - Desong Guo
- School of Information Science and Technology, Nantong University, Nantong 226019, People's Republic of China
| | - Haihong Yin
- School of Information Science and Technology, Nantong University, Nantong 226019, People's Republic of China
| | - Changqing Song
- School of Information Science and Technology, Nantong University, Nantong 226019, People's Republic of China
| | - Lin Qin
- School of Information Science and Technology, Nantong University, Nantong 226019, People's Republic of China
| | - Zhiliang Wang
- School of Information Science and Technology, Nantong University, Nantong 226019, People's Republic of China
| | - Haibao Shao
- School of Information Science and Technology, Nantong University, Nantong 226019, People's Republic of China
| | - Ke Yu
- Key Laboratory of Polar Materials and Devices, Department of Optoelectronics, East China Normal University, Shanghai 200241, People's Republic of China
| |
Collapse
|
34
|
Comparing Internal and Interparticle Space Effects of Metal-Organic Frameworks on Polysulfide Migration in Lithium-Sulfur Batteries. NANOMATERIALS 2021; 11:nano11102689. [PMID: 34685128 PMCID: PMC8537144 DOI: 10.3390/nano11102689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/24/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022]
Abstract
One of the critical issues hindering the commercialization of lithium-sulfur (Li-S) batteries is the dissolution and migration of soluble polysulfides in electrolyte, which is called the 'shuttle effect'. To address this issue, previous studies have focused on separators featuring specific chemical affinities or physical confinement by porous coating materials. However, there have been no studies on the complex effects of the simultaneous presence of the internal and interparticle spaces of porous materials in Li-S batteries. In this report, the stable Zr-based metal-organic frameworks (MOFs), UiO-66, have been used as a separator coating material to provide interparticle space via size-controlled MOF particles and thermodynamic internal space via amine functionality. The abundant interparticle space promoted mass transport, resulting in enhanced cycling performance. However, when amine functionalized UiO-66 was employed as the separator coating material, the initial specific capacity and capacity retention of Li-S batteries were superior to those materials based on the interparticle effect. Therefore, it is concluded that the thermodynamic interaction inside internal space is more important for preventing polysulfide migration than spatial condensation of the interparticle space.
Collapse
|
35
|
Zhang T, Hu F, Shao W, Liu S, Peng H, Song Z, Song C, Li N, Jian X. Sulfur-Rich Polymers Based Cathode with Epoxy/Ally Dual-Sulfur-Fixing Mechanism for High Stability Lithium-Sulfur Battery. ACS NANO 2021; 15:15027-15038. [PMID: 34469124 DOI: 10.1021/acsnano.1c05330] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lithium-sulfur (Li-S) batteries have attracted a great deal of attention for the next-generation energy storage devices due to their inherently high theoretical energy density, high natural abundance, and low cost. However, the dissolution of polysulfides in electrolytes and their undesirable shuttle behavior lead to poor cycling performance, which obstructs practical application. Herein, we report a dual-sulfur-fixing mechanism of epoxy/allyl compound/sulfur system to prepare poly(sulfur-random-4-vinyl-1,2-epoxycyclohexane) (SVE) copolymers as powerful cathode materials. Benefiting from the stable C-S bond and a uniform distribution of ultrafine Li2S/S8 in the SVE-based polymer matrix, the SVE electrodes exerted an embedding effect to reduce polysulfides migration. The thiosulfate/polythionate protective layer derived from the terminal hydroxyl group of SVE also ensured the cycle stability of SVE electrodes during cycling. As a result, optimized SVE electrodes deliver a high reversible specific capacity of 1248 mA h g-1 at rates of 0.1 C, together with a stable cycling performance of no capacity decay per cycle over more than 400 cycles. This work provides an effective strategy for the practical application of organosulfur polymers Li-S batteries and inspires the exploration of the reaction mechanism of epoxy/allyl compound/sulfur system.
Collapse
Affiliation(s)
- Tianpeng Zhang
- School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Key Laboratory of Energy Materials and Devices (Liaoning Province). Dalian University of Technology, Dalian, 116024, China
| | - Fangyuan Hu
- School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Key Laboratory of Energy Materials and Devices (Liaoning Province). Dalian University of Technology, Dalian, 116024, China
| | - Wenlong Shao
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, Liaoning Province Engineering Research Centre of High Performance Resins. Dalian University of Technology, Dalian, 116024, China
| | - Siyang Liu
- School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Key Laboratory of Energy Materials and Devices (Liaoning Province). Dalian University of Technology, Dalian, 116024, China
| | - Hao Peng
- School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Key Laboratory of Energy Materials and Devices (Liaoning Province). Dalian University of Technology, Dalian, 116024, China
| | - Zihui Song
- School of Materials Science and Engineering, State Key Laboratory of Fine Chemicals, Key Laboratory of Energy Materials and Devices (Liaoning Province). Dalian University of Technology, Dalian, 116024, China
| | - Ce Song
- School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China
| | - Nan Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, Liaoning Province Engineering Research Centre of High Performance Resins. Dalian University of Technology, Dalian, 116024, China
| | - Xigao Jian
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, Liaoning Province Engineering Research Centre of High Performance Resins. Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
36
|
Cheviri M, Lakshmipathi S. Nitrogen-Doped Buckybowls as Potential Scaffold Material for Lithium-Sulfur Battery: A DFT Study. Electrocatalysis (N Y) 2021. [DOI: 10.1007/s12678-021-00678-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Murugasenapathi NK, Jebakumari KAE, Mohamed SJ, Giribabu K, Palanisamy T. Pinhole-Free Shell-Isolated Nanoparticle Enhanced Raman Spectroscopy for Interference-Free Probing of Electrochemical Reactions. J Phys Chem Lett 2021; 12:7046-7052. [PMID: 34291948 DOI: 10.1021/acs.jpclett.1c01768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Investigating the behavior of analytes at the electrode surface is crucial in understanding the electrochemical and electrocatalytic reactions. Although Surface Enhanced Raman Scattering (SERS) is sensitive to minor chemical changes in the analyte, it is not widely used to study the reaction mechanisms on nonplasmonic surfaces because of the interference from plasmonic SERS substrates. In this study, we have investigated the redox reaction of Nile Blue A on a glassy carbon surface using pinhole-free silica-coated silver nanoparticles for Raman signal enhancement. The silver nanostructures were synthesized by a chemical reduction method, and the quality of the silica layer was confirmed using microscopic and electrochemical method. The in situ spectroelectrochemical data reveals the catalytic interference from silver which considerably alters the native reaction mechanism. The pinhole-free silica layer prevents the hot electron transfer and yields an interference-free enhancement to the Raman signals.
Collapse
Affiliation(s)
- N K Murugasenapathi
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Electrochemical Research Institute (CECRI) Campus, Karaikudi 630003, Tamil Nadu, India
| | - K A Esther Jebakumari
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Electrochemical Research Institute (CECRI) Campus, Karaikudi 630003, Tamil Nadu, India
| | - S Jamal Mohamed
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
| | - K Giribabu
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Electrochemical Research Institute (CECRI) Campus, Karaikudi 630003, Tamil Nadu, India
| | - Tamilarasan Palanisamy
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630003, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Electrochemical Research Institute (CECRI) Campus, Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
38
|
Chen Y, Wang T, Tian H, Su D, Zhang Q, Wang G. Advances in Lithium-Sulfur Batteries: From Academic Research to Commercial Viability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003666. [PMID: 34096100 DOI: 10.1002/adma.202003666] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/30/2020] [Indexed: 06/12/2023]
Abstract
Lithium-ion batteries, which have revolutionized portable electronics over the past three decades, were eventually recognized with the 2019 Nobel Prize in chemistry. As the energy density of current lithium-ion batteries is approaching its limit, developing new battery technologies beyond lithium-ion chemistry is significant for next-generation high energy storage. Lithium-sulfur (Li-S) batteries, which rely on the reversible redox reactions between lithium and sulfur, appears to be a promising energy storage system to take over from the conventional lithium-ion batteries for next-generation energy storage owing to their overwhelming energy density compared to the existing lithium-ion batteries today. Over the past 60 years, especially the past decade, significant academic and commercial progress has been made on Li-S batteries. From the concept of the sulfur cathode first proposed in the 1960s to the current commercial Li-S batteries used in unmanned aircraft, the story of Li-S batteries is full of breakthroughs and back tracing steps. Herein, the development and advancement of Li-S batteries in terms of sulfur-based composite cathode design, separator modification, binder improvement, electrolyte optimization, and lithium metal protection is summarized. An outlook on the future directions and prospects for Li-S batteries is also offered.
Collapse
Affiliation(s)
- Yi Chen
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Tianyi Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Huajun Tian
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Dawei Su
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| |
Collapse
|
39
|
Ma C, Zhang Y, Feng Y, Wang N, Zhou L, Liang C, Chen L, Lai Y, Ji X, Yan C, Wei W. Engineering Fe-N Coordination Structures for Fast Redox Conversion in Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100171. [PMID: 34145629 DOI: 10.1002/adma.202100171] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Critical drawbacks, including sluggish redox kinetics and undesirable shuttling of polysulfides (Li2 Sn , n = 4-8), seriously deteriorate the electrochemical performance of high-energy-density lithium-sulfur (Li-S) batteries. Herein, these challenges are addressed by constructing an integrated catalyst with dual active sites, where single-atom (SA)-Fe and polar Fe2 N are co-embedded in nitrogen-doped graphene (SA-Fe/Fe2 N@NG). The SA-Fe, with plane-symmetric Fe-4N coordination, and Fe2 N, with triangular pyramidal Fe-3N coordination, in this well-designed configuration exhibit synergistic adsorption of polysulfides and catalytic selectivity for Li2 Sn lithiation and Li2 S delithiation, respectively. These characteristics endow the SA-Fe/Fe2 N@NG-modified separator with an optimal polysulfides confinement-catalysis ability, thus accelerating the bidirectional liquid-solid conversion (Li2 Sn ↔Li2 S) and suppressing the shuttle effect. Consequently, a Li-S battery based on the SA-Fe/Fe2 N@NG separator achieves a high capacity retention of 84.1% over 500 cycles at 1 C (pure S cathode, S content: 70 wt%) and a high areal capacity of 5.02 mAh cm-2 at 0.1 C (SA-Fe/Fe2 N@NG-supported S cathode, S loading = 5 mg cm-2 ). It is expected that the outcomes of the present study will facilitate the design of high-efficiency catalysts for long-lasting Li-S batteries.
Collapse
Affiliation(s)
- Cheng Ma
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, China
| | - Youquan Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, China
| | - Yiming Feng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, China
| | - Ning Wang
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Liangjun Zhou
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, China
| | - Chaoping Liang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, China
| | - Libao Chen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, China
| | - Yanqing Lai
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Chenglin Yan
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, China
| | - Weifeng Wei
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
40
|
Lu G, Ye C, Li W, He X, Chen G, Li J, Jin H, Wang S, Wang J. Advanced Te xS y-C Nanocomposites for High-Performance Lithium Ion Batteries. Front Chem 2021; 9:687392. [PMID: 34113603 PMCID: PMC8186662 DOI: 10.3389/fchem.2021.687392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
This study is dedicated to expand the family of lithium-tellurium sulfide batteries, which have been recognized as a promising choice for future energy storage systems. Herein, a novel electrochemical method has been applied to engineer micro-nano TexSy material, and it is found that TexSy phases combined with multi-walled carbon nanotubes endow the as-constructed lithium-ion batteries excellent cycling stability and high rate performance. In the process of material synthesis, the sulfur was successfully embedded into the tellurium matrix, which improved the overall capacity performance. TexSy was characterized and verified as a micro-nano-structured material with less Te and more S. Compared with the original pure Te particles, the capacity is greatly improved, and the volume expansion change is effectively inhibited. After the assembly of Li-TexSy battery, the stable electrical contact and rapid transport capacity of lithium ions, as well as significant electrochemical performance are verified.
Collapse
Affiliation(s)
- Guolong Lu
- Nano-materials & Chemistry Key Laboratory, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, China
| | - Chunnuan Ye
- Nano-materials & Chemistry Key Laboratory, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, China
| | - Wenyan Li
- Nano-materials & Chemistry Key Laboratory, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, China
| | - Xuedong He
- Nano-materials & Chemistry Key Laboratory, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, China
| | - Guang Chen
- Nano-materials & Chemistry Key Laboratory, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, China
| | - Jun Li
- Nano-materials & Chemistry Key Laboratory, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, China
| | - Huile Jin
- Nano-materials & Chemistry Key Laboratory, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, China
| | - Shun Wang
- Nano-materials & Chemistry Key Laboratory, Institute of New Materials and Industrial Technologies, Wenzhou University, Wenzhou, China
| | - Jichang Wang
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
41
|
Abstract
The field of lithium-sulfur batteries has benefited enormously from the advances in nanotechnology. At each step of technological improvement, lithium-sulfur batteries have relied upon techniques and methodologies brought upon by nanotechnology. Nanoporous material, heterogeneous nanocomposite, and hierarchical electrode developments have all been well-established as critical milestones for lithium-sulfur batteries. This review will briefly discuss the specific major roles of nanotechnology in lithium-sulfur batteries regarding practically relevant testing conditions in addition to research trends and future directions for electrocatalysis.
Collapse
Affiliation(s)
- Matthew Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
| | - Jun Lu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, Illinois 60439, United States
- Department of Material Science and Engineering, Stanford University, Stanford, California 94305, United States
- Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University (IAU), Al Safa, Dammam 34221 7176, Saudi Arabia
| |
Collapse
|
42
|
Wang X, Yang Y, Lai C, Li R, Xu H, Tan DHS, Zhang K, Yu W, Fjeldberg O, Lin M, Tang W, Meng YS, Loh KP. Dense-Stacking Porous Conjugated Polymer as Reactive-Type Host for High-Performance Lithium Sulfur Batteries. Angew Chem Int Ed Engl 2021; 60:11359-11369. [PMID: 33751750 DOI: 10.1002/anie.202016240] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/05/2021] [Indexed: 11/08/2022]
Abstract
Commercialization of the lithium-sulfur battery is hampered by bottlenecks like low sulfur loading, high cathode porosity, uncontrollable Li2 Sx deposition and sluggish kinetics of Li2 S activation. Herein, we developed a densely stacked redox-active hexaazatrinaphthylene (HATN) polymer with a surface area of 302 m2 g-1 and a very high bulk density of ca. 1.60 g cm-3 . Uniquely, HATN polymer has a similar redox potential window to S, which facilitates the binding of Li2 Sx and its transformation chemistry within the bulky polymer host, leading to fast Li2 S/S kinetics. The compact polymer/S electrode presents a high sulfur loading of ca. 15 mgs cm-2 (200-μm thickness) with a low cathode porosity of 41 %. It delivers a high areal capacity of ca. 14 mAh cm-2 and good cycling stability (200 cycles) at electrolyte-sulfur (E/S) ratio of 5 μL mgs -1 . The assembled pouch cell delivers a cell-level high energy density of 303 Wh kg-1 and 392 Wh L-1 .
Collapse
Affiliation(s)
- Xiaowei Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 21 Lower Kent Ridge Road, 119077, Singapore, Singapore
| | - Yangyuchen Yang
- Materials Science and Engineering, University of California San Diego, La Jolla, CA, 92121, USA
| | - Chen Lai
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shannxi, China
| | - Runlai Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Haomin Xu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore.,Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, 138634 Singapore, Singapore
| | - Darren H S Tan
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kun Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Wei Yu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Oeystein Fjeldberg
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ming Lin
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, 138634 Singapore, Singapore
| | - Wei Tang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, Shannxi, China
| | - Ying Shirley Meng
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA.,Materials Science and Engineering, University of California San Diego, La Jolla, CA, 92121, USA
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| |
Collapse
|
43
|
Wang X, Yang Y, Lai C, Li R, Xu H, Tan DHS, Zhang K, Yu W, Fjeldberg O, Lin M, Tang W, Meng YS, Loh KP. Dense‐Stacking Porous Conjugated Polymer as Reactive‐Type Host for High‐Performance Lithium Sulfur Batteries. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaowei Wang
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
- NUS Graduate School for Integrative Sciences and Engineering National University of Singapore 21 Lower Kent Ridge Road 119077 Singapore Singapore
| | - Yangyuchen Yang
- Materials Science and Engineering University of California San Diego La Jolla CA 92121 USA
| | - Chen Lai
- School of Chemical Engineering and Technology Xi'an Jiaotong University Xi'an 710049 Shannxi China
| | - Runlai Li
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Haomin Xu
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
- Institute of Materials Research and Engineering A*STAR 2 Fusionopolis Way Innovis 138634 Singapore Singapore
| | - Darren H. S. Tan
- Department of NanoEngineering University of California San Diego La Jolla CA 92093 USA
| | - Kun Zhang
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Wei Yu
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Oeystein Fjeldberg
- Department of NanoEngineering University of California San Diego La Jolla CA 92093 USA
| | - Ming Lin
- Institute of Materials Research and Engineering A*STAR 2 Fusionopolis Way Innovis 138634 Singapore Singapore
| | - Wei Tang
- School of Chemical Engineering and Technology Xi'an Jiaotong University Xi'an 710049 Shannxi China
| | - Ying Shirley Meng
- Department of NanoEngineering University of California San Diego La Jolla CA 92093 USA
- Materials Science and Engineering University of California San Diego La Jolla CA 92121 USA
| | - Kian Ping Loh
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| |
Collapse
|
44
|
Zhang Y, Wang M, Guo Y, Huang L, Wang B, Wei Y, Jing P, Zhang Y, Zhang Y, Wang Q, Sun J, Wu H. A Natural Polymer Captor for Immobilizing Polysulfide/Polyselenide in Working Li-SeS 2 Batteries. NANO-MICRO LETTERS 2021; 13:104. [PMID: 34138362 PMCID: PMC8021686 DOI: 10.1007/s40820-021-00629-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/22/2021] [Indexed: 05/13/2023]
Abstract
SeS2 has become a promising cathode material owing to its enhanced electrical conductivity over sulfur and higher theoretical specific capacity than selenium; however, the working Li-SeS2 batteries have to face the practical challenges from the severe shuttling of soluble dual intermediates of polysulfide and polyselenide, especially in high-SeS2-loading cathodes. Herein, a natural organic polymer, Nicandra physaloides pectin (NPP), is proposed to serve as an effective polysulfide/polyselenide captor to address the shuttling issues. Informed by theoretical calculations, NPP is competent to provide a Lewis base-based strong binding interaction with polysulfides/polyselenides via forming lithium bonds, and it can be homogeneously deposited onto a three-dimensional double-carbon conductive scaffold to finally constitute a polysulfide/polyselenide-immobilizing interlayer. Operando spectroscopy analysis validates the enhanced polysulfide/polyselenide trapping and high conversion efficiency on the constructed interlayer, hence bestowing the Li-SeS2 cells with ultrahigh rate capability (448 mAh g-1 at 10 A g-1), durable cycling lifespan (≈ 0.037% capacity attenuation rate per cycle), and high areal capacity (> 6.5 mAh cm-2) at high SeS2 loading of 15.4 mg cm-2. Importantly, pouch cells assembled with this interlayer exhibit excellent flexibility, decent rate capability with relatively low electrolyte-to-capacity ratio, and stable cycling life even under a low electrolyte condition, promising a low-cost, viable design protocol toward practical Li-SeS2 batteries.
Collapse
Affiliation(s)
- Yin Zhang
- Engineering Research Center of Alternative Energy Materials and Devices of Ministry of Education, College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Menglei Wang
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow University, Suzhou, 215006, People's Republic of China
| | - Yi Guo
- Engineering Research Center of Alternative Energy Materials and Devices of Ministry of Education, College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Lingzhi Huang
- Engineering Research Center of Alternative Energy Materials and Devices of Ministry of Education, College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Boya Wang
- Engineering Research Center of Alternative Energy Materials and Devices of Ministry of Education, College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Yunhong Wei
- Engineering Research Center of Alternative Energy Materials and Devices of Ministry of Education, College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Peng Jing
- Engineering Research Center of Alternative Energy Materials and Devices of Ministry of Education, College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Yueying Zhang
- Engineering Research Center of Alternative Energy Materials and Devices of Ministry of Education, College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Yun Zhang
- Engineering Research Center of Alternative Energy Materials and Devices of Ministry of Education, College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, People's Republic of China.
| | - Qian Wang
- Engineering Research Center of Alternative Energy Materials and Devices of Ministry of Education, College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Jingyu Sun
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow University, Suzhou, 215006, People's Republic of China.
| | - Hao Wu
- Engineering Research Center of Alternative Energy Materials and Devices of Ministry of Education, College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, People's Republic of China.
| |
Collapse
|
45
|
Li J, He L, Qin F, Fang J, Hong B, Lai Y. Dual-enhancement on electrochemical performance with thioacetamide as an electrolyte additive for lithium-sulfur batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Guo W, Han Q, Jiao J, Wu W, Zhu X, Chen Z, Zhao Y. In situ Construction of Robust Biphasic Surface Layers on Lithium Metal for Lithium–Sulfide Batteries with Long Cycle Life. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Wei Guo
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Qing Han
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Junrong Jiao
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Wenhao Wu
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Xuebing Zhu
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Zhonghui Chen
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology School of Materials Science and Engineering Collaborative Innovation Center of Nano Functional Materials and Applications Henan University Kaifeng 475004 P. R. China
| |
Collapse
|
47
|
Guo W, Han Q, Jiao J, Wu W, Zhu X, Chen Z, Zhao Y. In situ Construction of Robust Biphasic Surface Layers on Lithium Metal for Lithium-Sulfide Batteries with Long Cycle Life. Angew Chem Int Ed Engl 2021; 60:7267-7274. [PMID: 33372332 DOI: 10.1002/anie.202015049] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/15/2020] [Indexed: 11/08/2022]
Abstract
Lithium-sulfur (Li-S) batteries have potential in high energy density battery systems. However, intermediates of lithium polysulfides (LiPSs) can easily shuttle to the Li anode and react with Li metal to deplete the active materials and cause rapid failure of the battery. A facile solution pretreatment method for Li anodes involving a solution of metal fluorides/dimethylsulfoxide was developed to construct robust biphasic surface layers (BSLs) in situ. The BSLs consist of lithiophilic alloy (Lix M) and LiF phases on Li metal, which inhibit the shuttle effect and increase the cycle life of Li-S batteries. The BSLs allow Li+ transport and they inhibit dendrite growth and shield the Li anodes from corrosive reaction with LiPSs. Li-S batteries containing BSLs-Li anodes demonstrate excellent cycling over 1000 cycles at 1 C and simultaneously maintain a high coulombic efficiency of 98.2 %. Based on our experimental and theoretical results, we propose a strategy for inhibition of the shuttle effect that produces high stability Li-S batteries.
Collapse
Affiliation(s)
- Wei Guo
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Qing Han
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Junrong Jiao
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Wenhao Wu
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Xuebing Zhu
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Zhonghui Chen
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| | - Yong Zhao
- Key Lab for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
48
|
|
49
|
Yang L, Wang Y, Li Q, Li Y, Chen Y, Liu Y, Wu Z, Wang G, Zhong B, Song Y, Xiang W, Zhong Y, Guo X. Inhibition of the shuttle effect of lithium-sulfur batteries via a tannic acid-metal one-step in situ chemical film-forming modified separator. NANOSCALE 2021; 13:5058-5068. [PMID: 33650622 DOI: 10.1039/d1nr00034a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The dissolution of polysulfides in an electrolyte is a thermodynamically favorable process, which in theory means that the shuttle effect in lithium-sulfur batteries (LSBs) cannot be completely suppressed. So, it is very important to modify the separator to prevent the migration of polysulfides to the lithium anode. The traditional coating modification process of the separator is cumbersome and uses a solvent that is harmful to the environment, and too many inactive components affect the overall energy density of the battery. It is thus imperative to find a simple and environmentally friendly modification process of the separator. In this study, a fast chemical film-forming method is proposed to modify the separator of a lithium-sulfur battery using tannic acid (TA) and cobalt ions (Co2+). This method requires only simple steps and environmentally friendly raw materials to obtain a thin coating (only 5.83 nm) that can effectively inhibit the shuttle effect. The lithium-sulfur battery with the TA-Co separator shows superior long cycle performance. After 500 cycles at 0.5 C, the capacity decay rate of each cycle is only 0.065%. On the other hand, the TA-Co separator can inhibit the growth of lithium dendrites and help to build a stable lithium anode, which can exhibit minimal polarization (56 mV) in a lithium-lithium symmetrical battery at the current density of 2 mA cm-2. The rapid and simple modification method proposed in this study has a certain reference value for the future large-scale application of lithium sulfur batteries.
Collapse
Affiliation(s)
- Liwen Yang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, PR China.
| | - Yang Wang
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, PR China.
| | - Qian Li
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, PR China.
| | - Yuan Li
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, PR China.
| | - Yanxiao Chen
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, PR China.
| | - Yuxia Liu
- The Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Zhenguo Wu
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, PR China.
| | - Gongke Wang
- School of Materials Science and Engineering, Henan Normal University, XinXiang, 453007, PR China
| | - Benhe Zhong
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, PR China.
| | - Yang Song
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, PR China.
| | - Wei Xiang
- College of Materials and Chemistry &Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Yanjun Zhong
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, PR China.
| | - Xiaodong Guo
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, PR China.
| |
Collapse
|
50
|
Mei J, Wang J, Gu H, Du Y, Wang H, Yamauchi Y, Liao T, Sun Z, Yin Z. Nano Polymorphism-Enabled Redox Electrodes for Rechargeable Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004920. [PMID: 33382163 DOI: 10.1002/adma.202004920] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/08/2020] [Indexed: 06/12/2023]
Abstract
Nano polymorphism (NPM), as an emerging research area in the field of energy storage, and rechargeable batteries, have attracted much attention recently. In this review, the recent progress on the composition and formation of polymorphs, and the evolution processes of different redox electrodes in rechargeable metal-ion, metal-air, and metal-sulfur batteries are highlighted. First, NPM and its significance for rechargeable batteries are discussed. Subsequently, the current NPM modulation strategies of different types of representative electrodes for their corresponding rechargeable battery applications are summarized. The goal is to demonstrate how NPM could tune the intrinsic material properties, and hence, improve their electrochemical activities for each battery type. It is expected that the analysis of polymorphism and electrochemical properties of materials could help identify some "processing-structure-properties" relationships for material design and performance enhancement. Lastly, the current research challenges and potential research directions are discussed to offer guidance and perspectives for future research on NPM engineering.
Collapse
Affiliation(s)
- Jun Mei
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Jinkai Wang
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huimin Gu
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Yaping Du
- School of Materials Science and Engineering & National Institute for Advanced Materials, Energy Materials Chemistry, Tianjin Key Lab for Rare Earth Materials and Applications, Centre for Rare Earth and Inorganic Functional Materials, Nankai University, Tianjin, 300350, China
| | - Hongkang Wang
- State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
- JST-ERATO Yamauchi's Materials Space-Tectonics Project, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Ting Liao
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- School of Mechanical Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Ziqi Sun
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|