1
|
Prech K, Potts PP. Quantum Fluctuation Theorem for Arbitrary Measurement and Feedback Schemes. PHYSICAL REVIEW LETTERS 2024; 133:140401. [PMID: 39423400 DOI: 10.1103/physrevlett.133.140401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/11/2023] [Accepted: 09/04/2024] [Indexed: 10/21/2024]
Abstract
Fluctuation theorems and the second law of thermodynamics are powerful relations constraining the behavior of out-of-equilibrium systems. While there exist generalizations of these relations to feedback controlled quantum systems, their applicability is limited, in particular when considering strong and continuous measurements. In this Letter, we overcome this shortcoming by deriving a novel fluctuation theorem, and the associated second law of information thermodynamics, which remain applicable in arbitrary feedback control scenarios. In our second law, the entropy production is bounded by the coarse-grained entropy production that is inferrable from the measurement outcomes, an experimentally accessible quantity that does not diverge even under strong continuous measurements. We illustrate our results by a qubit undergoing discrete and continuous measurement, where our approach provides a useful bound on the entropy production for all measurement strengths.
Collapse
|
2
|
Yan L, Ge X. A Thermodynamic Study on Information Power in Communication Systems. ENTROPY (BASEL, SWITZERLAND) 2024; 26:650. [PMID: 39202120 PMCID: PMC11353885 DOI: 10.3390/e26080650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024]
Abstract
Modern information theory pioneered by Shannon provides the mathematical foundation of information transmission and compression. However, the physical (and especially the energetic) nature of the information has been elusive. While the processing of information incurs inevitable energy dissipation, it is possible for communication systems to harness information to perform useful work. In this article, we prove that the thermodynamic cost (that is, the entropy production of the communication system) is at least equal to the information transmitted. Based on this result, a model of a communication heat engine is proposed, which can extract work from the heat bath by utilizing the transmission of information. The communication heat engine integrates the manipulation of both energy and information so that both information and power may be transmitted in parallel. The information transmission rate and the information power of the communication heat engine are derived from a pure thermodynamics argument. We find that the information power of the communication heat engine can be increased by increasing the number of communication channels, but the absolute energy efficiency of the heat engine first increases and then decreases after the number of channels of the system exceeds a threshold. The proposed model and definitions provide a new way to think of a classical communication system from a thermodynamic perspective.
Collapse
|
3
|
Berritta F, Rasmussen T, Krzywda JA, van der Heijden J, Fedele F, Fallahi S, Gardner GC, Manfra MJ, van Nieuwenburg E, Danon J, Chatterjee A, Kuemmeth F. Real-time two-axis control of a spin qubit. Nat Commun 2024; 15:1676. [PMID: 38395978 PMCID: PMC10891052 DOI: 10.1038/s41467-024-45857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Optimal control of qubits requires the ability to adapt continuously to their ever-changing environment. We demonstrate a real-time control protocol for a two-electron singlet-triplet qubit with two fluctuating Hamiltonian parameters. Our approach leverages single-shot readout classification and dynamic waveform generation, allowing full Hamiltonian estimation to dynamically stabilize and optimize the qubit performance. Powered by a field-programmable gate array (FPGA), the quantum control electronics estimates the Overhauser field gradient between the two electrons in real time, enabling controlled Overhauser-driven spin rotations and thus bypassing the need for micromagnets or nuclear polarization protocols. It also estimates the exchange interaction between the two electrons and adjusts their detuning, resulting in extended coherence of Hadamard rotations when correcting for fluctuations of both qubit axes. Our study highlights the role of feedback in enhancing the performance and stability of quantum devices affected by quasistatic noise.
Collapse
Affiliation(s)
- Fabrizio Berritta
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark.
| | - Torbjørn Rasmussen
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Jan A Krzywda
- Lorentz Institute and Leiden Institute of Advanced Computer Science, Leiden University, P.O. Box 9506, 2300 RA, Leiden, The Netherlands
| | | | - Federico Fedele
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Saeed Fallahi
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Geoffrey C Gardner
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Michael J Manfra
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Evert van Nieuwenburg
- Lorentz Institute and Leiden Institute of Advanced Computer Science, Leiden University, P.O. Box 9506, 2300 RA, Leiden, The Netherlands
| | - Jeroen Danon
- Department of Physics, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Anasua Chatterjee
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark.
| | - Ferdinand Kuemmeth
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark.
- QDevil, Quantum Machines, 2750, Ballerup, Denmark.
| |
Collapse
|
4
|
Liu W, Niu Z, Cheng W, Li X, Duan CK, Yin Z, Rong X, Du J. Experimental Test of the Jarzynski Equality in a Single Spin-1 System Using High-Fidelity Single-Shot Readouts. PHYSICAL REVIEW LETTERS 2023; 131:220401. [PMID: 38101345 DOI: 10.1103/physrevlett.131.220401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 12/17/2023]
Abstract
The Jarzynski equality (JE), which connects the equilibrium free energy with nonequilibrium work statistics, plays a crucial role in quantum thermodynamics. Although practical quantum systems are usually multilevel systems, most tests of the JE were executed in two-level systems. A rigorous test of the JE by directly measuring the work distribution of a physical process in a high-dimensional quantum system remains elusive. Here, we report an experimental test of the JE in a single spin-1 system. We realized nondemolition projective measurement of this three-level system via cascading high-fidelity single-shot readouts and directly measured the work distribution utilizing the two-point measurement protocol. The validity of the JE was verified from the nonadiabatic to adiabatic zone and under different effective temperatures. Our work puts the JE on a solid experimental foundation and makes the nitrogen-vacancy (NV) center system a mature toolbox to perform advanced experiments of stochastic quantum thermodynamics.
Collapse
Affiliation(s)
- Wenquan Liu
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Zhibo Niu
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wei Cheng
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xin Li
- Center for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Chang-Kui Duan
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhangqi Yin
- Center for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Xing Rong
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Jiangfeng Du
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
5
|
Bilancioni M, Esposito M, Freitas N. A chemical reaction network implementation of a Maxwell demon. J Chem Phys 2023; 159:204103. [PMID: 38010324 DOI: 10.1063/5.0173889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023] Open
Abstract
We study an autonomous model of a Maxwell demon that works by rectifying thermal fluctuations of chemical reactions. It constitutes the chemical analog of a recently studied electronic demon. We characterize its scaling behavior in the macroscopic limit, its performances, and the impact of potential internal delays. We obtain analytical expressions for all quantities of interest: the generated reverse chemical current, the output power, the transduction efficiency, and correlation between the number of molecules. Due to a bound on the nonequilibrium response of its chemical reaction network, we find that, contrary to the electronic case, there is no way for the Maxwell demon to generate a finite output in the macroscopic limit. Finally, we analyze the information thermodynamics of the Maxwell demon from a bipartite perspective. In the limit of a fast demon, the information flow is obtained, its pattern in the state space is discussed, and the behavior of partial efficiencies related to the measurement and feedback processes is examined.
Collapse
Affiliation(s)
- Massimo Bilancioni
- Department of Physics and Materials Science, University of Luxembourg, Avenue de la Faïencerie, Luxembourg City 1511, G.D. Luxembourg
| | - Massimiliano Esposito
- Department of Physics and Materials Science, University of Luxembourg, Avenue de la Faïencerie, Luxembourg City 1511, G.D. Luxembourg
| | - Nahuel Freitas
- Department of Physics and Materials Science, University of Luxembourg, Avenue de la Faïencerie, Luxembourg City 1511, G.D. Luxembourg
- Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
6
|
Fadler P, Friedenberger A, Lutz E. Efficiency at Maximum Power of a Carnot Quantum Information Engine. PHYSICAL REVIEW LETTERS 2023; 130:240401. [PMID: 37390443 DOI: 10.1103/physrevlett.130.240401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/17/2023] [Indexed: 07/02/2023]
Abstract
Optimizing the performance of thermal machines is an essential task of thermodynamics. We here consider the optimization of information engines that convert information about the state of a system into work. We concretely introduce a generalized finite-time Carnot cycle for a quantum information engine and optimize its power output in the regime of low dissipation. We derive a general formula for its efficiency at maximum power valid for arbitrary working media. We further investigate the optimal performance of a qubit information engine subjected to weak energy measurements.
Collapse
Affiliation(s)
- Paul Fadler
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Alexander Friedenberger
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Eric Lutz
- Institute for Theoretical Physics I, University of Stuttgart, D-70550 Stuttgart, Germany
| |
Collapse
|
7
|
Fiorelli E, Gherardini S, Marcantoni S. Stochastic Entropy Production: Fluctuation Relation and Irreversibility Mitigation in Non-unital Quantum Dynamics. JOURNAL OF STATISTICAL PHYSICS 2023; 190:111. [PMID: 37323124 PMCID: PMC10267040 DOI: 10.1007/s10955-023-03118-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
In this work, we study the stochastic entropy production in open quantum systems whose time evolution is described by a class of non-unital quantum maps. In particular, as in Phys Rev E 92:032129 (2015), we consider Kraus operators that can be related to a nonequilibrium potential. This class accounts for both thermalization and equilibration to a non-thermal state. Unlike unital quantum maps, non-unitality is responsible for an unbalance of the forward and backward dynamics of the open quantum system under scrutiny. Here, concentrating on observables that commute with the invariant state of the evolution, we show how the non-equilibrium potential enters the statistics of the stochastic entropy production. In particular, we prove a fluctuation relation for the latter and we find a convenient way of expressing its average solely in terms of relative entropies. Then, the theoretical results are applied to the thermalization of a qubit with non-Markovian transient, and the phenomenon of irreversibility mitigation, introduced in Phys Rev Res 2:033250 (2020), is analyzed in this context.
Collapse
Affiliation(s)
- Eliana Fiorelli
- Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), UIB-CSIC UIB Campus, 07122 Palma de Mallorca, Spain
| | - Stefano Gherardini
- Istituto Nazionale di Ottica - CNR, Area Science Park, Basovizza, 34149 Trieste, Italy
- LENS, University of Florence, via Carrara 1, 50019 Sesto Fiorentino, Italy
- The Abdus Salam International Center for Theoretical Physics (ICTP), Strada Costiera 11, 34151 Trieste, Italy
| | - Stefano Marcantoni
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD UK
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham, NG7 2RD UK
- Mathematics Area, SISSA, Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
8
|
Schmitt RK, Potts PP, Linke H, Johansson J, Samuelsson P, Rico-Pasto M, Ritort F. Information-to-work conversion in single-molecule experiments: From discrete to continuous feedback. Phys Rev E 2023; 107:L052104. [PMID: 37329008 DOI: 10.1103/physreve.107.l052104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 04/10/2023] [Indexed: 06/18/2023]
Abstract
We theoretically investigate the extractable work in single molecule unfolding-folding experiments with applied feedback. Using a simple two-state model, we obtain a description of the full work distribution from discrete to continuous feedback. The effect of the feedback is captured by a detailed fluctuation theorem, accounting for the information aquired. We find analytical expressions for the average work extraction as well as an experimentally measurable bound thereof, which becomes tight in the continuous feedback limit. We further determine the parameters for maximal power or rate of work extraction. Although our two-state model only depends on a single effective transition rate, we find qualitative agreement with Monte Carlo simulations of DNA hairpin unfolding-folding dynamics.
Collapse
Affiliation(s)
- Regina K Schmitt
- Department of Physics and NanoLund, Lund University, Box 188, SE-221 00 Lund, Sweden
| | - Patrick P Potts
- Department of Physics and NanoLund, Lund University, Box 188, SE-221 00 Lund, Sweden
| | - Heiner Linke
- Department of Physics and NanoLund, Lund University, Box 188, SE-221 00 Lund, Sweden
| | - Jonas Johansson
- Department of Physics and NanoLund, Lund University, Box 188, SE-221 00 Lund, Sweden
| | - Peter Samuelsson
- Department of Physics and NanoLund, Lund University, Box 188, SE-221 00 Lund, Sweden
| | - Marc Rico-Pasto
- Department of Condensed Matter Physics, Small Biosystems Laboratory, Universitat de Barcelona, C/Marti i Franques 1, 08028 Barcelona, Spain
| | - Felix Ritort
- Department of Condensed Matter Physics, Small Biosystems Laboratory, Universitat de Barcelona, C/Marti i Franques 1, 08028 Barcelona, Spain
| |
Collapse
|
9
|
Arrachea L. Energy dynamics, heat production and heat-work conversion with qubits: toward the development of quantum machines. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 86:036501. [PMID: 36603220 DOI: 10.1088/1361-6633/acb06b] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
We present an overview of recent advances in the study of energy dynamics and mechanisms for energy conversion in qubit systems with special focus on realizations in superconducting quantum circuits. We briefly introduce the relevant theoretical framework to analyze heat generation, energy transport and energy conversion in these systems with and without time-dependent driving considering the effect of equilibrium and non-equilibrium environments. We analyze specific problems and mechanisms under current investigation in the context of qubit systems. These include the problem of energy dissipation and possible routes for its control, energy pumping between driving sources and heat pumping between reservoirs, implementation of thermal machines and mechanisms for energy storage. We highlight the underlying fundamental phenomena related to geometrical and topological properties, as well as many-body correlations. We also present an overview of recent experimental activity in this field.
Collapse
Affiliation(s)
- Liliana Arrachea
- Escuela de Ciencia y Tecnología and ICIFI, Universidad de San Martín, Av. 25 de Mayo y Francia, 1650 Buenos Aires, Argentina
| |
Collapse
|
10
|
Cao Z, Bao R, Zheng J, Hou Z. Fast Functionalization with High Performance in the Autonomous Information Engine. J Phys Chem Lett 2023; 14:66-72. [PMID: 36566388 DOI: 10.1021/acs.jpclett.2c03335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mandal and Jarzynski have proposed a fully autonomous information heat engine, consisting of a demon, a mass, and a memory register interacting with a thermal reservoir. This device converts thermal energy into mechanical work by writing information to a memory register or, conversely, erasing information by consuming mechanical work. Here, we derive a speed limit inequality between the relaxation time of state transformation and the distance between the initial and final distributions, where the combination of the dynamical activity and entropy production plays an important role. Such inequality provides a hint that a speed-performance trade-off relation exists between the relaxation time to a functional state and the average production. To obtain fast functionalization while maintaining the performance, we show that the relaxation dynamics of the information heat engine can be accelerated significantly by devising an optimal initial state of the demon. Our design principle is inspired by the so-called Mpemba effect, where water freezes faster when initially heated.
Collapse
Affiliation(s)
- Zhiyu Cao
- Department of Chemical Physics and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Ruicheng Bao
- Department of Chemical Physics and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Jiming Zheng
- Department of Chemical Physics and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Zhonghuai Hou
- Department of Chemical Physics and Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui230026, China
| |
Collapse
|
11
|
Freitas N, Esposito M. Information flows in macroscopic Maxwell's demons. Phys Rev E 2023; 107:014136. [PMID: 36797870 DOI: 10.1103/physreve.107.014136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
A CMOS-based implementation of an autonomous Maxwell's demon was recently proposed [Phys. Rev. Lett. 129, 120602 (2022)0031-900710.1103/PhysRevLett.129.120602] to demonstrate that a Maxwell demon can still work at macroscopic scales, provided that its power supply is scaled appropriately. Here we first provide a full analytical characterization of the nonautonomous version of that model. We then study system-demon information flows within generic autonomous bipartite setups displaying a macroscopic limit. By doing so, we can study the thermodynamic efficiency of both the measurement and the feedback process performed by the demon. We find that the information flow is an intensive quantity and that, as a consequence, any Maxwell's demon is bound to stop working above a finite scale if all parameters but the scale are fixed. However, this can be prevented by appropriately scaling the thermodynamic forces. These general results are applied to the autonomous CMOS-based demon.
Collapse
Affiliation(s)
- Nahuel Freitas
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Massimiliano Esposito
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
12
|
Arias-Gonzalez JR. Fluctuation relations for irreversible emergence of information. Sci Rep 2022; 12:17230. [PMID: 36241690 PMCID: PMC9568592 DOI: 10.1038/s41598-022-21729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Information theory and Thermodynamics have developed closer in the last years, with a growing application palette in which the formal equivalence between the Shannon and Gibbs entropies is exploited. The main barrier to connect both disciplines is the fact that information does not imply a dynamics, whereas thermodynamic systems unfold with time, often away from equilibrium. Here, we analyze chain-like systems comprising linear sequences of physical objects carrying symbolic meaning. We show that, after defining a reading direction, both reversible and irreversible informations emerge naturally from the principle of microscopic reversibility in the evolution of the chains driven by a protocol. We find fluctuation equalities that relate entropy, the relevant concept in communication, and energy, the thermodynamically significant quantity, examined along sequences whose content evolves under writing and revision protocols. Our results are applicable to nanoscale chains, where information transfer is subject to thermal noise, and extendable to virtually any communication system.
Collapse
Affiliation(s)
- J Ricardo Arias-Gonzalez
- Centro de Tecnologías Físicas, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| |
Collapse
|
13
|
Freitas N, Esposito M. Maxwell Demon that Can Work at Macroscopic Scales. PHYSICAL REVIEW LETTERS 2022; 129:120602. [PMID: 36179174 DOI: 10.1103/physrevlett.129.120602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Maxwell's demons work by rectifying thermal fluctuations. They are not expected to function at macroscopic scales where fluctuations become negligible and dynamics become deterministic. We propose an electronic implementation of an autonomous Maxwell's demon that indeed stops working in the regular macroscopic limit as the dynamics becomes deterministic. However, we find that if the power supplied to the demon is scaled up appropriately, the deterministic limit is avoided and the demon continues to work. The price to pay is a decreasing thermodynamic efficiency. Our Letter suggests that novel strategies may be found in nonequilibrium settings to bring to the macroscale nontrivial effects so far only observed at microscopic scales.
Collapse
Affiliation(s)
- Nahuel Freitas
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Massimiliano Esposito
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
14
|
Paneru G, Dutta S, Pak HK. Colossal Power Extraction from Active Cyclic Brownian Information Engines. J Phys Chem Lett 2022; 13:6912-6918. [PMID: 35866740 PMCID: PMC9358709 DOI: 10.1021/acs.jpclett.2c01736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Brownian information engines can extract work from thermal fluctuations by utilizing information. To date, the studies on Brownian information engines consider the system in a thermal bath; however, many processes in nature occur in a nonequilibrium setting, such as the suspensions of self-propelled microorganisms or cellular environments called an active bath. Here, we introduce an archetypal model for a Maxwell-demon type cyclic Brownian information engine operating in a Gaussian correlated active bath capable of extracting more work than its thermal counterpart. We obtain a general integral fluctuation theorem for the active engine that includes additional mutual information gained from the active bath with a unique effective temperature. This effective description modifies the generalized second law and provides a new upper bound for the extracted work. Unlike the passive information engine operating in a thermal bath, the active information engine extracts colossal power that peaks at the finite cycle period. Our study provides fundamental insights into the design and functioning of synthetic and biological submicrometer motors in active baths under measurement and feedback control.
Collapse
Affiliation(s)
- Govind Paneru
- Center
for Soft and Living Matter, Institute for
Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department
of Physics, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic of Korea
| | - Sandipan Dutta
- Department
of Physics, Birla Institute of Technology
and Science, Pilani 333031, India
| | - Hyuk Kyu Pak
- Center
for Soft and Living Matter, Institute for
Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department
of Physics, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
15
|
Annby-Andersson B, Bakhshinezhad F, Bhattacharyya D, De Sousa G, Jarzynski C, Samuelsson P, Potts PP. Quantum Fokker-Planck Master Equation for Continuous Feedback Control. PHYSICAL REVIEW LETTERS 2022; 129:050401. [PMID: 35960579 DOI: 10.1103/physrevlett.129.050401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Measurement and feedback control are essential features of quantum science, with applications ranging from quantum technology protocols to information-to-work conversion in quantum thermodynamics. Theoretical descriptions of feedback control are typically given in terms of stochastic equations requiring numerical solutions, or are limited to linear feedback protocols. Here we present a formalism for continuous quantum measurement and feedback, both linear and nonlinear. Our main result is a quantum Fokker-Planck master equation describing the joint dynamics of a quantum system and a detector with finite bandwidth. For fast measurements, we derive a Markovian master equation for the system alone, amenable to analytical treatment. We illustrate our formalism by investigating two basic information engines, one quantum and one classical.
Collapse
Affiliation(s)
| | - Faraj Bakhshinezhad
- Physics Department and NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | - Debankur Bhattacharyya
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Guilherme De Sousa
- Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - Christopher Jarzynski
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Peter Samuelsson
- Physics Department and NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | - Patrick P Potts
- Physics Department and NanoLund, Lund University, Box 118, 22100 Lund, Sweden
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| |
Collapse
|
16
|
Yada T, Yoshioka N, Sagawa T. Quantum Fluctuation Theorem under Quantum Jumps with Continuous Measurement and Feedback. PHYSICAL REVIEW LETTERS 2022; 128:170601. [PMID: 35570443 DOI: 10.1103/physrevlett.128.170601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
While the fluctuation theorem in classical systems has been thoroughly generalized under various feedback control setups, an intriguing situation in quantum systems, namely under continuous feedback, remains to be investigated. In this work, we derive the generalized fluctuation theorem under quantum jumps with continuous measurement and feedback. The essence for the derivation is to newly introduce the operationally meaningful information, which we call quantum-classical-transfer (QC-transfer) entropy. QC-transfer entropy can be naturally interpreted as the quantum counterpart of transfer entropy that is commonly used in classical time series analysis. We also verify our theoretical results by numerical simulation and propose an experiment-numerics hybrid verification method. Our work reveals a fundamental connection between quantum thermodynamics and quantum information, which can be experimentally tested with artificial quantum systems such as circuit quantum electrodynamics.
Collapse
Affiliation(s)
- Toshihiro Yada
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Nobuyuki Yoshioka
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takahiro Sagawa
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Quantum-Phase Electronics Center (QPEC), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
17
|
Poulsen K, Majland M, Lloyd S, Kjaergaard M, Zinner NT. Quantum Maxwell's demon assisted by non-Markovian effects. Phys Rev E 2022; 105:044141. [PMID: 35590580 DOI: 10.1103/physreve.105.044141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/22/2022] [Indexed: 06/15/2023]
Abstract
Maxwell's demon is the quintessential example of information control, which is necessary for designing quantum devices. In thermodynamics, the demon is an intelligent being who utilizes the entropic nature of information to sort excitations between reservoirs, thus lowering the total entropy. So far, implementations of Maxwell's demon have largely been limited to Markovian baths. In our work, we study the degree to which such a demon may be assisted by non-Markovian effects using a superconducting circuit platform. The setup is two baths connected by a demon-controlled qutrit interface, allowing the transfer of excitations only if the overall entropy of the two baths is lowered. The largest entropy reduction is achieved in a non-Markovian regime and, importantly, due to non-Markovian effects, the demon performance can be optimized through proper timing. Our results demonstrate that non-Markovian effects can be exploited to boost the information transfer rate in quantum Maxwell demons.
Collapse
Affiliation(s)
- Kasper Poulsen
- Department of Physics and Astronomy, Aarhus University, Ny munkegade 120, 8000 Aarhus C, Denmark
| | - Marco Majland
- Department of Physics and Astronomy, Aarhus University, Ny munkegade 120, 8000 Aarhus C, Denmark
| | - Seth Lloyd
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Morten Kjaergaard
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Nikolaj T Zinner
- Department of Physics and Astronomy, Aarhus University, Ny munkegade 120, 8000 Aarhus C, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, 8000 Aarhus C, Denmark
| |
Collapse
|
18
|
Manikandan SK, Elouard C, Murch KW, Auffèves A, Jordan AN. Efficiently fueling a quantum engine with incompatible measurements. Phys Rev E 2022; 105:044137. [PMID: 35590558 DOI: 10.1103/physreve.105.044137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
We propose a quantum harmonic oscillator measurement engine fueled by simultaneous quantum measurements of the noncommuting position and momentum quadratures of the quantum oscillator. The engine extracts work by moving the harmonic trap suddenly, conditioned on the measurement outcomes. We present two protocols for work extraction, respectively based on single-shot and time-continuous quantum measurements. In the single-shot limit, the oscillator is measured in a coherent state basis; the measurement adds an average of one quantum of energy to the oscillator, which is then extracted in the feedback step. In the time-continuous limit, continuous weak quantum measurements of both position and momentum of the quantum oscillator result in a coherent state, whose coordinates diffuse in time. We relate the extractable work to the noise added by quadrature measurements, and present exact results for the work distribution at arbitrary finite time. Both protocols can achieve unit work conversion efficiency in principle.
Collapse
Affiliation(s)
- Sreenath K Manikandan
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA
- Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, SE-106 91 Stockholm, Sweden
| | - Cyril Elouard
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
- QUANTIC laboratory, INRIA Paris, 2 Rue Simone Iff, 75012 Paris, France
| | - Kater W Murch
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
| | - Alexia Auffèves
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Andrew N Jordan
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA
- Institute for Quantum Studies, Chapman University, Orange, California, 92866, USA
| |
Collapse
|
19
|
Iyoda E, Kaneko K, Sagawa T. Eigenstate fluctuation theorem in the short- and long-time regimes. Phys Rev E 2022; 105:044106. [PMID: 35590636 DOI: 10.1103/physreve.105.044106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
The canonical ensemble plays a crucial role in statistical mechanics in and out of equilibrium. For example, the standard derivation of the fluctuation theorem relies on the assumption that the initial state of the heat bath is the canonical ensemble. On the other hand, the recent progress in the foundation of statistical mechanics has revealed that a thermal equilibrium state is not necessarily described by the canonical ensemble but can be a quantum pure state or even a single energy eigenstate, as formulated by the eigenstate thermalization hypothesis (ETH). Then a question raised is how these two pictures, the canonical ensemble and a single energy eigenstate as a thermal equilibrium state, are compatible in the fluctuation theorem. In this paper, we theoretically and numerically show that the fluctuation theorem holds in both of the long- and short-time regimes, even when the initial state of the bath is a single energy eigenstate of a many-body system. Our proof of the fluctuation theorem in the long-time regime is based on the ETH, while it was previously shown in the short-time regime on the basis of the Lieb-Robinson bound and the ETH [Phys. Rev. Lett. 119, 100601 (2017)0031-900710.1103/PhysRevLett.119.100601]. The proofs for these time regimes are theoretically independent and complementary, implying the fluctuation theorem in the entire time domain. We also perform a systematic numerical simulation of hard-core bosons by exact diagonalization and verify the fluctuation theorem in both of the time regimes by focusing on the finite-size scaling. Our results contribute to the understanding of the mechanism that the fluctuation theorem emerges from unitary dynamics of quantum many-body systems and can be tested by experiments with, e.g., ultracold atoms.
Collapse
Affiliation(s)
- Eiki Iyoda
- Department of Physics, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
| | - Kazuya Kaneko
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takahiro Sagawa
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Quantum-Phase Electronics Center (QPEC), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
20
|
Zhou ZY, Xiang ZL, You JQ, Nori F. Work statistics in non-Hermitian evolutions with Hermitian endpoints. Phys Rev E 2021; 104:034107. [PMID: 34654123 DOI: 10.1103/physreve.104.034107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/18/2021] [Indexed: 11/07/2022]
Abstract
Non-Hermitian systems with specific forms of Hamiltonians can exhibit novel phenomena. However, it is difficult to study their quantum thermodynamical properties. In particular, the calculation of work statistics can be challenging in non-Hermitian systems due to the change of state norm. To tackle this problem, we modify the two-point measurement method in Hermitian systems. The modified method can be applied to non-Hermitian systems which are Hermitian before and after the evolution. In Hermitian systems, our method is equivalent to the two-point measurement method. When the system is non-Hermitian, our results represent a projection of the statistics in a larger Hermitian system. As an example, we calculate the work statistics in a non-Hermitian Su-Schrieffer-Heeger model. Our results reveal several differences between the work statistics in non-Hermitian systems and the one in Hermitian systems.
Collapse
Affiliation(s)
- Zheng-Yang Zhou
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan.,Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center, Beijing 100094, China
| | - Ze-Liang Xiang
- School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - J Q You
- Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center, Beijing 100094, China.,Interdisciplinary Center of Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan.,RIKEN Center for Quantum Computing (RQC), Wako-shi, Saitama 351-0198, Japan.,Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
21
|
Abstract
Information-driven engines that rectify thermal fluctuations are a modern realization of the Maxwell-demon thought experiment. We introduce a simple design based on a heavy colloidal particle, held by an optical trap and immersed in water. Using a carefully designed feedback loop, our experimental realization of an "information ratchet" takes advantage of favorable "up" fluctuations to lift a weight against gravity, storing potential energy without doing external work. By optimizing the ratchet design for performance via a simple theory, we find that the rate of work storage and velocity of directed motion are limited only by the physical parameters of the engine: the size of the particle, stiffness of the ratchet spring, friction produced by the motion, and temperature of the surrounding medium. Notably, because performance saturates with increasing frequency of observations, the measurement process is not a limiting factor. The extracted power and velocity are at least an order of magnitude higher than in previously reported engines.
Collapse
|
22
|
Bresque L, Camati PA, Rogers S, Murch K, Jordan AN, Auffèves A. Two-Qubit Engine Fueled by Entanglement and Local Measurements. PHYSICAL REVIEW LETTERS 2021; 126:120605. [PMID: 33834814 DOI: 10.1103/physrevlett.126.120605] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/19/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
We introduce a two-qubit engine that is powered by entanglement and local measurements. Energy is extracted from the detuned qubits coherently exchanging a single excitation. Generalizing to an N-qubit chain, we show that the low energy of the first qubit can be up-converted to an arbitrarily high energy at the last qubit by successive neighbor swap operations and local measurements. We finally model the local measurement as the entanglement of a qubit with a meter, and we identify the fuel as the energetic cost to erase the correlations between the qubits. Our findings extend measurement-powered engines to composite working substances and provide a microscopic interpretation of the fueling mechanism.
Collapse
Affiliation(s)
- Léa Bresque
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Patrice A Camati
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Spencer Rogers
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Kater Murch
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
| | - Andrew N Jordan
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
- Institute for Quantum Studies, Chapman University, Orange, California 92866, USA
| | - Alexia Auffèves
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| |
Collapse
|
23
|
Joseph T, V K. Efficiency estimation for an equilibrium version of the Maxwell refrigerator. Phys Rev E 2021; 103:022131. [PMID: 33735980 DOI: 10.1103/physreve.103.022131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/27/2021] [Indexed: 11/07/2022]
Abstract
Maxwell refrigerator as a device that can transfer heat from a cold to hot temperature reservoir making use of information reservoir was introduced by Mandal et al. [Phys. Rev. Lett. 111, 030602 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.030602]. The model has a two-state demon and a bit stream interacting with two thermal reservoirs simultaneously. We work out a simpler version of the refrigerator where the demon and bit system interact with the reservoirs separately and for a duration long enough to establish equilibrium. The efficiency, η, of the device when working as an engine as well as the coefficient of performance (COP) when working as a refrigerator are calculated. It is shown that the maximum efficiency matches that of a Carnot engine/refrigerator working between the same temperatures, as expected. The COP, when cooling per cycle is a maximum, decreases as 1/T_{h} when T_{h}>T_{c}≫ΔE (k_{B}=1), where T_{h} and T_{c} are the temperatures of the hot and cold reservoirs, respectively, and ΔE is the level spacing of the demon. η, when work per cycle is a maximum, is found to be T_{h}/0.779+T_{h} when T_{c}≪ΔE and T_{h}≫ΔE.
Collapse
Affiliation(s)
- Toby Joseph
- Department of Physics, BITS Pilani K K Birla Goa Campus, Zuarinagar 403726, Goa, India
| | - Kiran V
- Department of Physics, BITS Pilani K K Birla Goa Campus, Zuarinagar 403726, Goa, India
| |
Collapse
|
24
|
Ciliberto S. Autonomous out-of-equilibrium Maxwell's demon for controlling the energy fluxes produced by thermal fluctuations. Phys Rev E 2020; 102:050103. [PMID: 33327212 DOI: 10.1103/physreve.102.050103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/10/2020] [Indexed: 11/07/2022]
Abstract
An autonomous out-of-equilibrium Maxwell's demon is used to reverse the natural direction of the heat flux between two electric circuits kept at different temperatures and coupled by the electric thermal noise. The demon does not process any information, but it achieves its goal by using a frequency-dependent coupling with the two reservoirs of the system. There is no mean energy flux between the demon and the system, but the total entropy production (system+demon) is positive. The demon can be power supplied by thermocouples. The system and the demon are ruled by equations similar to those of two coupled Brownian particles and of the Brownian gyrator. Thus our results pave the way to the application of autonomous out-of-equilibrium Maxwell's demons to coupled nanosystems at different temperatures.
Collapse
Affiliation(s)
- Sergio Ciliberto
- Université Lyon, Ens de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, UMR 5672, F-69342 Lyon, France
| |
Collapse
|
25
|
Rossi M, Mancino L, Landi GT, Paternostro M, Schliesser A, Belenchia A. Experimental Assessment of Entropy Production in a Continuously Measured Mechanical Resonator. PHYSICAL REVIEW LETTERS 2020; 125:080601. [PMID: 32909766 DOI: 10.1103/physrevlett.125.080601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
The information on a quantum process acquired through measurements plays a crucial role in the determination of its nonequilibrium thermodynamic properties. We report on the experimental inference of the stochastic entropy production rate for a continuously monitored mesoscopic quantum system. We consider an optomechanical system subjected to continuous displacement Gaussian measurements and characterize the entropy production rate of the individual trajectories followed by the system in its stochastic dynamics, employing a phase-space description in terms of the Wigner entropy. Owing to the specific regime of our experiment, we are able to single out the informational contribution to the entropy production arising from conditioning the state on the measurement outcomes. Our experiment embodies a significant step towards the demonstration of full-scale control of fundamental thermodynamic processes at the mesoscopic quantum scale.
Collapse
Affiliation(s)
- Massimiliano Rossi
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
- Center for Hybrid Quantum Networks (Hy-Q), Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Luca Mancino
- Centre for Theoretical Atomic, Molecular, and Optical Physics, School of Mathematics and Physics, Queens University, Belfast BT7 1NN, United Kingdom
| | - Gabriel T Landi
- Instituto de Física, Universidade de São Paulo, CEP 05314-970 São Paulo, Brazil
| | - Mauro Paternostro
- Centre for Theoretical Atomic, Molecular, and Optical Physics, School of Mathematics and Physics, Queens University, Belfast BT7 1NN, United Kingdom
| | - Albert Schliesser
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
- Center for Hybrid Quantum Networks (Hy-Q), Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Alessio Belenchia
- Centre for Theoretical Atomic, Molecular, and Optical Physics, School of Mathematics and Physics, Queens University, Belfast BT7 1NN, United Kingdom
| |
Collapse
|
26
|
Monsel J, Fellous-Asiani M, Huard B, Auffèves A. The Energetic Cost of Work Extraction. PHYSICAL REVIEW LETTERS 2020; 124:130601. [PMID: 32302198 DOI: 10.1103/physrevlett.124.130601] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/18/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
We analyze work extraction from a qubit into a waveguide (WG) acting as a battery, where work is the coherent component of the energy radiated by the qubit. The process is stimulated by a wave packet whose mean photon number (the battery's charge) can be adjusted. We show that the extracted work is bounded by the qubit's ergotropy, and that the bound is saturated for a large enough battery's charge. If this charge is small, work can still be extracted. Its amount is controlled by the quantum coherence initially injected in the qubit's state, that appears as a key parameter when energetic resources are limited. This new and autonomous scenario for the study of quantum batteries can be implemented with state-of-the-art artificial qubits coupled to WGs.
Collapse
Affiliation(s)
- Juliette Monsel
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Marco Fellous-Asiani
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Benjamin Huard
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Alexia Auffèves
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| |
Collapse
|
27
|
Shenker O, Hemmo M. Maxwell's Demon in Quantum Mechanics. ENTROPY 2020; 22:e22030269. [PMID: 33286043 PMCID: PMC7516722 DOI: 10.3390/e22030269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 11/29/2022]
Abstract
Maxwell’s Demon is a thought experiment devised by J. C. Maxwell in 1867 in order to show that the Second Law of thermodynamics is not universal, since it has a counter-example. Since the Second Law is taken by many to provide an arrow of time, the threat to its universality threatens the account of temporal directionality as well. Various attempts to “exorcise” the Demon, by proving that it is impossible for one reason or another, have been made throughout the years, but none of them were successful. We have shown (in a number of publications) by a general state-space argument that Maxwell’s Demon is compatible with classical mechanics, and that the most recent solutions, based on Landauer’s thesis, are not general. In this paper we demonstrate that Maxwell’s Demon is also compatible with quantum mechanics. We do so by analyzing a particular (but highly idealized) experimental setup and proving that it violates the Second Law. Our discussion is in the framework of standard quantum mechanics; we give two separate arguments in the framework of quantum mechanics with and without the projection postulate. We address in our analysis the connection between measurement and erasure interactions and we show how these notions are applicable in the microscopic quantum mechanical structure. We discuss what might be the quantum mechanical counterpart of the classical notion of “macrostates”, thus explaining why our Quantum Demon setup works not only at the micro level but also at the macro level, properly understood. One implication of our analysis is that the Second Law cannot provide a universal lawlike basis for an account of the arrow of time; this account has to be sought elsewhere.
Collapse
Affiliation(s)
- Orly Shenker
- Department of Philosophy, The Hebrew University of Jerusalem Mount Scopus, Jerusalem 91905, Israel
- Correspondence:
| | - Meir Hemmo
- Department of Philosophy, University of Haifa, Haifa 31905, Israel;
| |
Collapse
|
28
|
Paneru G, Dutta S, Sagawa T, Tlusty T, Pak HK. Efficiency fluctuations and noise induced refrigerator-to-heater transition in information engines. Nat Commun 2020; 11:1012. [PMID: 32081861 PMCID: PMC7035421 DOI: 10.1038/s41467-020-14823-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/03/2020] [Indexed: 11/08/2022] Open
Abstract
Understanding noisy information engines is a fundamental problem of non-equilibrium physics, particularly in biomolecular systems agitated by thermal and active fluctuations in the cell. By the generalized second law of thermodynamics, the efficiency of these engines is bounded by the mutual information passing through their noisy feedback loop. Yet, direct measurement of the interplay between mutual information and energy has so far been elusive. To allow such examination, we explore here the entire phase-space of a noisy colloidal information engine, and study efficiency fluctuations due to the stochasticity of the mutual information and extracted work. We find that the average efficiency is maximal for non-zero noise level, at which the distribution of efficiency switches from bimodal to unimodal, and the stochastic efficiency often exceeds unity. We identify a line of anomalous, noise-driven equilibrium states that defines a refrigerator-to-heater transition, and test the generalized integral fluctuation theorem for continuous engines.
Collapse
Affiliation(s)
- Govind Paneru
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Sandipan Dutta
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Takahiro Sagawa
- Department of Applied Physics, University of Tokyo, Tokyo, 113-8656, Japan
| | - Tsvi Tlusty
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
| | - Hyuk Kyu Pak
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
29
|
Yuge T, Yamaguchi M. Fluctuation theorem in cavity quantum electrodynamics systems. Phys Rev E 2020; 101:022113. [PMID: 32168614 DOI: 10.1103/physreve.101.022113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
We derive an integral fluctuation theorem (FT) in a general setup of cavity quantum electrodynamics systems. In the derivation, a key difficulty lies in a diverging behavior of entropy change arising from the zero-temperature limit of an external bath, which is required to describe the cavity loss. We solve this difficulty from the viewpoint of absolute irreversibility and find that two types of absolute irreversibility contribute to the integral FT. Furthermore, we show that, in a stationary and small cavity-loss condition, these contributions have simple relationships to the average number of photons emitted out of the cavity, and the integral FT yields an approximate form independent of the setup details. We illustrate the general results with a numerical simulation in a model of quantum heat engine.
Collapse
Affiliation(s)
- Tatsuro Yuge
- Department of Physics, Shizuoka University, Suruga, Shizuoka 422-8529, Japan
| | - Makoto Yamaguchi
- Department of Physics, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| |
Collapse
|
30
|
Ivanov DA, Ivanova TY, Caballero-Benitez SF, Mekhov IB. Feedback-Induced Quantum Phase Transitions Using Weak Measurements. PHYSICAL REVIEW LETTERS 2020; 124:010603. [PMID: 31976715 DOI: 10.1103/physrevlett.124.010603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/15/2019] [Indexed: 06/10/2023]
Abstract
We show that applying feedback and weak measurements to a quantum system induces phase transitions beyond the dissipative ones. Feedback enables controlling essentially quantum properties of the transition, i.e., its critical exponent, as it is driven by the fundamental quantum fluctuations due to measurement. Feedback provides the non-Markovianity and nonlinearity to the hybrid quantum-classical system, and enables simulating effects similar to spin-bath problems and Floquet time crystals with tunable long-range (long-memory) interactions.
Collapse
Affiliation(s)
- D A Ivanov
- Department of Physics, St. Petersburg State University, 198504 St. Petersburg, Russia
| | - T Yu Ivanova
- Department of Physics, St. Petersburg State University, 198504 St. Petersburg, Russia
| | - S F Caballero-Benitez
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - I B Mekhov
- Department of Physics, St. Petersburg State University, 198504 St. Petersburg, Russia
- Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
31
|
Sánchez R, Splettstoesser J, Whitney RS. Nonequilibrium System as a Demon. PHYSICAL REVIEW LETTERS 2019; 123:216801. [PMID: 31809128 DOI: 10.1103/physrevlett.123.216801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Indexed: 06/10/2023]
Abstract
Maxwell demons are creatures that are imagined to be able to reduce the entropy of a system without performing any work on it. Conventionally, such a Maxwell demon's intricate action consists of measuring individual particles and subsequently performing feedback. We show that much simpler setups can still act as demons: we demonstrate that it is sufficient to exploit a nonequilibrium distribution to seemingly break the second law of thermodynamics. We propose both an electronic and an optical implementation of this phenomenon, realizable with current technology.
Collapse
Affiliation(s)
- Rafael Sánchez
- Departamento de Física Teórica de la Materia Condensada, Condensed Matter Physics Center (IFIMAC), and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Janine Splettstoesser
- Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | - Robert S Whitney
- Laboratoire de Physique et Modélisation des Milieux Condensés, Université Grenoble Alpes and CNRS, BP 166, 38042 Grenoble, France
| |
Collapse
|
32
|
Manzano G, Fazio R, Roldán É. Quantum Martingale Theory and Entropy Production. PHYSICAL REVIEW LETTERS 2019; 122:220602. [PMID: 31283254 DOI: 10.1103/physrevlett.122.220602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 06/09/2023]
Abstract
We employ martingale theory to describe fluctuations of entropy production for open quantum systems in nonequilbrium steady states. Using the formalism of quantum jump trajectories, we identify a decomposition of entropy production into an exponential martingale and a purely quantum term, both obeying integral fluctuation theorems. An important consequence of this approach is the derivation of a set of genuine universal results for stopping-time and infimum statistics of stochastic entropy production. Finally, we complement the general formalism with numerical simulations of a qubit system.
Collapse
Affiliation(s)
- Gonzalo Manzano
- International Centre for Theoretical Physics ICTP, Strada Costiera 11, I-34151 Trieste, Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | - Rosario Fazio
- International Centre for Theoretical Physics ICTP, Strada Costiera 11, I-34151 Trieste, Italy
- NEST, Scuola Normale Superiore and Instituto Nanoscienze-CNR, I-56126 Pisa, Italy
| | - Édgar Roldán
- International Centre for Theoretical Physics ICTP, Strada Costiera 11, I-34151 Trieste, Italy
| |
Collapse
|
33
|
Matsubara H, Kikugawa G, Ohara T. All- and one-particle distribution functions at nonequilibrium steady state under thermal gradient. Phys Rev E 2019; 99:052110. [PMID: 31212551 DOI: 10.1103/physreve.99.052110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 11/07/2022]
Abstract
We provide a concrete expression for the phase-space distribution function at nonequilibrium steady state under a constant thermal gradient, which is a typical system of the nonequilibrium molecular dynamics simulation of heat conduction. First, the phase-space distribution function of all particles in a local volume is formulated. Our formulation explicitly takes into account the entropy production due to the change in equilibrium thermodynamic variables in addition to the traditional entropy production described by the spatial gradients and fluxes of equilibrium thermodynamic variables. This treatment is necessary to explain the nonequilibrium response of a quantity that has no equilibrium correlation with mass and heat fluxes and is essential to correctly deduce one-particle distribution functions from the all-particle one. From the all-particle distribution function, we derive the Green-Kubo relations that express the one-particle distribution functions of density and velocity in terms of equilibrium correlation functions and verify these expressions using the molecular dynamics simulation of a Lennard-Jones liquid. These nonequilibrium one-particle distribution functions are sufficiently tractable for practical use, such as for the analytical evaluation of the nonequilibrium average of physical quantities.
Collapse
Affiliation(s)
- Hiroki Matsubara
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Gota Kikugawa
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Taku Ohara
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
34
|
Boël G, Danot O, de Lorenzo V, Danchin A. Omnipresent Maxwell's demons orchestrate information management in living cells. Microb Biotechnol 2019; 12:210-242. [PMID: 30806035 PMCID: PMC6389857 DOI: 10.1111/1751-7915.13378] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The development of synthetic biology calls for accurate understanding of the critical functions that allow construction and operation of a living cell. Besides coding for ubiquitous structures, minimal genomes encode a wealth of functions that dissipate energy in an unanticipated way. Analysis of these functions shows that they are meant to manage information under conditions when discrimination of substrates in a noisy background is preferred over a simple recognition process. We show here that many of these functions, including transporters and the ribosome construction machinery, behave as would behave a material implementation of the information-managing agent theorized by Maxwell almost 150 years ago and commonly known as Maxwell's demon (MxD). A core gene set encoding these functions belongs to the minimal genome required to allow the construction of an autonomous cell. These MxDs allow the cell to perform computations in an energy-efficient way that is vastly better than our contemporary computers.
Collapse
Affiliation(s)
- Grégory Boël
- UMR 8261 CNRS‐University Paris DiderotInstitut de Biologie Physico‐Chimique13 rue Pierre et Marie Curie75005ParisFrance
| | - Olivier Danot
- Institut Pasteur25‐28 rue du Docteur Roux75724Paris Cedex 15France
| | - Victor de Lorenzo
- Molecular Environmental Microbiology LaboratorySystems Biology ProgrammeCentro Nacional de BiotecnologiaC/Darwin n° 3, Campus de Cantoblanco28049MadridEspaña
| | - Antoine Danchin
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐Salpêtrière47 Boulevard de l'Hôpital75013ParisFrance
- The School of Biomedical SciencesLi Kashing Faculty of MedicineHong Kong University21, Sassoon RoadPokfulamSAR Hong Kong
| |
Collapse
|
35
|
Potts PP, Samuelsson P. Detailed Fluctuation Relation for Arbitrary Measurement and Feedback Schemes. PHYSICAL REVIEW LETTERS 2018; 121:210603. [PMID: 30517817 DOI: 10.1103/physrevlett.121.210603] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/25/2018] [Indexed: 06/09/2023]
Abstract
Fluctuation relations are powerful equalities that hold far from equilibrium. However, the standard approach to include measurement and feedback schemes may become inapplicable in certain situations, including continuous measurements, precise measurements of continuous variables, and feedback induced irreversibility. Here we overcome these shortcomings by providing a recipe for producing detailed fluctuation relations. Based on this recipe, we derive a fluctuation relation which holds for arbitrary measurement and feedback control. The key insight is that fluctuations inferable from the measurement outcomes may be suppressed by postselection. Our detailed fluctuation relation results in a stringent and experimentally accessible inequality on the extractable work, which is saturated when the full entropy production is inferable from the data.
Collapse
Affiliation(s)
- Patrick P Potts
- Physics Department and NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | - Peter Samuelsson
- Physics Department and NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| |
Collapse
|
36
|
Manzano G, Plastina F, Zambrini R. Optimal Work Extraction and Thermodynamics of Quantum Measurements and Correlations. PHYSICAL REVIEW LETTERS 2018; 121:120602. [PMID: 30296131 DOI: 10.1103/physrevlett.121.120602] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Indexed: 06/08/2023]
Abstract
We analyze the role of indirect quantum measurements in work extraction from quantum systems in nonequilibrium states. In particular, we focus on the work that can be obtained by exploiting the correlations shared between the system of interest and an additional ancilla, where measurement backaction introduces a nontrivial thermodynamic tradeoff. We present optimal state-dependent protocols for extracting work from both classical and quantum correlations, the latter being measured by discord. Our quantitative analysis establishes that, while the work content of classical correlations can be fully extracted by performing local operations on the system of interest, accessing work related to quantum discord requires a specific driving protocol that includes interaction between system and ancilla.
Collapse
Affiliation(s)
- Gonzalo Manzano
- Institute for Cross-Disciplinary Physics and Complex Systems IFISC (CSIC-UIB), Campus Universitat Illes Balears, E-07122 Palma de Mallorca, Spain
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
- International Center for Theoretical Physics ICTP, Strada Costiera 11, I-34151, Trieste, Italy
| | - Francesco Plastina
- Dip. Fisica, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy
- INFN-Gruppo collegato di Cosenza, Cosenza, Italy
| | - Roberta Zambrini
- Institute for Cross-Disciplinary Physics and Complex Systems IFISC (CSIC-UIB), Campus Universitat Illes Balears, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
37
|
Tajima H, Shiraishi N, Saito K. Uncertainty Relations in Implementation of Unitary Operations. PHYSICAL REVIEW LETTERS 2018; 121:110403. [PMID: 30265087 DOI: 10.1103/physrevlett.121.110403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Indexed: 06/08/2023]
Abstract
The underlying mechanism in the implementation of unitary operation on a system with an external apparatus is studied. We implement the unitary time evolution in the system as a physical phenomenon that results from the interaction between the system and the apparatus. We investigate the fundamental limitation of an accurate implementation for the desired unitary time evolution. This limitation is manifested in the form of trade-off relations between the accuracy of the implementation and quantum fluctuation of energy in the external apparatus. Our relations clearly show that an accurate unitary operation requires a large energy fluctuation inside the apparatus originated from the quantum fluctuation.
Collapse
Affiliation(s)
- Hiroyasu Tajima
- Department of Communication Engineering and Informatics, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Naoto Shiraishi
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Keiji Saito
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| |
Collapse
|
38
|
Funo K, Quan HT. Path Integral Approach to Quantum Thermodynamics. PHYSICAL REVIEW LETTERS 2018; 121:040602. [PMID: 30095938 DOI: 10.1103/physrevlett.121.040602] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Work belongs to the most basic notions in thermodynamics but it is not well understood in quantum systems, especially in open quantum systems. By introducing a novel concept of the work functional along an individual Feynman path, we invent a new approach to study thermodynamics in the quantum regime. Using the work functional, we derive a path integral expression for the work statistics. By performing the ℏ expansion, we analytically prove the quantum-classical correspondence of the work statistics. In addition, we obtain the quantum correction to the classical fluctuating work. We can also apply this approach to an open quantum system in the strong coupling regime described by the quantum Brownian motion model. This approach provides an effective way to calculate the work in open quantum systems by utilizing various path integral techniques. As an example, we calculate the work statistics for a dragged harmonic oscillator in both isolated and open quantum systems.
Collapse
Affiliation(s)
- Ken Funo
- School of Physics, Peking University, Beijing 100871, China
| | - H T Quan
- School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| |
Collapse
|
39
|
Naghiloo M, Alonso JJ, Romito A, Lutz E, Murch KW. Information Gain and Loss for a Quantum Maxwell's Demon. PHYSICAL REVIEW LETTERS 2018; 121:030604. [PMID: 30085766 DOI: 10.1103/physrevlett.121.030604] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/21/2018] [Indexed: 06/08/2023]
Abstract
We use continuous weak measurements of a driven superconducting qubit to experimentally study the information dynamics of a quantum Maxwell's demon. We show how information gained by a demon who can track single quantum trajectories of the qubit can be converted into work using quantum coherent feedback. We verify the validity of a quantum fluctuation theorem with feedback by utilizing information obtained along single trajectories. We demonstrate, in particular, that quantum backaction can lead to a loss of information in imperfect measurements. We furthermore probe the transition between information gain and loss by varying the initial purity of the qubit.
Collapse
Affiliation(s)
- M Naghiloo
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
| | - J J Alonso
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - A Romito
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - E Lutz
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
- Institute for Theoretical Physics I, University of Stuttgart, D-70550 Stuttgart, Germany
| | - K W Murch
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
- Institute for Materials Science and Engineering, St. Louis, Missouri 63130, USA
| |
Collapse
|