1
|
Géron A, Werner J, Wattiez R, Matallana-Surget S. Towards the discovery of novel molecular clocks in Prokaryotes. Crit Rev Microbiol 2024; 50:491-503. [PMID: 37330701 DOI: 10.1080/1040841x.2023.2220789] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
Diel cycle is of enormous biological importance as it imposes daily oscillation in environmental conditions, which temporally structures most ecosystems. Organisms developed biological time-keeping mechanisms - circadian clocks - that provide a significant fitness advantage over competitors by optimising the synchronisation of their biological activities. While circadian clocks are ubiquitous in Eukaryotes, they are so far only characterised in Cyanobacteria within Prokaryotes. However, growing evidence suggests that circadian clocks are widespread in the bacterial and archaeal domains. As Prokaryotes are at the heart of crucial environmental processes and are essential to human health, unravelling their time-keeping systems provides numerous applications in medical research, environmental sciences, and biotechnology. In this review, we elaborate on how novel circadian clocks in Prokaryotes offer research and development perspectives. We compare and contrast the different circadian systems in Cyanobacteria and discuss about their evolution and taxonomic distribution. We necessarily provide an updated phylogenetic analysis of bacterial and archaeal species that harbour homologs of the main cyanobacterial clock components. Finally, we elaborate on new potential clock-controlled microorganisms that represent opportunities of ecological and industrial relevance in prokaryotic groups such as anoxygenic photosynthetic bacteria, methanogenic archaea, methanotrophs or sulphate-reducing bacteria.
Collapse
Affiliation(s)
- Augustin Géron
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
- Proteomic and Microbiology Department, University of Mons, Mons, Belgium
| | - Johannes Werner
- High Performance and Cloud Computing Group, Zentrum für Datenverarbeitung (ZDV), University of Tübingen, Tübingen, Germany
| | - Ruddy Wattiez
- Proteomic and Microbiology Department, University of Mons, Mons, Belgium
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| |
Collapse
|
2
|
Fang M, LiWang A, Golden SS, Partch CL. The inner workings of an ancient biological clock. Trends Biochem Sci 2024; 49:236-246. [PMID: 38185606 PMCID: PMC10939747 DOI: 10.1016/j.tibs.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024]
Abstract
Circadian clocks evolved in diverse organisms as an adaptation to the daily swings in ambient light and temperature that derive from Earth's rotation. These timing systems, based on intracellular molecular oscillations, synchronize organisms' behavior and physiology with the 24-h environmental rhythm. The cyanobacterial clock serves as a special model for understanding circadian rhythms because it can be fully reconstituted in vitro. This review summarizes recent advances that leverage new biochemical, biophysical, and mathematical approaches to shed light on the molecular mechanisms of cyanobacterial Kai proteins that support the clock, and their homologues in other bacteria. Many questions remain in circadian biology, and the tools developed for the Kai system will bring us closer to the answers.
Collapse
Affiliation(s)
- Mingxu Fang
- Department of Molecular Biology, University of California - San Diego, La Jolla, CA 92093, USA; Center for Circadian Biology, University of California - San Diego, La Jolla, CA 92093, USA
| | - Andy LiWang
- Center for Circadian Biology, University of California - San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California - Merced, Merced, CA 95343, USA; Center for Cellular and Biomolecular Machines, University of California - Merced, Merced, CA 95343, USA
| | - Susan S Golden
- Department of Molecular Biology, University of California - San Diego, La Jolla, CA 92093, USA; Center for Circadian Biology, University of California - San Diego, La Jolla, CA 92093, USA
| | - Carrie L Partch
- Center for Circadian Biology, University of California - San Diego, La Jolla, CA 92093, USA; Department of Chemistry & Biochemistry, University of California - Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
3
|
Wollmuth EM, Angert ER. Microbial circadian clocks: host-microbe interplay in diel cycles. BMC Microbiol 2023; 23:124. [PMID: 37161348 PMCID: PMC10173096 DOI: 10.1186/s12866-023-02839-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/28/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Circadian rhythms, observed across all domains of life, enable organisms to anticipate and prepare for diel changes in environmental conditions. In bacteria, a circadian clock mechanism has only been characterized in cyanobacteria to date. These clocks regulate cyclical patterns of gene expression and metabolism which contribute to the success of cyanobacteria in their natural environments. The potential impact of self-generated circadian rhythms in other bacterial and microbial populations has motivated extensive research to identify novel circadian clocks. MAIN TEXT Daily oscillations in microbial community composition and function have been observed in ocean ecosystems and in symbioses. These oscillations are influenced by abiotic factors such as light and the availability of nutrients. In the ocean ecosystems and in some marine symbioses, oscillations are largely controlled by light-dark cycles. In gut systems, the influx of nutrients after host feeding drastically alters the composition and function of the gut microbiota. Conversely, the gut microbiota can influence the host circadian rhythm by a variety of mechanisms including through interacting with the host immune system. The intricate and complex relationship between the microbiota and their host makes it challenging to disentangle host behaviors from bacterial circadian rhythms and clock mechanisms that might govern the daily oscillations observed in these microbial populations. CONCLUSIONS While the ability to anticipate the cyclical behaviors of their host would likely be enhanced by a self-sustained circadian rhythm, more evidence and further studies are needed to confirm whether host-associated heterotrophic bacteria possess such systems. In addition, the mechanisms by which heterotrophic bacteria might respond to diel cycles in environmental conditions has yet to be uncovered.
Collapse
Affiliation(s)
- Emily M Wollmuth
- Department of Microbiology, Cornell University, 123 Wing Drive, Ithaca, NY, 14853, USA
| | - Esther R Angert
- Department of Microbiology, Cornell University, 123 Wing Drive, Ithaca, NY, 14853, USA.
| |
Collapse
|
4
|
Seki M, Ito H. Evolution of self-sustained circadian rhythms is facilitated by seasonal change of daylight. Proc Biol Sci 2022; 289:20220577. [PMID: 36416042 PMCID: PMC9682437 DOI: 10.1098/rspb.2022.0577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Self-sustained oscillation is a fundamental property of circadian rhythms and has been repeatedly tested since the early days of circadian research, resulting in the discovery of almost all organisms possessing self-sustained circadian oscillations. However, the evolutionary advantage of self-sustainability has been only speculatively discussed. In this theoretical study, we sought the environmental constraints and selection pressure that drive the acquisition or degeneration of self-sustainability through the process of evolution. We considered the dynamics of a gene regulatory network having a light input pathway under 12 h light and 12 h dark cycles or multiple day length conditions and then optimized the network structure using an evolutionary algorithm. By designing the fitness function in the evolutionary algorithm, we investigated the environmental conditions that led to the evolution of the self-sustained oscillators. Then, we found that self-sustained oscillation is rarer than damped oscillation and hourglass-type behaviour. Moreover, networks with self-sustainability have a markedly high fitness score when we assume that a network has to generate a constantly periodic expression profile regardless of day length. This study is, to our knowledge, the first to show that seasonality facilitated the evolution of the self-sustained circadian clock, which was consistent with empirical records.
Collapse
Affiliation(s)
- Motohide Seki
- Faculty of Design, Kyushu Univesity, Fukuoka 815-8540, Japan
- Institute for Asian and Oceanian Studies, Kyushu University, Fukuoka 819-0395, Japan
| | - Hiroshi Ito
- Faculty of Design, Kyushu Univesity, Fukuoka 815-8540, Japan
- Institute for Asian and Oceanian Studies, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
5
|
Rijo-Ferreira F, Takahashi JS. Circadian rhythms in infectious diseases and symbiosis. Semin Cell Dev Biol 2022; 126:37-44. [PMID: 34625370 PMCID: PMC9183220 DOI: 10.1016/j.semcdb.2021.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Timing is everything. Many organisms across the tree of life have evolved timekeeping mechanisms that regulate numerous of their cellular functions to optimize timing by anticipating changes in the environment. The specific environmental changes that are sensed depends on the organism. For animals, plants, and free-living microbes, environmental cues include light/dark cycles, daily temperature fluctuations, among others. In contrast, for a microbe that is never free-living, its rhythmic environment is its host's rhythmic biology. Here, we describe recent research on the interactions between hosts and microbes, from the perspective both of symbiosis as well as infections. In addition to describing the biology of the microbes, we focus specifically on how circadian clocks modulate these host-microbe interactions.
Collapse
Affiliation(s)
- Filipa Rijo-Ferreira
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
6
|
Jabbur ML, Johnson CH. Spectres of Clock Evolution: Past, Present, and Yet to Come. Front Physiol 2022; 12:815847. [PMID: 35222066 PMCID: PMC8874327 DOI: 10.3389/fphys.2021.815847] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 01/20/2023] Open
Abstract
Circadian clocks are phylogenetically widespread biological oscillators that allow organisms to entrain to environmental cycles and use their steady-state phase relationship to anticipate predictable daily phenomena – such as the light-dark transitions of a day – and prepare accordingly. Present from cyanobacteria to mammals, circadian clocks are evolutionarily ancient and are thought to increase the fitness of the organisms that possess them by allowing for better resource usage and/or proper internal temporal order. Here, we review literature with respect to the ecology and evolution of circadian clocks, with a special focus on cyanobacteria as model organisms. We first discuss what can be inferred about future clock evolution in response to climate change, based on data from latitudinal clines and domestication. We then address our current understanding of the role that circadian clocks might be contributing to the adaptive fitness of cyanobacteria at the present time. Lastly, we discuss what is currently known about the oldest known circadian clock, and the early Earth conditions that could have led to its evolution.
Collapse
|
7
|
Chow GK, Chavan AG, Heisler J, Chang YG, Zhang N, LiWang A, Britt RD. A Night-Time Edge Site Intermediate in the Cyanobacterial Circadian Clock Identified by EPR Spectroscopy. J Am Chem Soc 2022; 144:184-194. [PMID: 34979080 DOI: 10.1021/jacs.1c08103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As the only circadian oscillator that can be reconstituted in vitro with its constituent proteins KaiA, KaiB, and KaiC using ATP as an energy source, the cyanobacterial circadian oscillator serves as a model system for detailed mechanistic studies of day-night transitions of circadian clocks in general. The day-to-night transition occurs when KaiB forms a night-time complex with KaiC to sequester KaiA, the latter of which interacts with KaiC during the day to promote KaiC autophosphorylation. However, how KaiB forms the complex with KaiC remains poorly understood, despite the available structures of KaiB bound to hexameric KaiC. It has been postulated that KaiB-KaiC binding is regulated by inter-KaiB cooperativity. Here, using spin labeling continuous-wave electron paramagnetic resonance spectroscopy, we identified and quantified two subpopulations of KaiC-bound KaiB, corresponding to the "bulk" and "edge" KaiBC sites in stoichiometric and substoichiometric KaiBiC6 complexes (i = 1-5). We provide kinetic evidence to support the intermediacy of the "edge" KaiBC sites as bridges and nucleation sites between free KaiB and the "bulk" KaiBC sites. Furthermore, we show that the relative abundance of "edge" and "bulk" sites is dependent on both KaiC phosphostate and KaiA, supporting the notion of phosphorylation-state controlled inter-KaiB cooperativity. Finally, we demonstrate that the interconversion between the two subpopulations of KaiC-bound KaiB is intimately linked to the KaiC phosphorylation cycle. These findings enrich our mechanistic understanding of the cyanobacterial clock and demonstrate the utility of EPR in elucidating circadian clock mechanisms.
Collapse
Affiliation(s)
- Gary K Chow
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Archana G Chavan
- School of Natural Sciences, University of California, Merced, California 95343, United States
| | - Joel Heisler
- Chemistry and Chemical Biology, University of California, Merced, California 95343, United States
| | - Yong-Gang Chang
- School of Natural Sciences, University of California, Merced, California 95343, United States
| | - Ning Zhang
- School of Natural Sciences, University of California, Merced, California 95343, United States
| | - Andy LiWang
- School of Natural Sciences, Chemistry and Biochemistry, Health Sciences Research Institute, and Center for Cellular and Biomolecular Machines, University of California, Merced, California 95343, United States
- Center for Circadian Biology, University of California, San Diego, La Jolla, California 92093, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
8
|
Chavan AG, Swan JA, Heisler J, Sancar C, Ernst DC, Fang M, Palacios JG, Spangler RK, Bagshaw CR, Tripathi S, Crosby P, Golden SS, Partch CL, LiWang A. Reconstitution of an intact clock reveals mechanisms of circadian timekeeping. Science 2021; 374:eabd4453. [PMID: 34618577 DOI: 10.1126/science.abd4453] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Archana G Chavan
- School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Jeffrey A Swan
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Joel Heisler
- Department of Chemistry and Biochemistry, University of California, Merced, CA 95343, USA
| | - Cigdem Sancar
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dustin C Ernst
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mingxu Fang
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joseph G Palacios
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Rebecca K Spangler
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Clive R Bagshaw
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Priya Crosby
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Susan S Golden
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.,Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andy LiWang
- School of Natural Sciences, University of California, Merced, CA 95343, USA.,Department of Chemistry and Biochemistry, University of California, Merced, CA 95343, USA.,Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA.,Center for Cellular and Biomolecular Machines, University of California, Merced, CA 95343, USA.,Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| |
Collapse
|
9
|
Abstract
Circadian clocks are important to much of life on Earth and are of inherent interest to humanity, implicated in fields ranging from agriculture and ecology to developmental biology and medicine. New techniques show that it is not simply the presence of clocks, but coordination between them that is critical for complex physiological processes across the kingdoms of life. Recent years have also seen impressive advances in synthetic biology to the point where parallels can be drawn between synthetic biological and circadian oscillators. This review will emphasize theoretical and experimental studies that have revealed a fascinating dichotomy of coupling and heterogeneity among circadian clocks. We will also consolidate the fields of chronobiology and synthetic biology, discussing key design principles of their respective oscillators.
Collapse
Affiliation(s)
- Chris N Micklem
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK.,The Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CH3 0HE, UK
| | - James C W Locke
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| |
Collapse
|
10
|
Arbel-Goren R, Buonfiglio V, Di Patti F, Camargo S, Zhitnitsky A, Valladares A, Flores E, Herrero A, Fanelli D, Stavans J. Robust, coherent, and synchronized circadian clock-controlled oscillations along Anabaena filaments. eLife 2021; 10:64348. [PMID: 33749592 PMCID: PMC8064755 DOI: 10.7554/elife.64348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/20/2021] [Indexed: 02/01/2023] Open
Abstract
Circadian clocks display remarkable reliability despite significant stochasticity in biomolecular reactions. We study the dynamics of a circadian clock-controlled gene at the individual cell level in Anabaena sp. PCC 7120, a multicellular filamentous cyanobacterium. We found significant synchronization and spatial coherence along filaments, clock coupling due to cell-cell communication, and gating of the cell cycle. Furthermore, we observed low-amplitude circadian oscillatory transcription of kai genes encoding the post-transcriptional core oscillatory circuit and high-amplitude oscillations of rpaA coding for the master regulator transducing the core clock output. Transcriptional oscillations of rpaA suggest an additional level of regulation. A stochastic one-dimensional toy model of coupled clock cores and their phosphorylation states shows that demographic noise can seed stochastic oscillations outside the region where deterministic limit cycles with circadian periods occur. The model reproduces the observed spatio-temporal coherence along filaments and provides a robust description of coupled circadian clocks in a multicellular organism.
Collapse
Affiliation(s)
- Rinat Arbel-Goren
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Valentina Buonfiglio
- Dipartimento di Fisica e Astronomia, Università di Firenze, INFN and CSDC, Sesto Fiorentino, Italy
| | - Francesca Di Patti
- Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Sesto Fiorentino, Italy
| | - Sergio Camargo
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Anna Zhitnitsky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Ana Valladares
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Sevilla, Spain
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Sevilla, Spain
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Sevilla, Spain
| | - Duccio Fanelli
- Dipartimento di Fisica e Astronomia, Università di Firenze, INFN and CSDC, Sesto Fiorentino, Italy
| | - Joel Stavans
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
11
|
Chow GK, Chavan AG, Heisler JC, Chang YG, LiWang A, Britt RD. Monitoring Protein-Protein Interactions in the Cyanobacterial Circadian Clock in Real Time via Electron Paramagnetic Resonance Spectroscopy. Biochemistry 2020; 59:2387-2400. [PMID: 32453554 PMCID: PMC7346098 DOI: 10.1021/acs.biochem.0c00279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
The cyanobacterial circadian clock
in Synechococcus elongatus consists of three proteins,
KaiA, KaiB, and KaiC. KaiA and KaiB
rhythmically interact with KaiC to generate stable oscillations of
KaiC phosphorylation with a period of 24 h. The observation of stable
circadian oscillations when the three clock proteins are reconstituted
and combined in vitro makes it an ideal system for understanding its
underlying molecular mechanisms and circadian clocks in general. These
oscillations were historically monitored in vitro by gel electrophoresis
of reaction mixtures based on the differing electrophoretic mobilities
between various phosphostates of KaiC. As the KaiC phospho-distribution
represents only one facet of the oscillations, orthogonal tools are
necessary to explore other interactions to generate a full description
of the system. However, previous biochemical assays are discontinuous
or qualitative. To circumvent these limitations, we developed a spin-labeled
KaiB mutant that can differentiate KaiC-bound KaiB from free KaiB
using continuous-wave electron paramagnetic resonance spectroscopy
that is minimally sensitive to KaiA. Similar to wild-type (WT-KaiB),
this labeled mutant, in combination with KaiA, sustains robust circadian
rhythms of KaiC phosphorylation. This labeled mutant is hence a functional
surrogate of WT-KaiB and thus participates in and reports on autonomous
macroscopic circadian rhythms generated by mixtures that include KaiA,
KaiC, and ATP. Quantitative kinetics could be extracted with improved
precision and time resolution. We describe design principles, data
analysis, and limitations of this quantitative binding assay and discuss
future research necessary to overcome these challenges.
Collapse
Affiliation(s)
- Gary K Chow
- Department of Chemistry, University of California, Davis, California 95616, United States
| | | | | | | | - Andy LiWang
- Center for Circadian Biology, University of California, San Diego, La Jolla, California 92093, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
12
|
Hong L, Lavrentovich DO, Chavan A, Leypunskiy E, Li E, Matthews C, LiWang A, Rust MJ, Dinner AR. Bayesian modeling reveals metabolite-dependent ultrasensitivity in the cyanobacterial circadian clock. Mol Syst Biol 2020; 16:e9355. [PMID: 32496641 PMCID: PMC7271899 DOI: 10.15252/msb.20199355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Mathematical models can enable a predictive understanding of mechanism in cell biology by quantitatively describing complex networks of interactions, but such models are often poorly constrained by available data. Owing to its relative biochemical simplicity, the core circadian oscillator in Synechococcus elongatus has become a prototypical system for studying how collective dynamics emerge from molecular interactions. The oscillator consists of only three proteins, KaiA, KaiB, and KaiC, and near-24-h cycles of KaiC phosphorylation can be reconstituted in vitro. Here, we formulate a molecularly detailed but mechanistically naive model of the KaiA-KaiC subsystem and fit it directly to experimental data within a Bayesian parameter estimation framework. Analysis of the fits consistently reveals an ultrasensitive response for KaiC phosphorylation as a function of KaiA concentration, which we confirm experimentally. This ultrasensitivity primarily results from the differential affinity of KaiA for competing nucleotide-bound states of KaiC. We argue that the ultrasensitive stimulus-response relation likely plays an important role in metabolic compensation by suppressing premature phosphorylation at nighttime.
Collapse
Affiliation(s)
- Lu Hong
- Graduate Program in Biophysical SciencesUniversity of ChicagoChicagoILUSA
| | - Danylo O Lavrentovich
- Department of ChemistryUniversity of ChicagoChicagoILUSA
- Present address:
Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
| | - Archana Chavan
- School of Natural SciencesUniversity of CaliforniaMercedCAUSA
| | - Eugene Leypunskiy
- Graduate Program in Biophysical SciencesUniversity of ChicagoChicagoILUSA
| | - Eileen Li
- Department of StatisticsUniversity of ChicagoChicagoILUSA
| | - Charles Matthews
- Department of StatisticsUniversity of ChicagoChicagoILUSA
- Present address:
School of MathematicsUniversity of EdinburghEdinburghUK
| | - Andy LiWang
- School of Natural SciencesUniversity of CaliforniaMercedCAUSA
- Quantitative and Systems BiologyUniversity of CaliforniaMercedCAUSA
- Center for Circadian BiologyUniversity of CaliforniaSan Diego, La JollaCAUSA
- Chemistry and Chemical BiologyUniversity of CaliforniaMercedCAUSA
- Health Sciences Research InstituteUniversity of CaliforniaMercedCAUSA
- Center for Cellular and Biomolecular MachinesUniversity of CaliforniaMercedCAUSA
| | - Michael J Rust
- Department of Molecular Genetics and Cell BiologyUniversity of ChicagoChicagoILUSA
- Institute for Biophysical DynamicsUniversity of ChicagoChicagoILUSA
- Institute for Genomics and Systems BiologyUniversity of ChicagoChicagoILUSA
| | - Aaron R Dinner
- Department of ChemistryUniversity of ChicagoChicagoILUSA
- Institute for Biophysical DynamicsUniversity of ChicagoChicagoILUSA
- James Franck InstituteUniversity of ChicagoChicagoILUSA
| |
Collapse
|
13
|
Marsland R, Cui W, Horowitz JM. The thermodynamic uncertainty relation in biochemical oscillations. J R Soc Interface 2020; 16:20190098. [PMID: 31039695 DOI: 10.1098/rsif.2019.0098] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Living systems regulate many aspects of their behaviour through periodic oscillations of molecular concentrations, which function as 'biochemical clocks.' The chemical reactions that drive these clocks are intrinsically stochastic at the molecular level, so that the duration of a full oscillation cycle is subject to random fluctuations. Their success in carrying out their biological function is thought to depend on the degree to which these fluctuations in the cycle period can be suppressed. Biochemical oscillators also require a constant supply of free energy in order to break detailed balance and maintain their cyclic dynamics. For a given free energy budget, the recently discovered 'thermodynamic uncertainty relation' yields the magnitude of period fluctuations in the most precise conceivable free-running clock. In this paper, we show that computational models of real biochemical clocks severely underperform this optimum, with fluctuations several orders of magnitude larger than the theoretical minimum. We argue that this suboptimal performance is due to the small number of internal states per molecule in these models, combined with the high level of thermodynamic force required to maintain the system in the oscillatory phase. We introduce a new model with a tunable number of internal states per molecule and confirm that it approaches the optimal precision as this number increases.
Collapse
Affiliation(s)
- Robert Marsland
- 1 Department of Physics, Boston University , 590 Commonwealth Avenue, Boston, MA 02215 , USA
| | - Wenping Cui
- 1 Department of Physics, Boston University , 590 Commonwealth Avenue, Boston, MA 02215 , USA.,2 Department of Physics, Boston College , 140 Commonwealth Avenue, Chestnut Hill, MA 02467 , USA
| | - Jordan M Horowitz
- 3 Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, 400 Technology Square , Cambridge, MA 02139 , USA.,4 Department of Biophysics, University of Michigan , Ann Arbor, MI 48109 , USA.,5 Center for the Study of Complex Systems, University of Michigan , Ann Arbor, MI 48109 , USA
| |
Collapse
|
14
|
Kawamoto N, Ito H, Tokuda IT, Iwasaki H. Damped circadian oscillation in the absence of KaiA in Synechococcus. Nat Commun 2020; 11:2242. [PMID: 32382052 PMCID: PMC7205874 DOI: 10.1038/s41467-020-16087-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 04/09/2020] [Indexed: 01/05/2023] Open
Abstract
Proteins KaiA, KaiB and KaiC constitute a biochemical circadian oscillator in the cyanobacterium Synechococcus elongatus. It has been reported kaiA inactivation completely abolishes circadian oscillations. However, we show here that kaiBC promoter activity exhibits a damped, low-amplitude oscillation with a period of approximately 24 h in kaiA-inactivated strains. The damped rhythm resonates with external cycles with a period of 24–26 h, indicating that its natural frequency is similar to that of the circadian clock. Double-mutation experiments reveal that kaiC, kaiB, and sasA (encoding a KaiC-binding histidine kinase) are all required for the damped oscillation. Further analysis suggests that the kaiA-less damped transcriptional rhythm requires KaiB-KaiC complex formation and the transcription-translation feedback loop, but not the KaiC phosphorylation cycle. Our results provide insights into mechanisms that could potentially underlie the diurnal/circadian behaviors observed in other bacterial species that possess kaiB and kaiC homologues but lack a kaiA homologue. Proteins KaiA, KaiB and KaiC constitute a biochemical circadian oscillator in Synechococcus cyanobacteria. Here, Kawamoto et al. show that kaiBC promoter activity exhibits a damped, low-amplitude circadian oscillation in the absence of KaiA, which could explain the circadian rhythms observed in other bacteria that lack a kaiA homologue.
Collapse
Affiliation(s)
- Naohiro Kawamoto
- Department of Electrical Engineering and Biological Science, Waseda University, Tokyo, 162-0056, Japan
| | - Hiroshi Ito
- Faculty of Design, Kyushu University, Fukuoka, 815-8540, Japan
| | - Isao T Tokuda
- Graduate School of Science and Engineering, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Hideo Iwasaki
- Department of Electrical Engineering and Biological Science, Waseda University, Tokyo, 162-0056, Japan.
| |
Collapse
|
15
|
Linking Light-Dependent Life History Traits with Population Dynamics for Prochlorococcus and Cyanophage. mSystems 2020; 5:5/2/e00586-19. [PMID: 32234774 PMCID: PMC7112961 DOI: 10.1128/msystems.00586-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prochlorococcus cyanobacteria grow in diurnal rhythms driven by diel cycles. Their ecology depends on light, nutrients, and top-down mortality processes, including lysis by viruses. Cyanophage, viruses that infect cyanobacteria, are also impacted by light. For example, the extracellular viability and intracellular infection kinetics of some cyanophage vary between light and dark conditions. Nonetheless, it remains unclear whether light-dependent viral life history traits scale up to influence population-level dynamics. Here, we examined the impact of diel forcing on both cellular- and population-scale dynamics in multiple Prochlorococcus-phage systems. To do so, we developed a light-driven population model, including both cellular growth and viral infection dynamics. We then tested the model against measurements of experimental infection dynamics with diel forcing to examine the extent to which population level changes in both viral and host abundances could be explained by light-dependent life history traits. Model-data integration reveals that light-dependent adsorption can improve fits to population dynamics for some virus-host pairs. However, light-dependent variation alone does not fully explain realized host and virus population dynamics. Instead, we show evidence consistent with lysis saturation at relatively high virus-to-cell ratios. Altogether, our study represents a quantitative approach to integrate mechanistic models to reconcile Prochlorococcus-virus dynamics spanning cellular-to-population scales.IMPORTANCE The cyanobacterium Prochlorococcus is an essential member of global ocean ecosystems. Light rhythms drive Prochlorococcus photosynthesis, ecology, and interactions with potentially lethal viruses. At present, the impact of light on Prochlorococcus-virus interactions is not well understood. Here, we analyzed Prochlorococcus and virus population dynamics with a light-driven population model and compared our results with experimental data. Our approach revealed that light profoundly drives both cellular- and population-level dynamics for some host-virus systems. However, we also found that additional mechanisms, including lysis saturation, are required to explain observed host-virus dynamics at the population scale. This study provides the basis for future work to understand the intertwined fates of Prochlorococcus and associated viruses in the surface ocean.
Collapse
|
16
|
Circadian clock helps cyanobacteria manage energy in coastal and high latitude ocean. ISME JOURNAL 2019; 14:560-568. [PMID: 31685937 DOI: 10.1038/s41396-019-0547-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/09/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022]
Abstract
The circadian clock coordinates cellular functions over the diel cycle in many organisms. The molecular mechanisms of the cyanobacterial clock are well characterized, but its ecological role remains a mystery. We present an agent-based model of Synechococcus (harboring a self-sustained, bona fide circadian clock) that explicitly represents genes (e.g., kaiABC), transcripts, proteins, and metabolites. The model is calibrated to data from laboratory experiments with wild type and no-clock mutant strains, and it successfully reproduces the main observed patterns of glycogen metabolism. Comparison of wild type and no-clock mutant strains suggests a main benefit of the clock is due to energy management. For example, it inhibits glycogen synthesis early in the day when it is not needed and energy is better used for making the photosynthesis apparatus. To explore the ecological role of the clock, we integrate the model into a dynamic, three-dimensional global circulation model that includes light variability due to seasonal and diel incident radiation and vertical extinction. Model output is compared with field data, including in situ gene transcript levels. We simulate cyanobaceria with and without a circadian clock, which allows us to quantify the fitness benefit of the clock. Interestingly, the benefit is weakest in the low latitude open ocean, where Prochlorococcus (lacking a self-sustained clock) dominates. However, our attempt to experimentally validate this testable prediction failed. Our study provides insights into the role of the clock and an example for how models can be used to integrate across multiple levels of biological organization.
Collapse
|
17
|
Heisler J, Chavan A, Chang YG, LiWang A. Real-Time In Vitro Fluorescence Anisotropy of the Cyanobacterial Circadian Clock. Methods Protoc 2019; 2:E42. [PMID: 31164621 PMCID: PMC6632157 DOI: 10.3390/mps2020042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 11/24/2022] Open
Abstract
Uniquely, the circadian clock of cyanobacteria can be reconstructed outside the complex milieu of live cells, greatly simplifying the investigation of a functioning biological chronometer. The core oscillator component is composed of only three proteins, KaiA, KaiB, and KaiC, and together with ATP they undergo waves of assembly and disassembly that drive phosphorylation rhythms in KaiC. Typically, the time points of these reactions are analyzed ex post facto by denaturing polyacrylamide gel electrophoresis, because this technique resolves the different states of phosphorylation of KaiC. Here, we describe a more sensitive method that allows real-time monitoring of the clock reaction. By labeling one of the clock proteins with a fluorophore, in this case KaiB, the in vitro clock reaction can be monitored by fluorescence anisotropy on the minutes time scale for weeks.
Collapse
Affiliation(s)
- Joel Heisler
- Chemistry & Chemical Biology, University of California, Merced, CA 95343, USA.
- Center for Cellular and Biomolecular Machines, University of California, Merced, CA 95343, USA.
| | - Archana Chavan
- School of Natural Sciences, University of California, Merced, CA 95343, USA.
| | - Yong-Gang Chang
- School of Natural Sciences, University of California, Merced, CA 95343, USA.
| | - Andy LiWang
- Chemistry & Chemical Biology, University of California, Merced, CA 95343, USA.
- Center for Cellular and Biomolecular Machines, University of California, Merced, CA 95343, USA.
- School of Natural Sciences, University of California, Merced, CA 95343, USA.
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA 92093, USA.
- Quantitative & Systems Biology, University of California, Merced, CA 95343, USA.
- Health Sciences Research Institute, University of California, Merced, CA 95343, USA.
| |
Collapse
|
18
|
Abstract
Life has adapted to Earth's day-night cycle with the evolution of endogenous biological clocks. Whereas these circadian rhythms typically involve extensive transcription-translation feedback in higher organisms, cyanobacteria have a circadian clock, which functions primarily as a protein-based post-translational oscillator. Known as the Kai system, it consists of three proteins KaiA, KaiB, and KaiC. In this chapter, we provide a detailed structural overview of the Kai components and how they interact to produce circadian rhythms of global gene expression in cyanobacterial cells. We discuss how the circadian oscillation is coupled to gene expression, intertwined with transcription-translation feedback mechanisms, and entrained by input from the environment. We discuss the use of mathematical models and summarize insights into the cyanobacterial circadian clock from theoretical studies. The molecular details of the Kai system are well documented for the model cyanobacterium Synechococcus elongatus, but many less understood varieties of the Kai system exist across the highly diverse phylum of Cyanobacteria. Several species contain multiple kai-gene copies, while others like marine Prochlorococcus strains have a reduced kaiBC-only system, lacking kaiA. We highlight recent findings on the genomic distribution of kai genes in Bacteria and Archaea and finally discuss hypotheses on the evolution of the Kai system.
Collapse
Affiliation(s)
- Joost Snijder
- Snijder Bioscience, Zevenwouden 143, 3524CN, Utrecht, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Ilka Maria Axmann
- Synthetic Microbiology, Biology Department, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|