1
|
Meunier L, Costa R, Keller-Costa T, Cannella D, Dechamps E, George IF. Selection of marine bacterial consortia efficient at degrading chitin leads to the discovery of new potential chitin degraders. Microbiol Spectr 2024; 12:e0088624. [PMID: 39315806 PMCID: PMC11537107 DOI: 10.1128/spectrum.00886-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/13/2024] [Indexed: 09/25/2024] Open
Abstract
Chitin degradation is a keystone process in the oceans, mediated by marine microorganisms with the help of several enzymes, mostly chitinases. Sediment, seawater, and filter-feeding marine invertebrates, such as sponges, are known to harbor chitin-degrading bacteria and are presumably hotspots for chitin turnover. Here, we employed an artificial selection process involving enrichment cultures derived from microbial communities associated with the marine sponge Hymeniacidon perlevis, its surrounding seawater and sediment, to select bacterial consortia capable of degrading raw chitin. Throughout the artificial selection process, chitin degradation rates and the taxonomic composition of the four successive enrichment cultures were followed. To the best of our knowledge, chitin degradation was characterized for the first time using size exclusion chromatography, which revealed significant shifts in the numbered average chitin molecular weight, strongly suggesting the involvement of endo-chitinases in the breakdown of the chitin polymer during the enrichment process. Concomitantly with chitin degradation, the enrichment cultures exhibited a decrease in alpha diversity compared with the environmental samples. Notably, some of the dominant taxa in the enriched communities, such as Motilimonas, Arcobacter, and Halarcobacter, were previously unknown to be involved in chitin degradation. In particular, the analysis of published genomes of these genera suggests a pivotal role of Motilimonas in the hydrolytic cleavage of chitin. This study provides context to the microbiome of the marine sponge Hymeniacidon perlevis in light of its environmental surroundings and opens new ground to the future discovery and characterization of novel enzymes of marine origin involved in chitin degradation processes.IMPORTANCEChitin is the second most abundant biopolymer on Earth after cellulose, and the most abundant in the marine environment. At present, industrial processes for the conversion of seafood waste into chitin, chitosan, and chitooligosaccharide (COS) rely on the use of high amounts of concentrated acids or strong alkali at high temperature. Developing bio-based methods to transform available chitin into valuable compounds, such as chitosan and COS, holds promise in promoting a more sustainable, circular bioeconomy. By employing an artificial selection procedure based on chitin as a sole C and N source, we discovered microorganisms so-far unknown to metabolize chitin in the rare microbial biosphere of several marine biotopes. This finding represents a first important step on the path towards characterizing and exploiting potentially novel enzymes of marine origin with biotechnological interest, since products of chitin degradation may find applications across several sectors, such as agriculture, pharmacy, and waste management.
Collapse
Affiliation(s)
- Laurence Meunier
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences (iBB) and Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal
| | - Tina Keller-Costa
- Institute for Bioengineering and Biosciences (iBB) and Institute for Health and Bioeconomy (i4HB), Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico (IST), Universidade de Lisboa, Lisbon, Portugal
| | - David Cannella
- PhotoBioCatalysis Unit, Crop Nutrition and Biostimulation Lab (CPBL) and Biomass Transformation Lab (BTL), Brussels Bioengineering School, Université Libre de Bruxelles, Brussels, Belgium
| | - Etienne Dechamps
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Isabelle F. George
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
2
|
Wasmund K, Singleton C, Dahl Dueholm MK, Wagner M, Nielsen PH. The predicted secreted proteome of activated sludge microorganisms indicates distinct nutrient niches. mSystems 2024; 9:e0030124. [PMID: 39254351 PMCID: PMC11495043 DOI: 10.1128/msystems.00301-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
In wastewater treatment plants (WWTPs), complex microbial communities process diverse chemical compounds from sewage. Secreted proteins are critical because many are the first to interact with or degrade external (macro)molecules. To better understand microbial functions in WWTPs, we predicted secreted proteomes of WWTP microbiota from more than 1,000 high-quality metagenome-assembled genomes (MAGs) from 23 Danish WWTPs with biological nutrient removal. Focus was placed on examining secreted catabolic exoenzymes that target major classes of macromolecules. We demonstrate that Bacteroidota has a high potential to digest complex polysaccharides, but also proteins and nucleic acids. Poorly understood activated sludge members of Acidobacteriota and Gemmatimonadota also have high capacities for extracellular polysaccharide digestion. Secreted nucleases are encoded by 61% of MAGs indicating an importance for extracellular DNA and/or RNA digestion in WWTPs. Secreted lipases were the least common macromolecule-targeting enzymes predicted, encoded mainly by Gammaproteobacteria and Myxococcota. In contrast, diverse taxa encode extracellular peptidases, indicating that proteins are widely used nutrients. Diverse secreted multi-heme cytochromes suggest capabilities for extracellular electron transfer by various taxa, including some Bacteroidota that encode undescribed cytochromes with >100 heme-binding motifs. Myxococcota have exceptionally large secreted protein complements, probably related to predatory lifestyles and/or complex cell cycles. Many Gammaproteobacteria MAGs (mostly former Betaproteobacteria) encode few or no secreted hydrolases, but many periplasmic substrate-binding proteins and ABC- and TRAP-transporters, suggesting they are mostly sustained by small molecules. Together, this study provides a comprehensive overview of how WWTPs microorganisms interact with the environment, providing new insights into their functioning and niche partitioning.IMPORTANCEWastewater treatment plants (WWTPs) are critical biotechnological systems that clean wastewater, allowing the water to reenter the environment and limit eutrophication and pollution. They are also increasingly important for the recovery of resources. They function primarily by the activity of microorganisms, which act as a "living sponge," taking up and transforming nutrients, organic material, and pollutants. Despite much research, many microorganisms in WWTPs are uncultivated and poorly characterized, limiting our understanding of their functioning. Here, we analyzed a large collection of high-quality metagenome-assembled genomes from WWTPs for encoded secreted enzymes and proteins, with special emphasis on those used to degrade organic material. This analysis showed highly distinct secreted proteome profiles among different major phylogenetic groups of microorganisms, thereby providing new insights into how different groups function and co-exist in activated sludge. This knowledge will contribute to a better understanding of how to efficiently manage and exploit WWTP microbiomes.
Collapse
Affiliation(s)
- Kenneth Wasmund
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
- School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Caitlin Singleton
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morten Kam Dahl Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Michael Wagner
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
3
|
Miki T, Ke PJ. Macroscale vertical power-law distribution of bacteria in dark oceans can emerge from microscale bacteria-particle interactions. J Theor Biol 2024; 595:111956. [PMID: 39353507 DOI: 10.1016/j.jtbi.2024.111956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Microbes in the dark oceans are a key determinant of remineralization of sinking carbon particles. However, most marine ecosystem models overlook how microbes aggregate on particles and the microscale interactions between particle-associated microbes, making it difficult to obtain mechanistic insights on their vertical power-law decay pattern. Here, we present a spatial population model where the attachment and detachment processes of bacterial cells depend on local density of particle-associated bacteria. We show that the power-law relationship can emerge when the non-random aggregated distribution of bacteria is considered without any depth-specific environmental parameters. Furthermore, the comparison between model behavior and empirical patterns in the Pacific and Southern Ocean indicated that temperature-dependent hydrolysis rate and nutrient-dependent sinking rate of particles are key parameters to explain the regional variations of the power-law exponent. The mechanistic approach developed here provides a pathway to link micro-scale interactions between individuals to macro-scale food chain structures and carbon cycle.
Collapse
Affiliation(s)
- Takeshi Miki
- Faculty of Advanced Science and Technology, Ryukoku University, Otsu, Shiga 520-2194, Japan; Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan; Center for Biodiversity Science, Ryukoku University, Otsu, Shiga 520-2194, Japan.
| | - Po-Ju Ke
- Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan; Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Behrendt L, Alcolombri U, Hunter JE, Smriga S, Mincer T, Lowenstein DP, Yawata Y, Peaudecerf FJ, Fernandez VI, Fredricks HF, Almblad H, Harrison JJ, Stocker R, Van Mooy BAS. Microbial dietary preference and interactions affect the export of lipids to the deep ocean. Science 2024; 385:eaab2661. [PMID: 39265021 DOI: 10.1126/science.aab2661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/09/2024] [Indexed: 09/14/2024]
Abstract
Lipids comprise a significant fraction of sinking organic matter in the ocean and play a crucial role in the carbon cycle. Despite this, our understanding of the processes that control lipid degradation is limited. We combined nanolipidomics and imaging to study the bacterial degradation of diverse algal lipid droplets and found that bacteria isolated from marine particles exhibited distinct dietary preferences, ranging from selective to promiscuous degraders. Dietary preference was associated with a distinct set of lipid degradation genes rather than with taxonomic origin. Using synthetic communities composed of isolates with distinct dietary preferences, we showed that lipid degradation is modulated by microbial interactions. A particle export model incorporating these dynamics indicates that metabolic specialization and community dynamics may influence lipid transport efficiency in the ocean's mesopelagic zone.
Collapse
Affiliation(s)
- Lars Behrendt
- Department of Organismal Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Uria Alcolombri
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jonathan E Hunter
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Steven Smriga
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Tracy Mincer
- Florida Atlantic University, Wilkes Honors College, Jupiter, FL, USA
| | - Daniel P Lowenstein
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Yutaka Yawata
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - François J Peaudecerf
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
- University of Rennes, CNRS, Institut de Physique de Rennes, Rennes, France
| | - Vicente I Fernandez
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Helen F Fredricks
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Henrik Almblad
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada
| | - Joe J Harrison
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada
| | - Roman Stocker
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich, Switzerland
| | - Benjamin A S Van Mooy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
5
|
Bressac M, Laurenceau-Cornec EC, Kennedy F, Santoro AE, Paul NL, Briggs N, Carvalho F, Boyd PW. Decoding drivers of carbon flux attenuation in the oceanic biological pump. Nature 2024; 633:587-593. [PMID: 39261723 PMCID: PMC11410664 DOI: 10.1038/s41586-024-07850-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2024] [Indexed: 09/13/2024]
Abstract
The biological pump supplies carbon to the oceans' interior, driving long-term carbon sequestration and providing energy for deep-sea ecosystems1,2. Its efficiency is set by transformations of newly formed particles in the euphotic zone, followed by vertical flux attenuation via mesopelagic processes3. Depth attenuation of the particulate organic carbon (POC) flux is modulated by multiple processes involving zooplankton and/or microbes4,5. Nevertheless, it continues to be mainly parameterized using an empirically derived relationship, the 'Martin curve'6. The derived power-law exponent is the standard metric used to compare flux attenuation patterns across oceanic provinces7,8. Here we present in situ experimental findings from C-RESPIRE9, a dual particle interceptor and incubator deployed at multiple mesopelagic depths, measuring microbially mediated POC flux attenuation. We find that across six contrasting oceanic regimes, representing a 30-fold range in POC flux, degradation by particle-attached microbes comprised 7-29 per cent of flux attenuation, implying a more influential role for zooplankton in flux attenuation. Microbial remineralization, normalized to POC flux, ranged by 20-fold across sites and depths, with the lowest rates at high POC fluxes. Vertical trends, of up to threefold changes, were linked to strong temperature gradients at low-latitude sites. In contrast, temperature played a lesser role at mid- and high-latitude sites, where vertical trends may be set jointly by particle biochemistry, fragmentation and microbial ecophysiology. This deconstruction of the Martin curve reveals the underpinning mechanisms that drive microbially mediated POC flux attenuation across oceanic provinces.
Collapse
Affiliation(s)
- M Bressac
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France.
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia.
| | - E C Laurenceau-Cornec
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- Univ. Brest, IUEM, CNRS, LEMAR, IRD, Ifremer, Plouzané, France
| | - F Kennedy
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - A E Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - N L Paul
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - N Briggs
- National Oceanography Centre, European Way, Southampton, UK
| | - F Carvalho
- National Oceanography Centre, European Way, Southampton, UK
| | - P W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
6
|
Liu F, Deroy C, Herr AE. Microfluidics for macrofluidics: addressing marine-ecosystem challenges in an era of climate change. LAB ON A CHIP 2024; 24:4007-4027. [PMID: 39093009 DOI: 10.1039/d4lc00468j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Climate change presents a mounting challenge with profound impacts on ocean and marine ecosystems, leading to significant environmental, health, and economic consequences. Microfluidic technologies, with their unique capabilities, play a crucial role in understanding and addressing the marine aspects of the climate crisis. These technologies leverage quantitative, precise, and miniaturized formats that enhance the capabilities of sensing, imaging, and molecular tools. Such advancements are critical for monitoring marine systems under the stress of climate change and elucidating their response mechanisms. This review explores microfluidic technologies employed both in laboratory settings for testing and in the field for monitoring purposes. We delve into the application of miniaturized tools in evaluating ocean-based solutions to climate change, thus offering fresh perspectives from the solution-oriented end of the spectrum. We further aim to synthesize recent developments in technology around critical questions concerning the ocean environment and marine ecosystems, while discussing the potential for future innovations in microfluidic technology. The purpose of this review is to enhance understanding of current capabilities and assist researchers interested in mitigating the effects of climate change to identify new avenues for tackling the pressing issues posed by climate change in marine ecosystems.
Collapse
Affiliation(s)
- Fangchen Liu
- Department of Bioengineering, University of California, Berkeley, California 94158, USA.
| | - Cyril Deroy
- Department of Bioengineering, University of California, Berkeley, California 94158, USA.
| | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, California 94158, USA.
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| |
Collapse
|
7
|
Robertson JM, Garza EA, Stubbusch AKM, Dupont CL, Hwa T, Held NA. Marine bacteria Alteromonas spp. require UDP-glucose-4-epimerase for aggregation and production of sticky exopolymer. mBio 2024; 15:e0003824. [PMID: 38958440 PMCID: PMC11325263 DOI: 10.1128/mbio.00038-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024] Open
Abstract
The physiology and ecology of particle-associated marine bacteria are of growing interest, but our knowledge of their aggregation behavior and mechanisms controlling their association with particles remains limited. We have found that a particle-associated isolate, Alteromonas sp. ALT199 strain 4B03, and the related type-strain A. macleodii 27126 both form large (>500 μm) aggregates while growing in rich medium. A non-clumping variant (NCV) of 4B03 spontaneously arose in the lab, and whole-genome sequencing revealed a partial deletion in the gene encoding UDP-glucose-4-epimerase (galEΔ308-324). In 27126, a knock-out of galE (ΔgalE::kmr) resulted in a loss of aggregation, mimicking the NCV. Microscopic analysis shows that both 4B03 and 27126 rapidly form large aggregates, whereas their respective galE mutants remain primarily as single planktonic cells or clusters of a few cells. Strains 4B03 and 27126 also form aggregates with chitin particles, but their galE mutants do not. Alcian Blue staining shows that 4B03 and 27126 produce large transparent exopolymer particles (TEP), but their galE mutants are deficient in this regard. This study demonstrates the capabilities of cell-cell aggregation, aggregation of chitin particles, and production of TEP in strains of Alteromonas, a widespread particle-associated genus of heterotrophic marine bacteria. A genetic requirement for galE is evident for each of the above capabilities, expanding the known breadth of requirement for this gene in biofilm-related processes. IMPORTANCE Heterotrophic marine bacteria have a central role in the global carbon cycle. Well-known for releasing CO2 by decomposition and respiration, they may also contribute to particulate organic matter (POM) aggregation, which can promote CO2 sequestration via the formation of marine snow. We find that two members of the prevalent particle-associated genus Alteromonas can form aggregates comprising cells alone or cells and chitin particles, indicating their ability to drive POM aggregation. In line with their multivalent aggregation capability, both strains produce TEP, an excreted polysaccharide central to POM aggregation in the ocean. We demonstrate a genetic requirement for galE in aggregation and large TEP formation, building our mechanistic understanding of these aggregative capabilities. These findings point toward a role for heterotrophic bacteria in POM aggregation in the ocean and support broader efforts to understand bacterial controls on the global carbon cycle based on microbial activities, community structure, and meta-omic profiling.
Collapse
Affiliation(s)
- Jacob M Robertson
- Division of Biological Sciences, UC San Diego, La Jolla, California, USA
| | - Erin A Garza
- Microbial and Environmental Genomics, J Craig Venter Institute, La Jolla, California, USA
| | - Astrid K M Stubbusch
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Earth Sciences, Geological Institute, ETH Zurich, Zurich, Switzerland
| | - Christopher L Dupont
- Microbial and Environmental Genomics, J Craig Venter Institute, La Jolla, California, USA
| | - Terence Hwa
- Division of Biological Sciences, UC San Diego, La Jolla, California, USA
- Department of Physics, UC San Diego, La Jolla, California, USA
| | - Noelle A Held
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Biological Sciences, Marine and Environmental Biology Section, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
8
|
Zhao Z, Amano C, Reinthaler T, Baltar F, Orellana MV, Herndl GJ. Metaproteomic analysis decodes trophic interactions of microorganisms in the dark ocean. Nat Commun 2024; 15:6411. [PMID: 39080340 PMCID: PMC11289388 DOI: 10.1038/s41467-024-50867-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
Proteins in the open ocean represent a significant source of organic matter, and their profiles reflect the metabolic activities of marine microorganisms. Here, by analyzing metaproteomic samples collected from the Pacific, Atlantic and Southern Ocean, we reveal size-fractionated patterns of the structure and function of the marine microbiota protein pool in the water column, particularly in the dark ocean (>200 m). Zooplankton proteins contributed three times more than algal proteins to the deep-sea community metaproteome. Gammaproteobacteria exhibited high metabolic activity in the deep-sea, contributing up to 30% of bacterial proteins. Close virus-host interactions of this taxon might explain the dominance of gammaproteobacterial proteins in the dissolved fraction. A high urease expression in nitrifiers suggested links between their dark carbon fixation and zooplankton urea production. In summary, our results uncover the taxonomic contribution of the microbiota to the oceanic protein pool, revealing protein fluxes from particles to the dissolved organic matter pool.
Collapse
Affiliation(s)
- Zihao Zhao
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria.
| | - Chie Amano
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Thomas Reinthaler
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Federico Baltar
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Mónica V Orellana
- Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
- Institute for Systems Biology, Seattle, WA, USA
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria.
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands.
- Environmental & Climate Research Hub, University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Sato Y. Transcriptome analysis: a powerful tool to understand individual microbial behaviors and interactions in ecosystems. Biosci Biotechnol Biochem 2024; 88:850-856. [PMID: 38749545 DOI: 10.1093/bbb/zbae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/06/2024] [Indexed: 07/23/2024]
Abstract
Transcriptome analysis is a powerful tool for studying microbial ecology, especially individual microbial functions in an ecosystem and their interactions. With the development of high-throughput sequencing technology, great progress has been made in analytical methods for microbial communities in natural environments. 16S rRNA gene amplicon sequencing (ie microbial community structure analysis) and shotgun metagenome analysis have been widely used to determine the composition and potential metabolic capability of microorganisms in target environments without requiring culture. However, even if the types of microorganisms present and their genes are known, it is difficult to determine what they are doing in an ecosystem. Gene expression analysis (transcriptome analysis; RNA-seq) is a powerful tool to address these issues. The history and basic information of gene expression analysis, as well as examples of studies using this method to analyze microbial ecosystems, are presented.
Collapse
Affiliation(s)
- Yuya Sato
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
Yang Y, Chen C, Yao K, Grossart HP. Seasonal dynamics of free-living (FL) and particle-attached (PA) bacterial communities in a plateau reservoir. Front Microbiol 2024; 15:1428701. [PMID: 39101032 PMCID: PMC11295932 DOI: 10.3389/fmicb.2024.1428701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/26/2024] [Indexed: 08/06/2024] Open
Abstract
In terms of lifestyle, bacterioplankton can be classified as free-living (FL) and particle-attached (PA) forms, and both play essential roles in biogeochemical cycling in aquatic ecosystems. Structure, distribution, and community assembly of FL and PA bacteria in plateau riverine waterbodies are largely unknown. Therefore, we explored the seasonal dynamics of FLand PA bacterial communities in the Wujiangdu reservoir, Yungui Plateau using 16S rRNA gene high-throughput sequencing. Results revealed there was a significant environmental heterogeneity in Wujiangdu reservoir seasonally. The dominant phylum was Actinomycetota for FL and Pseudomonadota for PA bacteria. Species richness and diversity was higher in autumn and winter compared to spring and summer. In general, PA diversity was greater than FL, but with some temporal variations. Species turnover was the major contributor to β-diversity of both FL and PA lifestyles, and significant differences were noticed between FL and PA bacterial community composition. Distinct co-occurrence network patterns implied that more connections exist between FL bacteria, while more complex PA networks were in parallel to their greater diversity and stronger interactions in biofilms on particles. Dispersal limitation was the major driving force for both FL and PA bacterial community assembly. Deterministic processes were of relatively low importance, with homogeneous selection for FL and heterogeneous selection for PA bacteria. Temperature was the most important environmental driver of seasonal bacterial dynamics, followed by nitrate for FL and Secchi depth for PA bacteria. This study allows for a better understanding of the temporal variability of different bacteria lifestyles in reservoirs in the vulnerable and rapidly changing plateau environment, facilitating further microbial research related to global warming and eutrophication.
Collapse
Affiliation(s)
- Yang Yang
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Chen Chen
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Kai Yao
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Potsdam University, Potsdam, Germany
| |
Collapse
|
11
|
Ruan C, Ramoneda J, Kan A, Rudge TJ, Wang G, Johnson DR. Phage predation accelerates the spread of plasmid-encoded antibiotic resistance. Nat Commun 2024; 15:5397. [PMID: 38926498 PMCID: PMC11208555 DOI: 10.1038/s41467-024-49840-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Phage predation is generally assumed to reduce microbial proliferation while not contributing to the spread of antibiotic resistance. However, this assumption does not consider the effect of phage predation on the spatial organization of different microbial populations. Here, we show that phage predation can increase the spread of plasmid-encoded antibiotic resistance during surface-associated microbial growth by reshaping spatial organization. Using two strains of the bacterium Escherichia coli, we demonstrate that phage predation slows the spatial segregation of the strains during growth. This increases the number of cell-cell contacts and the extent of conjugation-mediated plasmid transfer between them. The underlying mechanism is that phage predation shifts the location of fastest growth from the biomass periphery to the interior where cells are densely packed and aligned closer to parallel with each other. This creates straighter interfaces between the strains that are less likely to merge together during growth, consequently slowing the spatial segregation of the strains and enhancing plasmid transfer between them. Our results have implications for the design and application of phage therapy and reveal a mechanism for how microbial functions that are deleterious to human and environmental health can proliferate in the absence of positive selection.
Collapse
Affiliation(s)
- Chujin Ruan
- College of Land Science and Technology, China Agricultural University, Beijing, China
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Josep Ramoneda
- Spanish Research Council (CSIC), Center for Advanced Studies of Blanes (CEAB), Blanes, Spain
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Anton Kan
- Department of Materials, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | - Timothy J Rudge
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Gang Wang
- College of Land Science and Technology, China Agricultural University, Beijing, China.
- National Black Soil & Agriculture Research, China Agricultural University, Beijing, China.
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland.
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.
| |
Collapse
|
12
|
McNichol SM, Sanchez-Quete F, Loeb SK, Teske AP, Shah Walter SR, Mahmoudi N. Dynamics of carbon substrate competition among heterotrophic microorganisms. THE ISME JOURNAL 2024; 18:wrae018. [PMID: 38366177 PMCID: PMC10942773 DOI: 10.1093/ismejo/wrae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/06/2024] [Accepted: 01/26/2024] [Indexed: 02/18/2024]
Abstract
Growing evidence suggests that interactions among heterotrophic microorganisms influence the efficiency and rate of organic matter turnover. These interactions are dynamic and shaped by the composition and availability of resources in their surrounding environment. Heterotrophic microorganisms inhabiting marine environments often encounter fluctuations in the quality and quantity of carbon inputs, ranging from simple sugars to large, complex compounds. Here, we experimentally tested how the chemical complexity of carbon substrates affects competition and growth dynamics between two heterotrophic marine isolates. We tracked cell density using species-specific polymerase chain reaction (PCR) assays and measured rates of microbial CO2 production along with associated isotopic signatures (13C and 14C) to quantify the impact of these interactions on organic matter remineralization. The observed cell densities revealed substrate-driven interactions: one species exhibited a competitive advantage and quickly outgrew the other when incubated with a labile compound whereas both species seemed to coexist harmoniously in the presence of more complex organic matter. Rates of CO2 respiration revealed that coincubation of these isolates enhanced organic matter turnover, sometimes by nearly 2-fold, compared to their incubation as mono-cultures. Isotopic signatures of respired CO2 indicated that coincubation resulted in a greater remineralization of macromolecular organic matter. These results demonstrate that simple substrates promote competition whereas high substrate complexity reduces competitiveness and promotes the partitioning of degradative activities into distinct niches, facilitating coordinated utilization of the carbon pool. Taken together, this study yields new insight into how the quality of organic matter plays a pivotal role in determining microbial interactions within marine environments.
Collapse
Affiliation(s)
- Samuel M McNichol
- Department of Earth and Planetary Sciences, McGill University, 3450 University St, Montréal, Quebec H3A 0E8, Canada
| | - Fernando Sanchez-Quete
- Department of Civil Engineering, McGill University, 817 Rue Sherbrooke Ouest, Montréal, Quebec H3A 0C3, Canada
| | - Stephanie K Loeb
- Department of Civil Engineering, McGill University, 817 Rue Sherbrooke Ouest, Montréal, Quebec H3A 0C3, Canada
| | - Andreas P Teske
- Department of Earth, Marine and Environmental Sciences, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Sunita R Shah Walter
- School of Marine Science and Policy, University of Delaware, 700 Pilottown Rd, Lewes, DE 19958, United States
| | - Nagissa Mahmoudi
- Department of Earth and Planetary Sciences, McGill University, 3450 University St, Montréal, Quebec H3A 0E8, Canada
| |
Collapse
|
13
|
Cha QQ, Liu SS, Dang YR, Ren XB, Xu F, Li PY, Chen XL, Wang P, Zhang XY, Zhang YZ, Qin QL. Ecological function and interaction of different bacterial groups during alginate processing in coastal seawater community. ENVIRONMENT INTERNATIONAL 2023; 182:108325. [PMID: 37995388 DOI: 10.1016/j.envint.2023.108325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023]
Abstract
The degradation of high molecular weight organic matter (HMWOM) is a core process of oceanic carbon cycle, which is determined by the activity of microbial communities harboring hundreds of different species. Illustrating the active microbes and their interactions during HMWOM processing can provide key information for revealing the relationship between community composition and its ecological functions. In this study, the genomic and transcriptional responses of microbial communities to the availability of alginate, an abundant HMWOM in coastal ecosystem, were elucidated. The main degraders transcribing alginate lyase (Aly) genes came from genera Alteromonas, Psychrosphaera and Colwellia. Meanwhile, some strains, mainly from the Rhodobacteraceae family, did not transcribe Aly gene but could utilize monosaccharides to grow. The co-culture experiment showed that the activity of Aly-producing strain could promote the growth of Aly-non-producing strain when alginate was the sole carbon source. Interestingly, this interaction did not reduce the alginate degradation rate, possibly due to the easily degradable nature of alginate. This study can improve our understanding of the relationship between microbial community activity and alginate metabolism function as well as further manipulation of microbial community structure for alginate processing.
Collapse
Affiliation(s)
- Qian-Qian Cha
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China
| | - Sha-Sha Liu
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China
| | - Yan-Ru Dang
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China
| | - Xue-Bing Ren
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China
| | - Fei Xu
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China; Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, China
| | - Peng Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China; Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China; Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, China; MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Shandong Provincial Hospital, Shandong University, Qingdao, China; Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
14
|
Bos RP, Kaul D, Zettler ER, Hoffman JM, Dupont CL, Amaral-Zettler LA, Mincer TJ. Plastics select for distinct early colonizing microbial populations with reproducible traits across environmental gradients. Environ Microbiol 2023; 25:2761-2775. [PMID: 37132662 DOI: 10.1111/1462-2920.16391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/19/2023] [Indexed: 05/04/2023]
Abstract
Little is known about early plastic biofilm assemblage dynamics and successional changes over time. By incubating virgin microplastics along oceanic transects and comparing adhered microbial communities with those of naturally occurring plastic litter at the same locations, we constructed gene catalogues to contrast the metabolic differences between early and mature biofilm communities. Early colonization incubations were reproducibly dominated by Alteromonadaceae and harboured significantly higher proportions of genes associated with adhesion, biofilm formation, chemotaxis, hydrocarbon degradation and motility. Comparative genomic analyses among the Alteromonadaceae metagenome assembled genomes (MAGs) highlighted the importance of the mannose-sensitive hemagglutinin (MSHA) operon, recognized as a key factor for intestinal colonization, for early colonization of hydrophobic plastic surfaces. Synteny alignments of MSHA also demonstrated positive selection for mshA alleles across all MAGs, suggesting that mshA provides a competitive advantage for surface colonization and nutrient acquisition. Large-scale genomic characteristics of early colonizers varied little, despite environmental variability. Mature plastic biofilms were composed of predominantly Rhodobacteraceae and displayed significantly higher proportions of carbohydrate hydrolysis enzymes and genes for photosynthesis and secondary metabolism. Our metagenomic analyses provide insight into early biofilm formation on plastics in the ocean and how early colonizers self-assemble, compared to mature, phylogenetically and metabolically diverse biofilms.
Collapse
Affiliation(s)
- Ryan P Bos
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
| | - Drishti Kaul
- Environmental Sustainability, J. Craig Venter Institute, La Jolla, California, USA
| | - Erik R Zettler
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands
| | - Jeffrey M Hoffman
- Environmental Sustainability, J. Craig Venter Institute, La Jolla, California, USA
| | - Christopher L Dupont
- Environmental Sustainability, J. Craig Venter Institute, La Jolla, California, USA
| | - Linda A Amaral-Zettler
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Texel, The Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Tracy J Mincer
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, Florida, USA
- Department of Biology, Wilkes Honors College, Florida Atlantic University, Jupiter, Florida, USA
| |
Collapse
|
15
|
Liu H, Jing H, Wang F. Archaea predominate in the ammonia oxidation process in the sediments of the Yap and Mariana Trenches. Front Microbiol 2023; 14:1268790. [PMID: 37840747 PMCID: PMC10568479 DOI: 10.3389/fmicb.2023.1268790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023] Open
Abstract
Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play an important role in oxidizing ammonia to nitrite in different marine environments; however, their relative contribution to ammonia oxidation in the deep-sea sediments is still largely unknown. Sediment samples from seamounts and the Challenger Deep along the arc of the Yap Trench and the Mariana Trench were used for the investigation of the geographical distribution of AOA and AOB at the cDNA level, with associated potential nitrification rates (PNRs) being measured. AOA was predominated by Candidatus Nitrosopumilus and Nitrosopumilaceae, while Methylophaga was the major group of AOB. Significantly higher transcript abundance of the AOA amoA gene than that of AOB appeared in all samples, corresponding to the much higher RNRs contributed to AOA. Both the total and AOA PNRs were significantly higher in the deeper layers due to the high sensitivity of AOA to ammonia and oxygen than in AOB. In the surface layers, TN and TOC had significant positive and negative effects on the distribution of the AOA amoA gene transcripts, respectively, while NH 4 + concentration was positively correlated with the AOB amoA gene transcripts. Our study demonstrated that AOA played a more important role than AOB in the ammonia-oxidizing process that occurred in the sediments of the Yap and Mariana Trenches and would expand the understanding of their ecological contribution to the nitrification process and nitrogen flux of trenches.
Collapse
Affiliation(s)
- Hao Liu
- CAS Key Lab for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Hongmei Jing
- CAS Key Lab for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
| | - Fangzhou Wang
- CAS Key Lab for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Bahadori M, Chen C, Lewis S, Wang J, Shen J, Hou E, Rashti MR, Huang Q, Bainbridge Z, Stevens T. The origin of suspended particulate matter in the Great Barrier Reef. Nat Commun 2023; 14:5629. [PMID: 37699913 PMCID: PMC10497579 DOI: 10.1038/s41467-023-41183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
River run-off has long been regarded as the largest source of organic-rich suspended particulate matter (SPM) in the Great Barrier Reef (GBR), contributing to high turbidity, pollutant exposure and increasing vulnerability of coral reef to climate change. However, the terrestrial versus marine origin of the SPM in the GBR is uncertain. Here we provide multiple lines of evidence (13C NMR, isotopic and genetic fingerprints) to unravel that a considerable proportion of the terrestrially-derived SPM is degraded in the riverine and estuarine mixing zones before it is transported further offshore. The fingerprints of SPM in the marine environment were completely different from those of terrestrial origin but more consistent with that formed by marine phytoplankton. This result indicates that the SPM in the GBR may not have terrestrial origin but produced locally in the marine environment, which has significant implications on developing better-targeted management practices for improving water quality in the GBR.
Collapse
Affiliation(s)
- Mohammad Bahadori
- Australian Rivers Institute, Griffith University, Nathan, QLD, 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Chengrong Chen
- Australian Rivers Institute, Griffith University, Nathan, QLD, 4111, Australia.
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia.
| | - Stephen Lewis
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, QLD, Australia
| | - Juntao Wang
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Jupei Shen
- School of Geographical Sciences, Fujian Normal University, Fuzhou, PR China
| | - Enqing Hou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Mehran Rezaei Rashti
- Australian Rivers Institute, Griffith University, Nathan, QLD, 4111, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Zoe Bainbridge
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, QLD, Australia
| | - Tom Stevens
- Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
17
|
Ciccarese D, Tantawi O, Zhang IH, Plata D, Babbin AR. Microscale dynamics promote segregated denitrification in diatom aggregates sinking slowly in bulk oxygenated seawater. COMMUNICATIONS EARTH & ENVIRONMENT 2023; 4:275. [PMID: 38665198 PMCID: PMC11041763 DOI: 10.1038/s43247-023-00935-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 07/18/2023] [Indexed: 04/28/2024]
Abstract
Sinking marine particles drive the biological pump that naturally sequesters carbon from the atmosphere. Despite their small size, the compartmentalized nature of particles promotes intense localized metabolic activity by their bacterial colonizers. Yet the mechanisms promoting the onset of denitrification, a metabolism that arises once oxygen is limiting, remain to be established. Here we show experimentally that slow sinking aggregates composed of marine diatoms-important primary producers for global carbon export-support active denitrification even among bulk oxygenated water typically thought to exclude anaerobic metabolisms. Denitrification occurs at anoxic microsites distributed throughout a particle and within microns of a particle's boundary, and fluorescence-reporting bacteria show nitrite can be released into the water column due to segregated dissimilatory reduction of nitrate and nitrite. Examining intact and broken diatoms as organic sources, we show slowly leaking cells promote more bacterial growth, allow particles to have lower oxygen, and generally support greater denitrification.
Collapse
Affiliation(s)
- Davide Ciccarese
- Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Omar Tantawi
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Irene H. Zhang
- Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA USA
- Program in Microbiology, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Desiree Plata
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Andrew R. Babbin
- Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA USA
| |
Collapse
|
18
|
Wu Y, Fu C, Peacock CL, Sørensen SJ, Redmile-Gordon MA, Xiao KQ, Gao C, Liu J, Huang Q, Li Z, Song P, Zhu Y, Zhou J, Cai P. Cooperative microbial interactions drive spatial segregation in porous environments. Nat Commun 2023; 14:4226. [PMID: 37454222 PMCID: PMC10349867 DOI: 10.1038/s41467-023-39991-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
The role of microbial interactions and the underlying mechanisms that shape complex biofilm communities are poorly understood. Here we employ a microfluidic chip to represent porous subsurface environments and show that cooperative microbial interactions between free-living and biofilm-forming bacteria trigger active spatial segregation to promote their respective dominance in segregated microhabitats. During initial colonization, free-living and biofilm-forming microbes are segregated from the mixed planktonic inoculum to occupy the ambient fluid and grain surface. Contrary to spatial exclusion through competition, the active spatial segregation is induced by cooperative interactions which improves the fitness of both biofilm and planktonic populations. We further show that free-living Arthrobacter induces the surface colonization by scavenging the biofilm inhibitor, D-amino acids and receives benefits from the public goods secreted by the biofilm-forming strains. Collectively, our results reveal how cooperative microbial interactions may contribute to microbial coexistence in segregated microhabitats and drive subsurface biofilm community succession.
Collapse
Affiliation(s)
- Yichao Wu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Chengxia Fu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Caroline L Peacock
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Marc A Redmile-Gordon
- Department of Environmental Horticulture, Royal Horticultural Society, Wisley, Surrey, GU23 6QB, UK
| | - Ke-Qing Xiao
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Chunhui Gao
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Jun Liu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Zixue Li
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyi Song
- School of Physics, Huazhong University of Science and Technology, Wuhan, China
| | - Yongguan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, USA
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, USA
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, USA
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
19
|
Cell aggregation is associated with enzyme secretion strategies in marine polysaccharide-degrading bacteria. THE ISME JOURNAL 2023; 17:703-711. [PMID: 36813911 PMCID: PMC10119383 DOI: 10.1038/s41396-023-01385-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Polysaccharide breakdown by bacteria requires the activity of enzymes that degrade polymers either intra- or extra-cellularly. The latter mechanism generates a localized pool of breakdown products that are accessible to the enzyme producers themselves as well as to other organisms. Marine bacterial taxa often show marked differences in the production and secretion of degradative enzymes that break down polysaccharides. These differences can have profound effects on the pool of diffusible breakdown products and hence on the ecological dynamics. However, the consequences of differences in enzymatic secretions on cellular growth dynamics and interactions are unclear. Here we study growth dynamics of single cells within populations of marine Vibrionaceae strains that grow on the abundant marine polymer alginate, using microfluidics coupled to quantitative single-cell analysis and mathematical modelling. We find that strains that have low extracellular secretions of alginate lyases aggregate more strongly than strains that secrete high levels of enzymes. One plausible reason for this observation is that low secretors require a higher cellular density to achieve maximal growth rates in comparison with high secretors. Our findings indicate that increased aggregation increases intercellular synergy amongst cells of low-secreting strains. By mathematically modelling the impact of the level of degradative enzyme secretion on the rate of diffusive oligomer loss, we find that enzymatic secretion capability modulates the propensity of cells within clonal populations to cooperate or compete with each other. Our experiments and models demonstrate that enzymatic secretion capabilities can be linked with the propensity of cell aggregation in marine bacteria that extracellularly catabolize polysaccharides.
Collapse
|
20
|
Wucher BR, Winans JB, Elsayed M, Kadouri DE, Nadell CD. Breakdown of clonal cooperative architecture in multispecies biofilms and the spatial ecology of predation. Proc Natl Acad Sci U S A 2023; 120:e2212650120. [PMID: 36730197 PMCID: PMC9963355 DOI: 10.1073/pnas.2212650120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/06/2022] [Indexed: 02/03/2023] Open
Abstract
Biofilm formation, including adherence to surfaces and secretion of extracellular matrix, is common in the microbial world, but we often do not know how interaction at the cellular spatial scale translates to higher-order biofilm community ecology. Here we explore an especially understudied element of biofilm ecology, namely predation by the bacterium Bdellovibrio bacteriovorus. This predator can kill and consume many different Gram-negative bacteria, including Vibrio cholerae and Escherichia coli. V. cholerae can protect itself from predation within densely packed biofilm structures that it creates, whereas E. coli biofilms are highly susceptible to B. bacteriovorus. We explore how predator-prey dynamics change when V. cholerae and E. coli are growing in biofilms together. We find that in dual-species prey biofilms, E. coli survival under B. bacteriovorus predation increases, whereas V. cholerae survival decreases. E. coli benefits from predator protection when it becomes embedded within expanding groups of highly packed V. cholerae. But we also find that the ordered, highly packed, and clonal biofilm structure of V. cholerae can be disrupted if V. cholerae cells are directly adjacent to E. coli cells at the start of biofilm growth. When this occurs, the two species become intermixed, and the resulting disordered cell groups do not block predator entry. Because biofilm cell group structure depends on initial cell distributions at the start of prey biofilm growth, the surface colonization dynamics have a dramatic impact on the eventual multispecies biofilm architecture, which in turn determines to what extent both species survive exposure to B. bacteriovorus.
Collapse
Affiliation(s)
| | - James B. Winans
- Department of Biological Sciences, Dartmouth, Hanover, NH03755
| | - Mennat Elsayed
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ07101
| | - Daniel E. Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ07101
| | - Carey D. Nadell
- Department of Biological Sciences, Dartmouth, Hanover, NH03755
| |
Collapse
|
21
|
Zheng X, Xu K, Naoum J, Lian Y, Wu B, He Z, Yan Q. Deciphering microeukaryotic-bacterial co-occurrence networks in coastal aquaculture ponds. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:44-55. [PMID: 37073331 PMCID: PMC10077187 DOI: 10.1007/s42995-022-00159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 12/06/2022] [Indexed: 05/03/2023]
Abstract
Microeukaryotes and bacteria are key drivers of primary productivity and nutrient cycling in aquaculture ecosystems. Although their diversity and composition have been widely investigated in aquaculture systems, the co-occurrence bipartite network between microeukaryotes and bacteria remains poorly understood. This study used the bipartite network analysis of high-throughput sequencing datasets to detect the co-occurrence relationships between microeukaryotes and bacteria in water and sediment from coastal aquaculture ponds. Chlorophyta and fungi were dominant phyla in the microeukaryotic-bacterial bipartite networks in water and sediment, respectively. Chlorophyta also had overrepresented links with bacteria in water. Most microeukaryotes and bacteria were classified as generalists, and tended to have symmetric positive and negative links with bacteria in both water and sediment. However, some microeukaryotes with high density of links showed asymmetric links with bacteria in water. Modularity detection in the bipartite network indicated that four microeukaryotes and twelve uncultured bacteria might be potential keystone taxa among the module connections. Moreover, the microeukaryotic-bacterial bipartite network in sediment harbored significantly more nestedness than that in water. The loss of microeukaryotes and generalists will more likely lead to the collapse of positive co-occurrence relationships between microeukaryotes and bacteria in both water and sediment. This study unveils the topology, dominant taxa, keystone species, and robustness in the microeukaryotic-bacterial bipartite networks in coastal aquaculture ecosystems. These species herein can be applied for further management of ecological services, and such knowledge may also be very useful for the regulation of other eutrophic ecosystems. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00159-6.
Collapse
Affiliation(s)
- Xiafei Zheng
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, 315100 China
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006 China
| | - Kui Xu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006 China
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of Life Sciences, Hubei Normal University, Huangshi, 435002 China
| | - Jonathan Naoum
- Department of Biological Sciences, Ecotoxicology of Aquatic Microorganisms Laboratory, GRIL-EcotoQ-TOXEN, Université Du Québec À Montréal, Succursale Centre-Ville, Montreal, QC Canada
| | - Yingli Lian
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006 China
- Animal Husbandry and Fisheries Research Center of Guangdong Haid Group CO., Ltd. Key Laboratory of Microecological Resources and Utilization in Breeding Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510006 China
| | - Bo Wu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006 China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006 China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006 China
| |
Collapse
|
22
|
Gaur VK, Sirohi R, Bhat MI, Gautam K, Sharma P, Srivastava JK, Pandey A. A review on the effect of micro- and nano-plastics pollution on the emergence of antimicrobial resistance. CHEMOSPHERE 2023; 311:136877. [PMID: 36257395 DOI: 10.1016/j.chemosphere.2022.136877] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The recent upsurge in the studies on micro/nano plastics and antimicrobial resistance genes has proven their deleterious effects on the environmental and human health. Till-date, there is a scarcity of studies on the interactions of these two factors and their combined influence. The interaction of microplastics has led to the formation of new plastics namely plastiglomerates, pyroplastics. and anthropoquinas. It has long been ignored that the occurrence of microplastics has become a breeding ground for the emergence of antimicrobial resistance genes. Evidently microplastics are also associated with the occurrence of other pollutants such as polyaromatic hydrocarbons and pesticides. The increased use of antibiotics (after Covid breakout) has further elevated the detrimental effects on human health. Therefore, this study highlights the relation of microplastics with antibiotic resistance generation. The factors such as uncontrolled use of antibiotics and negligent plastic consumption has been evaluated. Furthermore, the future research prospective was provided that can be helpful in correctly identifying the seriousness of the environmental occurrence of these pollutants.
Collapse
Affiliation(s)
- Vivek Kumar Gaur
- Centre for Energy and Environmental Sustainability, Lucknow, 226 029, India; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India; School of Energy and Chemical Engineering, Ulsan National Institute for Science and Technology, Ulsan, 44919, Republic of Korea
| | - Ranjna Sirohi
- Department of Food Technology, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, 248 007, Uttarakhand, India
| | - Mohd Ishfaq Bhat
- Department of Post-Harvest Process and Food Engineering, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, India
| | - Krishna Gautam
- Centre for Energy and Environmental Sustainability, Lucknow, 226 029, India
| | - Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, India
| | | | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow, 226 029, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248 007, India; Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India.
| |
Collapse
|
23
|
Abadikhah M, Rodriguez MDC, Persson F, Wilén BM, Farewell A, Modin O. Evidence of competition between electrogens shaping electroactive microbial communities in microbial electrolysis cells. Front Microbiol 2022; 13:959211. [PMID: 36590422 PMCID: PMC9800620 DOI: 10.3389/fmicb.2022.959211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
In single-chamber microbial electrolysis cells (MECs), organic compounds are oxidized at the anode, liberating electrons that are used for hydrogen evolution at the cathode. Microbial communities on the anode and cathode surfaces and in the bulk liquid determine the function of the MEC. The communities are complex, and their assembly processes are poorly understood. We investigated MEC performance and community composition in nine MECs with a carbon cloth anode and a cathode of carbon nanoparticles, titanium, or stainless steel. Differences in lag time during the startup of replicate MECs suggested that the initial colonization by electrogenic bacteria was stochastic. A network analysis revealed negative correlations between different putatively electrogenic Deltaproteobacteria on the anode. Proximity to the conductive anode surface is important for electrogens, so the competition for space could explain the observed negative correlations. The cathode communities were dominated by hydrogen-utilizing taxa such as Methanobacterium and had a much lower proportion of negative correlations than the anodes. This could be explained by the diffusion of hydrogen throughout the cathode biofilms, reducing the need to compete for space.
Collapse
Affiliation(s)
- Marie Abadikhah
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden,*Correspondence: Marie Abadikhah, ✉
| | - Miguel de Celis Rodriguez
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, Madrid, Spain
| | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Britt-Marie Wilén
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Anne Farewell
- Institute of Chemistry and Molecular Biology and the Center for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
| | - Oskar Modin
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
24
|
Liu H, Wang F, Liu H, Jing H. Metabolic activity and community structure of prokaryotes associated with particles in the twilight zone of the South China Sea. Front Microbiol 2022; 13:1056860. [PMID: 36560947 PMCID: PMC9763726 DOI: 10.3389/fmicb.2022.1056860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
The twilight zone is an important depth of the ocean where particulate organic matter (POM) remineralization takes place, and prokaryotes contribute to more than 70% of the estimated remineralization. However, little is known about the microbial community and metabolic activity associated with different particles in the twilight zone. The composition and distribution of particle-attached prokaryotes in the twilight zone of the South China Sea (SCS) were investigated using high-throughput sequencing and quantitative PCR, together with the Biolog Ecoplate™ microplates culture to analyze the microbial metabolic activity. We found that α- and γ-Proteobacteria dominating at the lower and upper boundary of the twilight zone, respectively; Methanosarcinales and Halobacteriales of the Euyarchaeota occupied in the larger particles at the upper boundary. Similar microbial community existed between euphotic layer and the upper boundary. Higher amount of shared Operational Taxonomic Units (OTUs) in the larger particles along the water depths, might be due to the fast sinking and major contribution of carbon flux of the larger particles from the euphotic layer. In addition to polymers as the major carbon source, carbohydrates and amino acids were preferentially used by microbial community at the upper and lower boundary, respectively. This could potentially be attributed to the metabolic capabilities of attached microbial groups in different particles, and reflected the initial preference of the carbon source by the natural microbes in the twilight zone as well. The microbial structure and carbon metabolic profiles could be complemented with metatranscriptomic analysis in future studies to augment the understanding of the complex carbon cycling pathways in the twilight zone.
Collapse
Affiliation(s)
- Hao Liu
- CAS Key Lab for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Fangzhou Wang
- CAS Key Lab for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China,University of Chinese Academy of Sciences, Beijing, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China,HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China,*Correspondence: Hongbin Liu,
| | - Hongmei Jing
- CAS Key Lab for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China,HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China,Hongmei Jing,
| |
Collapse
|
25
|
Piccardi P, Alberti G, Alexander JM, Mitri S. Microbial invasion of a toxic medium is facilitated by a resident community but inhibited as the community co-evolves. THE ISME JOURNAL 2022; 16:2644-2652. [PMID: 36104451 PMCID: PMC9666444 DOI: 10.1038/s41396-022-01314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/27/2022] [Accepted: 08/24/2022] [Indexed: 12/15/2022]
Abstract
Predicting whether microbial invaders will colonize an environment is critical for managing natural and engineered ecosystems, and controlling infectious disease. Invaders often face competition by resident microbes. But how invasions play out in communities dominated by facilitative interactions is less clear. We previously showed that growth medium toxicity can promote facilitation between four bacterial species, as species that cannot grow alone rely on others to survive. Following the same logic, here we allowed other bacterial species to invade the four-species community and found that invaders could more easily colonize a toxic medium when the community was present. In a more benign environment instead, invasive species that could survive alone colonized more successfully when the residents were absent. Next, we asked whether early colonists could exclude future ones through a priority effect, by inoculating the invaders into the resident community only after its members had co-evolved for 44 weeks. Compared to the ancestral community, the co-evolved resident community was more competitive toward invaders and less affected by them. Our experiments show how communities may assemble by facilitating one another in harsh, sterile environments, but that arriving after community members have co-evolved can limit invasion success.
Collapse
Affiliation(s)
- Philippe Piccardi
- Département de Microbiologie Fondamentale, Université de Lausanne, Lausanne, Switzerland
| | - Géraldine Alberti
- Département de Microbiologie Fondamentale, Université de Lausanne, Lausanne, Switzerland
| | - Jake M Alexander
- Department of Environmental Systems Science, ETH Zurich, Zürich, Switzerland
| | - Sara Mitri
- Département de Microbiologie Fondamentale, Université de Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
26
|
Jiang WX, Li PY, Chen XL, Zhang YS, Wang JP, Wang YJ, Sheng Q, Sun ZZ, Qin QL, Ren XB, Wang P, Song XY, Chen Y, Zhang YZ. A pathway for chitin oxidation in marine bacteria. Nat Commun 2022; 13:5899. [PMID: 36202810 PMCID: PMC9537276 DOI: 10.1038/s41467-022-33566-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Oxidative degradation of chitin, initiated by lytic polysaccharide monooxygenases (LPMOs), contributes to microbial bioconversion of crystalline chitin, the second most abundant biopolymer in nature. However, our knowledge of oxidative chitin utilization pathways, beyond LPMOs, is very limited. Here, we describe a complete pathway for oxidative chitin degradation and its regulation in a marine bacterium, Pseudoalteromonas prydzensis. The pathway starts with LPMO-mediated extracellular breakdown of chitin into C1-oxidized chitooligosaccharides, which carry a terminal 2-(acetylamino)-2-deoxy-D-gluconic acid (GlcNAc1A). Transmembrane transport of oxidized chitooligosaccharides is followed by their hydrolysis in the periplasm, releasing GlcNAc1A, which is catabolized in the cytoplasm. This pathway differs from the known hydrolytic chitin utilization pathway in enzymes, transporters and regulators. In particular, GlcNAc1A is converted to 2-keto-3-deoxygluconate 6-phosphate, acetate and NH3 via a series of reactions resembling the degradation of D-amino acids rather than other monosaccharides. Furthermore, genomic and metagenomic analyses suggest that the chitin oxidative utilization pathway may be prevalent in marine Gammaproteobacteria.
Collapse
Affiliation(s)
- Wen-Xin Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China. .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yi-Shuo Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jing-Ping Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yan-Jun Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qi Sheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhong-Zhi Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xue-Bing Ren
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Peng Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yin Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China. .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China. .,Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| |
Collapse
|
27
|
Consuming fresh macroalgae induces specific catabolic pathways, stress reactions and Type IX secretion in marine flavobacterial pioneer degraders. THE ISME JOURNAL 2022; 16:2027-2039. [PMID: 35589967 PMCID: PMC9296495 DOI: 10.1038/s41396-022-01251-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 12/20/2022]
Abstract
Macroalgae represent huge amounts of biomass worldwide, largely recycled by marine heterotrophic bacteria. We investigated the strategies of bacteria within the flavobacterial genus Zobellia to initiate the degradation of whole algal tissues, which has received little attention compared to the degradation of isolated polysaccharides. Zobellia galactanivorans DsijT has the capacity to use fresh brown macroalgae as a sole carbon source and extensively degrades algal tissues via the secretion of extracellular enzymes, even in the absence of physical contact with the algae. Co-cultures experiments with the non-degrading strain Tenacibaculum aestuarii SMK-4T showed that Z. galactanivorans can act as a pioneer that initiates algal breakdown and shares public goods with other bacteria. A comparison of eight Zobellia strains, and strong transcriptomic shifts in Z. galactanivorans cells using fresh macroalgae vs. isolated polysaccharides, revealed potential overlooked traits of pioneer bacteria. Besides brown algal polysaccharide degradation, they notably include oxidative stress resistance proteins, type IX secretion system proteins and novel uncharacterized polysaccharide utilization loci. Overall, this work highlights the relevance of studying fresh macroalga degradation to fully understand the metabolic and ecological strategies of pioneer microbial degraders, key players in macroalgal biomass remineralization.
Collapse
|
28
|
Historical contingencies and phage induction diversify bacterioplankton communities at the microscale. Proc Natl Acad Sci U S A 2022; 119:e2117748119. [PMID: 35862452 PMCID: PMC9335236 DOI: 10.1073/pnas.2117748119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In many natural environments, microorganisms decompose microscale resource patches made of complex organic matter. The growth and collapse of populations on these resource patches unfold within spatial ranges of a few hundred micrometers or less, making such microscale ecosystems hotspots of heterotrophic metabolism. Despite the potential importance of patch-level dynamics for the large-scale functioning of heterotrophic microbial communities, we have not yet been able to delineate the ecological processes that control natural populations at the microscale. Here, we address this challenge by characterizing the natural marine communities that assembled on over 1,000 individual microscale particles of chitin, the most abundant marine polysaccharide. Using low-template shotgun metagenomics and imaging, we find significant variation in microscale community composition despite the similarity in initial species pools across replicates. Chitin-degrading taxa that were rare in seawater established large populations on a subset of particles, resulting in a wide range of predicted chitinolytic abilities and biomass at the level of individual particles. We show, through a mathematical model, that this variability can be attributed to stochastic colonization and historical contingencies affecting the tempo of growth on particles. We find evidence that one biological process leading to such noisy growth across particles is differential predation by temperate bacteriophages of chitin-degrading strains, the keystone members of the community. Thus, initial stochasticity in assembly states on individual particles, amplified through ecological interactions, may have significant consequences for the diversity and functionality of systems of microscale patches.
Collapse
|
29
|
Dey S, Rout AK, Behera BK, Ghosh K. Plastisphere community assemblage of aquatic environment: plastic-microbe interaction, role in degradation and characterization technologies. ENVIRONMENTAL MICROBIOME 2022; 17:32. [PMID: 35739580 PMCID: PMC9230103 DOI: 10.1186/s40793-022-00430-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/14/2022] [Indexed: 05/03/2023]
Abstract
It is undeniable that plastics are ubiquitous and a threat to global ecosystems. Plastic waste is transformed into microplastics (MPs) through physical and chemical disruption processes within the aquatic environment. MPs are detected in almost every environment due to their worldwide transportability through ocean currents or wind, which allows them to reach even the most remote regions of our planet. MPs colonized by biofilm-forming microbial communities are known as the ''plastisphere". The revelation that this unique substrate can aid microbial dispersal has piqued interest in the ground of microbial ecology. MPs have synergetic effects on the development, transportation, persistence, and ecology of microorganisms. This review summarizes the studies of plastisphere in recent years and the microbial community assemblage (viz. autotrophs, heterotrophs, predators, and pathogens). We also discussed plastic-microbe interactions and the potential sources of plastic degrading microorganisms. Finally, it also focuses on current technologies used to characterize those microbial inhabitants and recommendations for further research.
Collapse
Affiliation(s)
- Sujata Dey
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Ajaya Kumar Rout
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India.
| | - Koushik Ghosh
- Aquaculture Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
30
|
Teschler JK, Nadell CD, Drescher K, Yildiz FH. Mechanisms Underlying Vibrio cholerae Biofilm Formation and Dispersion. Annu Rev Microbiol 2022; 76:503-532. [PMID: 35671532 DOI: 10.1146/annurev-micro-111021-053553] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biofilms are a widely observed growth mode in which microbial communities are spatially structured and embedded in a polymeric extracellular matrix. Here, we focus on the model bacterium Vibrio cholerae and summarize the current understanding of biofilm formation, including initial attachment, matrix components, community dynamics, social interactions, molecular regulation, and dispersal. The regulatory network that orchestrates the decision to form and disperse from biofilms coordinates various environmental inputs. These cues are integrated by several transcription factors, regulatory RNAs, and second-messenger molecules, including bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Through complex mechanisms, V. cholerae weighs the energetic cost of forming biofilms against the benefits of protection and social interaction that biofilms provide. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jennifer K Teschler
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA;
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Fitnat H Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA;
| |
Collapse
|
31
|
Reyes-González D, De Luna-Valenciano H, Utrilla J, Sieber M, Peña-Miller R, Fuentes-Hernández A. Dynamic proteome allocation regulates the profile of interaction of auxotrophic bacterial consortia. ROYAL SOCIETY OPEN SCIENCE 2022; 9:212008. [PMID: 35592760 PMCID: PMC9066302 DOI: 10.1098/rsos.212008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/25/2022] [Indexed: 05/03/2023]
Abstract
Microbial ecosystems are composed of multiple species in constant metabolic exchange. A pervasive interaction in microbial communities is metabolic cross-feeding and occurs when the metabolic burden of producing costly metabolites is distributed between community members, in some cases for the benefit of all interacting partners. In particular, amino acid auxotrophies generate obligate metabolic inter-dependencies in mixed populations and have been shown to produce a dynamic profile of interaction that depends upon nutrient availability. However, identifying the key components that determine the pair-wise interaction profile remains a challenging problem, partly because metabolic exchange has consequences on multiple levels, from allocating proteomic resources at a cellular level to modulating the structure, function and stability of microbial communities. To evaluate how ppGpp-mediated resource allocation drives the population-level profile of interaction, here we postulate a multi-scale mathematical model that incorporates dynamics of proteome partition into a population dynamics model. We compare our computational results with experimental data obtained from co-cultures of auxotrophic Escherichia coli K12 strains under a range of amino acid concentrations and population structures. We conclude by arguing that the stringent response promotes cooperation by inhibiting the growth of fast-growing strains and promoting the synthesis of metabolites essential for other community members.
Collapse
Affiliation(s)
- D. Reyes-González
- Synthetic Biology Program, Center for Genomic Sciences, Universidad Autónoma de México, 62220 Cuernavaca, Mexico
| | - H. De Luna-Valenciano
- Synthetic Biology Program, Center for Genomic Sciences, Universidad Autónoma de México, 62220 Cuernavaca, Mexico
- Systems Biology Program, Center for Genomic Sciences, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mexico
| | - J. Utrilla
- Synthetic Biology Program, Center for Genomic Sciences, Universidad Autónoma de México, 62220 Cuernavaca, Mexico
| | - M. Sieber
- Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - R. Peña-Miller
- Systems Biology Program, Center for Genomic Sciences, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Mexico
| | - A. Fuentes-Hernández
- Synthetic Biology Program, Center for Genomic Sciences, Universidad Autónoma de México, 62220 Cuernavaca, Mexico
| |
Collapse
|
32
|
Lewin GR, Davis NM, McDonald BR, Book AJ, Chevrette MG, Suh S, Boll A, Currie CR. Long-Term Cellulose Enrichment Selects for Highly Cellulolytic Consortia and Competition for Public Goods. mSystems 2022; 7:e0151921. [PMID: 35258341 PMCID: PMC9040578 DOI: 10.1128/msystems.01519-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/10/2022] [Indexed: 11/23/2022] Open
Abstract
The complexity of microbial communities hinders our understanding of how microbial diversity and microbe-microbe interactions impact community functions. Here, using six independent communities originating from the refuse dumps of leaf-cutter ants and enriched using the plant polymer cellulose as the sole source of carbon, we examine how changes in bacterial diversity and interactions impact plant biomass decomposition. Over up to 60 serial transfers (∼8 months) using Whatman cellulose filter paper, cellulolytic ability increased and then stabilized in four enrichment lines and was variable in two lines. Bacterial community characterization using 16S rRNA gene amplicon sequencing showed community succession differed between the highly cellulolytic enrichment lines and those that had slower and more variable cellulose degradation rates. Metagenomic and metatranscriptomic analyses revealed that Cellvibrio and/or Cellulomonas dominated each enrichment line and produced the majority of cellulase enzymes, while diverse taxa were retained within these communities over the duration of transfers. Interestingly, the less cellulolytic communities had a higher diversity of organisms competing for the cellulose breakdown product cellobiose, suggesting that cheating slowed cellulose degradation. In addition, we found competitive exclusion as an important factor shaping all of the communities, with a negative correlation of Cellvibrio and Cellulomonas abundance within individual enrichment lines and the expression of genes associated with the production of secondary metabolites, toxins, and other antagonistic compounds. Our results provide insights into how microbial diversity and competition affect the stability and function of cellulose-degrading communities. IMPORTANCE Microbial communities are a key driver of the carbon cycle through the breakdown of complex polysaccharides in diverse environments including soil, marine systems, and the mammalian gut. However, due to the complexity of these communities, the species-species interactions that impact community structure and ultimately shape the rate of decomposition are difficult to define. Here, we performed serial enrichment on cellulose using communities inoculated from leaf-cutter ant refuse dumps, a cellulose-rich environment. By concurrently tracking cellulolytic ability and community composition and through metagenomic and metatranscriptomic sequencing, we analyzed the ecological dynamics of the enrichment lines. Our data suggest that antagonism is prevalent in these communities and that competition for soluble sugars may slow degradation and lead to community instability. Together, these results help reveal the relationships between competition and polysaccharide decomposition, with implications in diverse areas ranging from microbial community ecology to cellulosic biofuels production.
Collapse
Affiliation(s)
- Gina R. Lewin
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Nicole M. Davis
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Bradon R. McDonald
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Adam J. Book
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Marc G. Chevrette
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Steven Suh
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Ardina Boll
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Cameron R. Currie
- Department of Energy Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
33
|
Rangel F, Enes P, Gasco L, Gai F, Hausmann B, Berry D, Oliva-Teles A, Serra CR, Pereira FC. Differential Modulation of the European Sea Bass Gut Microbiota by Distinct Insect Meals. Front Microbiol 2022; 13:831034. [PMID: 35495644 PMCID: PMC9041418 DOI: 10.3389/fmicb.2022.831034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/22/2022] [Indexed: 01/04/2023] Open
Abstract
The aquaculture industry is one of the fastest-growing sectors in animal food production. However, farming of carnivorous fish strongly relies on the use of wild fish-based meals, a practice that is environmentally and economically unsustainable. Insect-based diets constitute a strong candidate for fishmeal substitution, due to their high nutritional value and low environmental footprint. Nevertheless, data on the impact of insect meal (IM) on the gut microbiome of farmed fish are so far inconclusive, and very scarce in what concerns modulation of microbial-mediated functions. Here we use high-throughput 16S rRNA gene amplicon sequencing and quantitative PCR to evaluate the impact of different IMs on the composition and chitinolytic potential of the European sea bass gut digesta- and mucosa-associated communities. Our results show that insect-based diets of distinct origins differently impact the gut microbiota of the European sea bass (Dicentrarchus labrax). We detected clear modulatory effects of IM on the gut microbiota, which were more pronounced in the digesta, where communities differed considerably among the diets tested. Major community shifts were associated with the use of black soldier fly larvae (Hermetia illucens, HM) and pupal exuviae (HEM) feeds and were characterized by an increase in the relative abundance of the Firmicutes families Bacillaceae, Enterococcaceae, and Lachnospiraceae and the Actinobacteria family Actinomycetaceae, which all include taxa considered beneficial for fish health. Modulation of the digesta community by HEM was characterized by a sharp increase in Paenibacillus and a decrease of several Gammaproteobacteria and Bacteroidota members. In turn, a mealworm larvae-based diet (Tenebrio molitor, TM) had only a modest impact on microbiota composition. Further, using quantitative PCR, we demonstrate that shifts induced by HEM were accompanied by an increase in copy number of chitinase ChiA-encoding genes, predominantly originating from Paenibacillus species with effective chitinolytic activity. Our study reveals an HEM-driven increase in chitin-degrading taxa and associated chitinolytic activity, uncovering potential benefits of adopting exuviae-supplemented diets, a waste product of insect rearing, as a functional ingredient.
Collapse
Affiliation(s)
- Fábio Rangel
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- CIMAR/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Paula Enes
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- CIMAR/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Torino, Italy
| | - Francesco Gai
- Institute of Science of Food Production, National Research Council, Torino, Italy
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - David Berry
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Aires Oliva-Teles
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- CIMAR/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Claudia R. Serra
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- CIMAR/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Fátima C. Pereira
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
34
|
Moran MA, Kujawinski EB, Schroer WF, Amin SA, Bates NR, Bertrand EM, Braakman R, Brown CT, Covert MW, Doney SC, Dyhrman ST, Edison AS, Eren AM, Levine NM, Li L, Ross AC, Saito MA, Santoro AE, Segrè D, Shade A, Sullivan MB, Vardi A. Microbial metabolites in the marine carbon cycle. Nat Microbiol 2022; 7:508-523. [PMID: 35365785 DOI: 10.1038/s41564-022-01090-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/23/2022] [Indexed: 01/08/2023]
Abstract
One-quarter of photosynthesis-derived carbon on Earth rapidly cycles through a set of short-lived seawater metabolites that are generated from the activities of marine phytoplankton, bacteria, grazers and viruses. Here we discuss the sources of microbial metabolites in the surface ocean, their roles in ecology and biogeochemistry, and approaches that can be used to analyse them from chemistry, biology, modelling and data science. Although microbial-derived metabolites account for only a minor fraction of the total reservoir of marine dissolved organic carbon, their flux and fate underpins the central role of the ocean in sustaining life on Earth.
Collapse
Affiliation(s)
- Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, USA.
| | - Elizabeth B Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - William F Schroer
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Shady A Amin
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Nicholas R Bates
- Bermuda Institute of Ocean Sciences, St George's, Bermuda.,School of Ocean and Earth Sciences, University of Southampton, Southampton, UK
| | - Erin M Bertrand
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rogier Braakman
- Departments of Earth, Atmospheric and Planetary Sciences, and Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - C Titus Brown
- Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Scott C Doney
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Sonya T Dyhrman
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA.,Department of Earth and Environmental Science, Columbia University, Palisades, NY, USA
| | - Arthur S Edison
- Departments of Biochemistry and Genetics, Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - A Murat Eren
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA.,Helmholtz-Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, Oldenburg, Germany
| | - Naomi M Levine
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Avena C Ross
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - Mak A Saito
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Alyson E Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Daniel Segrè
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, USA
| | - Ashley Shade
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Matthew B Sullivan
- Departments of Microbiology and Civil, Environmental, and Geodetic Engineering, and Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
35
|
Pierce EC, Dutton RJ. Putting microbial interactions back into community contexts. Curr Opin Microbiol 2022; 65:56-63. [PMID: 34739927 DOI: 10.1016/j.mib.2021.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 08/31/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023]
Abstract
Microbial interactions are key aspects of the biology of microbiomes. Recently, there has been a shift in the field towards studying interactions in more representative contexts, whether using multispecies model microbial communities or by looking at interactions in situ. Across diverse microbial systems, these studies have begun to identify common interaction mechanisms. These mechanisms include interactions related to toxic molecules, nutrient competition and cross-feeding, access to metals, signaling pathways, pH changes, and interactions within biofilms. Leveraging technological innovations, many of these studies have used an interdisciplinary approach combining genetic, metabolomic, imaging, and/or microfluidic techniques to gain insight into mechanisms of microbial interactions and into the impact of these interactions on microbiomes.
Collapse
Affiliation(s)
- Emily C Pierce
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Rachel J Dutton
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA; Center for Microbiome Innovation, Jacobs School of Engineering, University of California, San Diego, La Jolla, USA.
| |
Collapse
|
36
|
Microbes in a sea of sinking particles. Nat Microbiol 2021; 6:1479-1480. [PMID: 34789860 DOI: 10.1038/s41564-021-01005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Jain A, Balmonte JP, Singh R, Bhaskar PV, Krishnan KP. Spatially resolved assembly, connectivity and structure of particle-associated and free-living bacterial communities in a high Arctic fjord. FEMS Microbiol Ecol 2021; 97:fiab139. [PMID: 34626180 PMCID: PMC8536490 DOI: 10.1093/femsec/fiab139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
The assembly processes that underlie the composition and connectivity of free-living (FL) and particle-associated (PA) bacterial communities from surface to deep waters remain little understood. Here, using phylogenetic null modeling, we quantify the relative influence of selective and stochastic mechanisms that assemble FL and PA bacterial communities throughout the water column in a high Arctic fjord. We demonstrate that assembly processes acting on FL and PA bacterial communities are similar in surface waters, but become increasingly distinct in deep waters. As depth increases, the relative influence of homogeneous selection increases for FL but decreases for PA communities. In addition, dispersal limitation and variable selection increase with depth for PA, but not for FL communities, indicating increased residence time of taxa on particles and less frequent decolonization. As a consequence, beta diversity of PA communities is greater in bottom than in surface waters. The limited connectivity between these communities with increasing depth leads to highly distinct FL and PA bacterial communities in bottom waters. Finally, depth-related trends for FL and PA beta diversity and connectivity in this study are consistent with previous observations in the open ocean, suggesting that assembly processes for FL and PA bacterial communities may also be distinct in other aquatic environments.
Collapse
Affiliation(s)
- Anand Jain
- Arctic Ecology and Biogeochemistry, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco da Gama 403 804, Goa, India
| | - John Paul Balmonte
- Department of Ecology and Genetics, Uppsala University, Uppsala 752 36, Sweden
- HADAL and NordCEE, Department of Biology, University of Southern Denmark, Odense, 5230, Denmark
| | - Richa Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221 005, Uttar Pradesh, India
| | - Parli Venkateswaran Bhaskar
- Ocean Science Group, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco da Gama 403 804, Goa, India
| | - Kottekkatu Padinchati Krishnan
- Arctic Ecology and Biogeochemistry, National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco da Gama 403 804, Goa, India
| |
Collapse
|
38
|
Sichert A, Cordero OX. Polysaccharide-Bacteria Interactions From the Lens of Evolutionary Ecology. Front Microbiol 2021; 12:705082. [PMID: 34690949 PMCID: PMC8531407 DOI: 10.3389/fmicb.2021.705082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022] Open
Abstract
Microbes have the unique ability to break down the complex polysaccharides that make up the bulk of organic matter, initiating a cascade of events that leads to their recycling. Traditionally, the rate of organic matter degradation is perceived to be limited by the chemical and physical structure of polymers. Recent advances in microbial ecology, however, suggest that polysaccharide persistence can result from non-linear growth dynamics created by the coexistence of alternate degradation strategies, metabolic roles as well as by ecological interactions between microbes. This complex "landscape" of degradation strategies and interspecific interactions present in natural microbial communities appears to be far from evolutionarily stable, as frequent gene gain and loss reshape enzymatic repertoires and metabolic roles. In this perspective, we discuss six challenges at the heart of this problem, ranging from the evolution of genetic repertoires, phenotypic heterogeneity in clonal populations, the development of a trait-based ecology, and the impact of metabolic interactions and microbial cooperation on degradation rates. We aim to reframe some of the key questions in the study of polysaccharide-bacteria interactions in the context of eco-evolutionary dynamics, highlighting possible research directions that, if pursued, would advance our understanding of polysaccharide degraders at the interface between biochemistry, ecology and evolution.
Collapse
|
39
|
Gralka M, Szabo R, Stocker R, Cordero OX. Trophic Interactions and the Drivers of Microbial Community Assembly. Curr Biol 2021; 30:R1176-R1188. [PMID: 33022263 DOI: 10.1016/j.cub.2020.08.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite numerous surveys of gene and species content in heterotrophic microbial communities, such as those found in animal guts, oceans, or soils, it is still unclear whether there are generalizable biological or ecological processes that control their dynamics and function. Here, we review experimental and theoretical advances to argue that networks of trophic interactions, in which the metabolic excretions of one species are the primary resource for another, constitute the central drivers of microbial community assembly. Trophic interactions emerge from the deconstruction of complex forms of organic matter into a wealth of smaller metabolic intermediates, some of which are released to the environment and serve as a nutritional buffet for the community. The structure of the emergent trophic network and the rate at which primary resources are supplied control many features of microbial community assembly, including the relative contributions of competition and cooperation and the emergence of alternative community states. Viewing microbial community assembly through the lens of trophic interactions also has important implications for the spatial dynamics of communities as well as the functional redundancy of taxonomic groups. Given the ubiquity of trophic interactions across environments, they impart a common logic that can enable the development of a more quantitative and predictive microbial community ecology.
Collapse
Affiliation(s)
- Matti Gralka
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rachel Szabo
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Roman Stocker
- Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich 8093, Switzerland
| | - Otto X Cordero
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
40
|
Illuminating key microbial players and metabolic processes involved in the remineralization of particulate organic carbon in the ocean's twilight zone by metaproteomics. Appl Environ Microbiol 2021; 87:e0098621. [PMID: 34319792 DOI: 10.1128/aem.00986-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The twilight zone (from the base of the euphotic zone to the depth of 1000 m) is the major area of particulate organic carbon (POC) remineralization in the ocean, and heterotrophic microbes contribute to more than 70% of the estimated remineralization. However, little is known about the microbial community and metabolic activity directly associated with POC remineralization in this chronically understudied realm. Here, we characterized the microbial community proteomes of POCs collected from the twilight zone of three contrasting sites in the Northwest Pacific Ocean using a metaproteomic approach. The particle-attached bacteria from Alteromonadales, Rhodobacterales, and Enterobacteriales were the primary POC remineralizers. Hydrolytic enzymes, including proteases and hydrolases, that degrade proteinaceous components and polysaccharides, the main constituents of POC, were abundant and taxonomically associated with these bacterial groups. Furthermore, identification of diverse species-specific transporters and metabolic enzymes implied niche specialization for nutrient acquisition among these bacterial groups. Temperature was the main environmental factor driven the active bacterial groups and metabolic processes, and Enterobacteriales replaced Alteromonadales as the predominant group under low temperature. This study provides insight into the key bacteria and metabolic processes involved in POC remineralization, and niche complementarity and species substitution among bacterial groups are critical for efficient POC remineralization in the twilight zone. IMPORTANCE The Ocean's twilight zone is a critical zone where more than 70% of the sinking particulate organic carbon (POC) are remineralized. Therefore, the twilight zone determines the size of biological carbon storage in the ocean, and regulates the global climate. Prokaryotes are major players that govern remineralization of POC in this region. However, knowledge of microbial community structure and metabolic activity is still lacking. This study unveiled microbial communities and metabolic activities of POCs collected from the twilight zone of three contrasting environments in the Northwest Pacific Ocean using a metaproteomic approach. Alteromonadales, Rhodobacterales and Enterobacteriales were the major remineralizers of POC. They excreted diverse species-specific hydrolytic enzymes to split POC to solubilized POC or dissolved organic carbon. Temperature played a crucial role in regulating the community composition and metabolism. Furthermore, niche complementarity or species substitution among bacterial groups guaranteed the efficient remineralization of POC in the twilight zone.
Collapse
|
41
|
Wucher BR, Elsayed M, Adelman JS, Kadouri DE, Nadell CD. Bacterial predation transforms the landscape and community assembly of biofilms. Curr Biol 2021; 31:2643-2651.e3. [PMID: 33826904 PMCID: PMC8588571 DOI: 10.1016/j.cub.2021.03.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/02/2021] [Accepted: 03/10/2021] [Indexed: 01/10/2023]
Abstract
The bacterium Bdellovibrio bacteriovorus attaches to the exterior of a Gram-negative prey cell, enters the periplasm, and harvests resources to replicate before lysing the host to find new prey.1-7 Predatory bacteria such as this are common in many natural environments,8-13 as are groups of matrix-bound prey cell clusters, termed biofilms.14-16 Despite the ubiquity of both predatory bacteria and biofilm-dwelling prey, the interaction between B. bacteriovorus and prey inside biofilms has received little attention and has not yet been studied at the micrometer scale. Filling this knowledge gap is critical to understanding bacterial predator-prey interaction in nature. Here we show that B. bacteriovorus is able to attack biofilms of the pathogen Vibrio cholerae, but only up until a critical maturation threshold past which the prey biofilms are protected from their predators. Using high-resolution microscopy and detailed spatial analysis, we determine the relative contributions of matrix secretion and cell-cell packing of the prey biofilm toward this protection mechanism. Our results demonstrate that B. bacteriovorus predation in the context of this protection threshold fundamentally transforms the sub-millimeter-scale landscape of biofilm growth, as well as the process of community assembly as new potential biofilm residents enter the system. We conclude that bacterial predation can be a key factor influencing the spatial community ecology of microbial biofilms.
Collapse
Affiliation(s)
- Benjamin R Wucher
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
| | - Mennat Elsayed
- Department of Oral Biology, Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ 07101, USA
| | - James S Adelman
- Department of Biological Sciences, The University of Memphis, 3700 Walker Avenue, Memphis, TN 38117, USA
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, 110 Bergen Street, Newark, NJ 07101, USA
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA.
| |
Collapse
|
42
|
Sathicq MB, Sabatino R, Corno G, Di Cesare A. Are microplastic particles a hotspot for the spread and the persistence of antibiotic resistance in aquatic systems? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116896. [PMID: 33744628 DOI: 10.1016/j.envpol.2021.116896] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 05/27/2023]
Abstract
In the last decade, the study of the origin and fate of plastic debris received great attention, leading to a new and broad awareness of the hazard represented by these particles for the environment and the biota. At the same time, the scientific consideration on the leading role of the environment regarding the spread of antibiotic resistant bacteria (ARB) increased. Both, microplastic particles (MPs) and ARB share pollution sources and, in aquatic systems, MPs could act as a novel ecological niche, favouring the survival of pathogens and ARB. MPs can host a specific microbial biofilm, referred to as plastisphere, phylogenetically different from the surrounding planktonic microbial community and from the biofilm growing on other suspended particles. The plastisphere can influence the overall microbiome of a specific habitat, by introducing and supporting different species and by increasing horizontal gene transfer. In this review we collect and analyse the available studies coupling MPs and antibiotic resistance in water, highlighting knowledge gaps to be filled in order to understand if MPs could effectively act as a carrier of ARB and antibiotic resistance genes, and pose a real threat to human health.
Collapse
Affiliation(s)
- María Belén Sathicq
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | - Raffaella Sabatino
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | - Gianluca Corno
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | - Andrea Di Cesare
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy.
| |
Collapse
|
43
|
Catão C P E, Pollet T, Garnier C, Barry-Martinet R, Rehel K, Linossier I, Tunin-Ley A, Turquet J, Briand JF. Temperate and tropical coastal waters share relatively similar microbial biofilm communities while free-living or particle-attached communities are distinct. Mol Ecol 2021; 30:2891-2904. [PMID: 33887078 DOI: 10.1111/mec.15929] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022]
Abstract
Free-living (FL) marine microbial communities differ from those attached to particles (PA). Likewise, biofilms (B) colonizing artificial surfaces, including plastics or ship hulls, hardly resemble their planktonic surroundings. However, few studies have examined the effect of the environment on these lifestyles and on the source of organisms colonizing marine surfaces. Using 16S rRNA gene metabarcoding, we identified specificities of marine prokaryotic community lifestyles (FL, PA or B) sampled in three coastal polluted locations with dissimilar environmental conditions: the North-Western Mediterranean Sea and the Atlantic and Indian Oceans. Biofilms developed over polyvinyl chloride (PVC) were found to be significantly different from FL or PA collected during the immersions. Alpha-diversity increased from FL to PA and to B, illustrating the integrative aspect of the latter, with little proportion of operational taxonomic units shared with the first two. Beta-diversity clustered first the lifestyles and then the sites. FL and PA were more affected by water quality, especially by trace metal contamination, whereas B were as sensitive to trace metals as to nutrients. Although biofilms should be supplied by the planktonic (ultra) rare biosphere, source tracking could only detect small contributions of FL or PA taxa to B communities.
Collapse
Affiliation(s)
- Elisa Catão C P
- Laboratoire MAPIEM, EA 4323, Université de Toulon, Toulon, France
| | - Thomas Pollet
- Laboratoire MAPIEM, EA 4323, Université de Toulon, Toulon, France.,UMR ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Cédric Garnier
- Mediterranean Institute of Oceanography, CNRS/INSU, IRD, MIO UM 110, Univ Toulon, Aix Marseille Univ, La Garde, France
| | | | - Karine Rehel
- Institut Européen de la Mer, Université de Bretagne-Sud, EA 3884, LBCM, Lorient, France
| | - Isabelle Linossier
- Institut Européen de la Mer, Université de Bretagne-Sud, EA 3884, LBCM, Lorient, France
| | | | - Jean Turquet
- CITEB/c/o CYROI, Sainte Clotilde, La Réunion, France
| | | |
Collapse
|
44
|
Bunse C, Koch H, Breider S, Simon M, Wietz M. Sweet spheres: succession and CAZyme expression of marine bacterial communities colonizing a mix of alginate and pectin particles. Environ Microbiol 2021; 23:3130-3148. [PMID: 33876546 DOI: 10.1111/1462-2920.15536] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 04/15/2021] [Indexed: 12/24/2022]
Abstract
Polysaccharide particles are important substrates and microhabitats for marine bacteria. However, substrate-specific bacterial dynamics in mixtures of particle types with different polysaccharide composition, as likely occurring in natural habitats, are undescribed. Here, we studied the composition, functional diversity and gene expression of marine bacterial communities colonizing a mix of alginate and pectin particles. Amplicon, metagenome and metatranscriptome sequencing revealed that communities on alginate and pectin particles significantly differed from their free-living counterparts. Unexpectedly, microbial dynamics on alginate and pectin particles were similar, with predominance of amplicon sequence variants (ASVs) from Tenacibaculum, Colwellia, Psychrobium and Psychromonas. Corresponding metagenome-assembled genomes (MAGs) expressed diverse alginate lyases, several colocalized in polysaccharide utilization loci. Only a single, low-abundant MAG showed elevated transcript abundances of pectin-degrading enzymes. One specific Glaciecola ASV dominated the free-living fraction, possibly persisting on particle-derived oligomers through different glycoside hydrolases. Elevated ammonium uptake and metabolism signified nitrogen as an important factor for degrading carbon-rich particles, whereas elevated methylcitrate and glyoxylate cycles suggested nutrient limitation in surrounding waters. The bacterial preference for alginate, whereas pectin primarily served as colonization scaffold, illuminates substrate-driven dynamics within mixed polysaccharide pools. These insights expand our understanding of bacterial niche specialization and the biological carbon pump in macroalgae-rich habitats.
Collapse
Affiliation(s)
- Carina Bunse
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Oldenburg, Germany.,Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Hanna Koch
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.,Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Sven Breider
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Meinhard Simon
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Oldenburg, Germany.,Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Matthias Wietz
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.,Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
45
|
Kong LF, Yan KQ, Xie ZX, He YB, Lin L, Xu HK, Liu SQ, Wang DZ. Metaproteomics Reveals Similar Vertical Distribution of Microbial Transport Proteins in Particulate Organic Matter Throughout the Water Column in the Northwest Pacific Ocean. Front Microbiol 2021; 12:629802. [PMID: 33841356 PMCID: PMC8034268 DOI: 10.3389/fmicb.2021.629802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/18/2021] [Indexed: 11/17/2022] Open
Abstract
Solubilized particulate organic matter (POM) rather than dissolved organic matter (DOM) has been speculated to be the major carbon and energy sources for heterotrophic prokaryotes in the ocean. However, the direct evidence is still lack. Here we characterized microbial transport proteins of POM collected from both euphotic (75 m, deep chlorophyll maximum DCM, and 100 m) and upper-twilight (200 m and 500 m) zones in three contrasting environments in the northwest Pacific Ocean using a metaproteomic approach. The proportion of transport proteins was relatively high at the bottom of the euphotic zone (200 m), indicating that this layer was the most active area of microbe-driven POM remineralization in the water column. In the upper-twilight zone, the predicted substrates of the identified transporters indicated that amino acids, carbohydrates, taurine, inorganic nutrients, urea, biopolymers, and cobalamin were essential substrates for the microbial community. SAR11, Rhodobacterales, Alteromonadales, and Enterobacteriales were the key contributors with the highest expression of transporters. Interestingly, both the taxonomy and function of the microbial communities varied among water layers and sites with different environments; however, the distribution of transporter types and their relevant organic substrates were similar among samples, suggesting that microbial communities took up similar compounds and were functionally redundant in organic matter utilization throughout the water column. The similar vertical distribution of transport proteins from the euphotic zone to the upper twilight zone among the contrasting environments indicated that solubilized POM rather than DOM was the preferable carbon and energy sources for the microbial communities.
Collapse
Affiliation(s)
- Ling-Fen Kong
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | | | - Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | | | - Lin Lin
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | | | | | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
46
|
Raes EJ, Karsh K, Sow SLS, Ostrowski M, Brown MV, van de Kamp J, Franco-Santos RM, Bodrossy L, Waite AM. Metabolic pathways inferred from a bacterial marker gene illuminate ecological changes across South Pacific frontal boundaries. Nat Commun 2021; 12:2213. [PMID: 33850115 PMCID: PMC8044245 DOI: 10.1038/s41467-021-22409-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/09/2021] [Indexed: 02/01/2023] Open
Abstract
Global oceanographic monitoring initiatives originally measured abiotic essential ocean variables but are currently incorporating biological and metagenomic sampling programs. There is, however, a large knowledge gap on how to infer bacterial functions, the information sought by biogeochemists, ecologists, and modelers, from the bacterial taxonomic information (produced by bacterial marker gene surveys). Here, we provide a correlative understanding of how a bacterial marker gene (16S rRNA) can be used to infer latitudinal trends for metabolic pathways in global monitoring campaigns. From a transect spanning 7000 km in the South Pacific Ocean we infer ten metabolic pathways from 16S rRNA gene sequences and 11 corresponding metagenome samples, which relate to metabolic processes of primary productivity, temperature-regulated thermodynamic effects, coping strategies for nutrient limitation, energy metabolism, and organic matter degradation. This study demonstrates that low-cost, high-throughput bacterial marker gene data, can be used to infer shifts in the metabolic strategies at the community scale.
Collapse
Affiliation(s)
- Eric J Raes
- CSIRO Oceans and Atmosphere, Hobart, TAS, Australia.
- Ocean Frontier Institute and Department of Oceanography, Dalhousie University, Halifax, NS, Canada.
| | | | - Swan L S Sow
- CSIRO Oceans and Atmosphere, Hobart, TAS, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Den Burg, The Netherlands
| | - Martin Ostrowski
- Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - Mark V Brown
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | | | - Rita M Franco-Santos
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | | | - Anya M Waite
- Ocean Frontier Institute and Department of Oceanography, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
47
|
Blasche S, Kim Y, Mars RAT, Machado D, Maansson M, Kafkia E, Milanese A, Zeller G, Teusink B, Nielsen J, Benes V, Neves R, Sauer U, Patil KR. Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community. Nat Microbiol 2021; 6:196-208. [PMID: 33398099 PMCID: PMC7610452 DOI: 10.1038/s41564-020-00816-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 10/19/2020] [Indexed: 01/28/2023]
Abstract
Microbial communities often undergo intricate compositional changes yet also maintain stable coexistence of diverse species. The mechanisms underlying long-term coexistence remain unclear as system-wide studies have been largely limited to engineered communities, ex situ adapted cultures or synthetic assemblies. Here, we show how kefir, a natural milk-fermenting community of prokaryotes (predominantly lactic and acetic acid bacteria) and yeasts (family Saccharomycetaceae), realizes stable coexistence through spatiotemporal orchestration of species and metabolite dynamics. During milk fermentation, kefir grains (a polysaccharide matrix synthesized by kefir microorganisms) grow in mass but remain unchanged in composition. In contrast, the milk is colonized in a sequential manner in which early members open the niche for the followers by making available metabolites such as amino acids and lactate. Through metabolomics, transcriptomics and large-scale mapping of inter-species interactions, we show how microorganisms poorly suited for milk survive in-and even dominate-the community, through metabolic cooperation and uneven partitioning between grain and milk. Overall, our findings reveal how inter-species interactions partitioned in space and time lead to stable coexistence.
Collapse
Affiliation(s)
- Sonja Blasche
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yongkyu Kim
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ruben A T Mars
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Daniel Machado
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Eleni Kafkia
- European Molecular Biology Laboratory, Heidelberg, Germany
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | | | - Georg Zeller
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Bas Teusink
- Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Jens Nielsen
- Chalmers University of Technology, Gothenburg, Sweden
| | - Vladimir Benes
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Kiran Raosaheb Patil
- European Molecular Biology Laboratory, Heidelberg, Germany.
- The Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
48
|
Arnosti C, Wietz M, Brinkhoff T, Hehemann JH, Probandt D, Zeugner L, Amann R. The Biogeochemistry of Marine Polysaccharides: Sources, Inventories, and Bacterial Drivers of the Carbohydrate Cycle. ANNUAL REVIEW OF MARINE SCIENCE 2021; 13:81-108. [PMID: 32726567 DOI: 10.1146/annurev-marine-032020-012810] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polysaccharides are major components of macroalgal and phytoplankton biomass and constitute a large fraction of the organic matter produced and degraded in the ocean. Until recently, however, our knowledge of marine polysaccharides was limited due to their great structural complexity, the correspondingly complicated enzymatic machinery used by microbial communities to degrade them, and a lack of readily applied means to isolate andcharacterize polysaccharides in detail. Advances in carbohydrate chemistry, bioinformatics, molecular ecology, and microbiology have led to new insights into the structures of polysaccharides, the means by which they are degraded by bacteria, and the ecology of polysaccharide production and decomposition. Here, we survey current knowledge, discuss recent advances, and present a new conceptual model linking polysaccharide structural complexity and abundance to microbially driven mechanisms of polysaccharide processing. We conclude by highlighting specific future research foci that will shed light on this central but poorly characterized component of the marine carbon cycle.
Collapse
Affiliation(s)
- C Arnosti
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA;
| | - M Wietz
- HGF MPG Joint Research Group for Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany, and Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - T Brinkhoff
- Institute for the Chemistry and Biology of the Marine Environment, University of Oldenburg, 26111 Oldenburg, Germany
| | - J-H Hehemann
- MARUM MPG Bridge Group Marine Glycobiology, Center for Marine Environmental Sciences (MARUM), University of Bremen, and Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - D Probandt
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - L Zeugner
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| | - R Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
| |
Collapse
|
49
|
Cai YM. Non-surface Attached Bacterial Aggregates: A Ubiquitous Third Lifestyle. Front Microbiol 2020; 11:557035. [PMID: 33343514 PMCID: PMC7746683 DOI: 10.3389/fmicb.2020.557035] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/13/2020] [Indexed: 01/03/2023] Open
Abstract
Bacteria are now generally believed to adopt two main lifestyles: planktonic individuals, or surface-attached biofilms. However, in recent years medical microbiologists started to stress that suspended bacterial aggregates are a major form of bacterial communities in chronic infection sites. Despite sharing many similarities with surface-attached biofilms and are thus generally defined as biofilm-like aggregates, these non-attached clumps of cells in vivo show much smaller sizes and different formation mechanisms. Furthermore, ex vivo clinical isolates were frequently reported to be less attached to abiotic surfaces when compared to standard type strains. While this third lifestyle is starting to draw heavy attention in clinical studies, it has a long history in natural and environmental sciences. For example, marine gel particles formed by bacteria attachment to phytoplankton exopolymers have been well documented in oceans; large river and lake snows loaded with bacterial aggregates are frequently found in freshwater systems; multispecies bacterial "flocs" have long been used in wastewater treatment. This review focuses on non-attached aggregates found in a variety of natural and clinical settings, as well as some recent technical developments facilitating aggregate research. The aim is to summarise the characteristics of different types of bacterial aggregates, bridging the knowledge gap, provoking new perspectives for researchers from different fields, and highlighting the importance of more research input in this third lifestyle of bacteria closely relevant to our daily life.
Collapse
Affiliation(s)
- Yu-Ming Cai
- National Biofilms Innovation Centre, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
50
|
Wright RJ, Erni-Cassola G, Zadjelovic V, Latva M, Christie-Oleza JA. Marine Plastic Debris: A New Surface for Microbial Colonization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11657-11672. [PMID: 32886491 DOI: 10.1021/acs.est.0c02305] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plastics become rapidly colonized by microbes when released into marine environments. This microbial community-the Plastisphere-has recently sparked a multitude of scientific inquiries and generated a breadth of knowledge, which we bring together in this review. Besides providing a better understanding of community composition and biofilm development in marine ecosystems, we critically discuss current research on plastic biodegradation and the identification of potentially pathogenic "hitchhikers" in the Plastisphere. The Plastisphere is at the interface between the plastic and its surrounding milieu, and thus drives every interaction that this synthetic material has with its environment, from ecotoxicity and new links in marine food webs to the fate of the plastics in the water column. We conclude that research so far has not shown Plastisphere communities to starkly differ from microbial communities on other inert surfaces, which is particularly true for mature biofilm assemblages. Furthermore, despite progress that has been made in this field, we recognize that it is time to take research on plastic-Plastisphere-environment interactions a step further by identifying present gaps in our knowledge and offering our perspective on key aspects to be addressed by future studies: (I) better physical characterization of marine biofilms, (II) inclusion of relevant controls, (III) study of different successional stages, (IV) use of environmentally relevant concentrations of biofouled microplastics, and (V) prioritization of gaining a mechanistic and functional understanding of Plastisphere communities.
Collapse
Affiliation(s)
- Robyn J Wright
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Gabriel Erni-Cassola
- Man-Society-Environment (MSE) program, University of Basel, Basel 4003, Switzerland
| | - Vinko Zadjelovic
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - Mira Latva
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Joseph A Christie-Oleza
- University of the Balearic Islands, Palma 07122, Spain
- IMEDEA (CSIC-UIB), Esporles 07190, Spain
| |
Collapse
|