1
|
Hsueh YL, Keith D, Chung Y, Gorman SK, Kranz L, Monir S, Kembrey Z, Keizer JG, Rahman R, Simmons MY. Engineering Spin-Orbit Interactions in Silicon Qubits at the Atomic-Scale. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312736. [PMID: 38506626 DOI: 10.1002/adma.202312736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/25/2024] [Indexed: 03/21/2024]
Abstract
Spin-orbit interactions arise whenever the bulk inversion symmetry and/or structural inversion symmetry of a crystal is broken providing a bridge between a qubit's spin and orbital degree of freedom. While strong interactions can facilitate fast qubit operations by all-electrical control, they also provide a mechanism to couple charge noise thereby limiting qubit lifetimes. Previously believed to be negligible in bulk silicon, recent silicon nano-electronic devices have shown larger than bulk spin-orbit coupling strengths from Dresselhaus and Rashba couplings. Here, it is shown that with precision placement of phosphorus atoms in silicon along the [110] direction (without inversion symmetry) or [111] direction (with inversion symmetry), a wide range of Dresselhaus and Rashba coupling strength can be achieved from zero to 1113 × 10-13eV-cm. It is shown that with precision placement of phosphorus atoms, the local symmetry (C2v, D2d, and D3d) can be changed to engineer spin-orbit interactions. Since spin-orbit interactions affect both qubit operation and lifetimes, understanding their impact is essential for quantum processor design.
Collapse
Affiliation(s)
- Yu-Ling Hsueh
- Silicon Quantum Computing Pty Ltd., Level 2, Newton Building, UNSW Sydney, Kensington, NSW, 2052, Australia
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Daniel Keith
- Silicon Quantum Computing Pty Ltd., Level 2, Newton Building, UNSW Sydney, Kensington, NSW, 2052, Australia
- Centre of Excellence for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yousun Chung
- Silicon Quantum Computing Pty Ltd., Level 2, Newton Building, UNSW Sydney, Kensington, NSW, 2052, Australia
- Centre of Excellence for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Samuel K Gorman
- Silicon Quantum Computing Pty Ltd., Level 2, Newton Building, UNSW Sydney, Kensington, NSW, 2052, Australia
- Centre of Excellence for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ludwik Kranz
- Silicon Quantum Computing Pty Ltd., Level 2, Newton Building, UNSW Sydney, Kensington, NSW, 2052, Australia
- Centre of Excellence for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Serajum Monir
- Silicon Quantum Computing Pty Ltd., Level 2, Newton Building, UNSW Sydney, Kensington, NSW, 2052, Australia
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zachary Kembrey
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Joris G Keizer
- Silicon Quantum Computing Pty Ltd., Level 2, Newton Building, UNSW Sydney, Kensington, NSW, 2052, Australia
- Centre of Excellence for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rajib Rahman
- Silicon Quantum Computing Pty Ltd., Level 2, Newton Building, UNSW Sydney, Kensington, NSW, 2052, Australia
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Michelle Y Simmons
- Silicon Quantum Computing Pty Ltd., Level 2, Newton Building, UNSW Sydney, Kensington, NSW, 2052, Australia
- Centre of Excellence for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Dyte HE, Gillard G, Manna S, Covre da Silva SF, Rastelli A, Chekhovich EA. Is Wave Function Collapse Necessary? Explaining Quantum Nondemolition Measurement of a Spin Qubit within Linear Evolution. PHYSICAL REVIEW LETTERS 2024; 132:160804. [PMID: 38701456 DOI: 10.1103/physrevlett.132.160804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/28/2024] [Accepted: 03/14/2024] [Indexed: 05/05/2024]
Abstract
The measurement problem dates back to the dawn of quantum mechanics. Here, we measure a quantum dot electron spin qubit through off-resonant coupling with a highly redundant ancilla, consisting of thousands of nuclear spins. Large redundancy allows for single-shot measurement with high fidelity ≈99.85%. Repeated measurements enable heralded initialization of the qubit and backaction-free detection of electron spin quantum jumps, attributed to burstlike fluctuations in a thermally populated phonon bath. Based on these results we argue that the measurement, linking quantum states to classical observables, can be made without any "wave function collapse" in agreement with the Quantum Darwinism concept.
Collapse
Affiliation(s)
- Harry E Dyte
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - George Gillard
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - Santanu Manna
- Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| | - Saimon F Covre da Silva
- Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| | - Armando Rastelli
- Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| | - Evgeny A Chekhovich
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, United Kingdom
| |
Collapse
|
3
|
Marton V, Sachrajda A, Korkusinski M, Bogan A, Studenikin S. Coherence Characteristics of a GaAs Single Heavy-Hole Spin Qubit Using a Modified Single-Shot Latching Readout Technique. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:950. [PMID: 36903828 PMCID: PMC10005315 DOI: 10.3390/nano13050950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
We present an experimental study of the coherence properties of a single heavy-hole spin qubit formed in one quantum dot of a gated GaAs/AlGaAs double quantum dot device. We use a modified spin-readout latching technique in which the second quantum dot serves both as an auxiliary element for a fast spin-dependent readout within a 200 ns time window and as a register for storing the spin-state information. To manipulate the single-spin qubit, we apply sequences of microwave bursts of various amplitudes and durations to make Rabi, Ramsey, Hahn-echo, and CPMG measurements. As a result of the qubit manipulation protocols combined with the latching spin readout, we determine and discuss the achieved qubit coherence times: T1, TRabi, T2*, and T2CPMG vs. microwave excitation amplitude, detuning, and additional relevant parameters.
Collapse
Affiliation(s)
| | | | | | | | - Sergei Studenikin
- Emerging Technologies Division, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| |
Collapse
|
4
|
Spin relaxation in a single-electron graphene quantum dot. Nat Commun 2022; 13:3637. [PMID: 35752620 PMCID: PMC9233672 DOI: 10.1038/s41467-022-31231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/08/2022] [Indexed: 12/02/2022] Open
Abstract
The relaxation time of a single-electron spin is an important parameter for solid-state spin qubits, as it directly limits the lifetime of the encoded information. Thanks to the low spin-orbit interaction and low hyperfine coupling, graphene and bilayer graphene (BLG) have long been considered promising platforms for spin qubits. Only recently, it has become possible to control single-electrons in BLG quantum dots (QDs) and to understand their spin-valley texture, while the relaxation dynamics have remained mostly unexplored. Here, we report spin relaxation times (T1) of single-electron states in BLG QDs. Using pulsed-gate spectroscopy, we extract relaxation times exceeding 200 μs at a magnetic field of 1.9 T. The T1 values show a strong dependence on the spin splitting, promising even longer T1 at lower magnetic fields, where our measurements are limited by the signal-to-noise ratio. The relaxation times are more than two orders of magnitude larger than those previously reported for carbon-based QDs, suggesting that graphene is a potentially promising host material for scalable spin qubits. Graphene has long been considered to be a promising host for spin qubits, however a demonstration of long spin relaxation times for a potential qubit has been lacking. Here, the authors report the electrical measurement of the single-electron spin relaxation time exceeding 200 μs in a bilayer graphene quantum dot.
Collapse
|
5
|
Kiyama H, Yoshimi K, Kato T, Nakajima T, Oiwa A, Tarucha S. Preparation and Readout of Multielectron High-Spin States in a Gate-Defined GaAs/AlGaAs Quantum Dot. PHYSICAL REVIEW LETTERS 2021; 127:086802. [PMID: 34477427 DOI: 10.1103/physrevlett.127.086802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/05/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
We report the preparation and readout of multielectron high-spin states, a three-electron quartet, and a four-electron quintet, in a gate-defined GaAs/AlGaAs single quantum dot using spin filtering by quantum Hall edge states coupled to the dot. The readout scheme consists of mapping from multielectron to two-electron spin states and a subsequent two-electron spin readout, thus obviating the need to resolve dense multielectron energy levels. Using this technique, we measure the relaxations of the high-spin states and find them to be an order of magnitude faster than those of low-spin states. Numerical calculations of spin relaxation rates using the exact diagonalization method agree with the experiment. The technique developed here offers a new tool for the study and application of high-spin states in quantum dots.
Collapse
Affiliation(s)
- H Kiyama
- SANKEN, Osaka University, Ibaraki, Osaka 567-0047, Japan
- Center for Spintronics Research Network, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - K Yoshimi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - T Kato
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - T Nakajima
- Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan
| | - A Oiwa
- SANKEN, Osaka University, Ibaraki, Osaka 567-0047, Japan
- Center for Spintronics Research Network, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - S Tarucha
- Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
6
|
Camenzind LC, Svab S, Stano P, Yu L, Zimmerman JD, Gossard AC, Loss D, Zumbühl DM. Isotropic and Anisotropic g-Factor Corrections in GaAs Quantum Dots. PHYSICAL REVIEW LETTERS 2021; 127:057701. [PMID: 34397233 DOI: 10.1103/physrevlett.127.057701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/29/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
We experimentally determine isotropic and anisotropic g-factor corrections in lateral GaAs single-electron quantum dots. We extract the Zeeman splitting by measuring the tunnel rates into the individual spin states of an empty quantum dot for an in-plane magnetic field with various strengths and directions. We quantify the Zeeman energy and find a linear dependence on the magnetic field strength that allows us to extract the g factor. The measured g factor is understood in terms of spin-orbit interaction induced isotropic and anisotropic corrections to the GaAs bulk g factor. Experimental detection and identification of minute band-structure effects in the g factor is of significance for spin qubits in GaAs quantum dots.
Collapse
Affiliation(s)
- Leon C Camenzind
- Department of Physics, University of Basel, Basel 4056, Switzerland
| | - Simon Svab
- Department of Physics, University of Basel, Basel 4056, Switzerland
| | - Peter Stano
- Center for Emergent Matter Science, RIKEN, Saitama 351-0198, Japan
- Institute of Physics, Slovak Academy of Sciences, 845 11 Bratislava, Slovakia
| | - Liuqi Yu
- Department of Physics, University of Basel, Basel 4056, Switzerland
| | - Jeramy D Zimmerman
- Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Arthur C Gossard
- Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Daniel Loss
- Department of Physics, University of Basel, Basel 4056, Switzerland
- Center for Emergent Matter Science, RIKEN, Saitama 351-0198, Japan
| | | |
Collapse
|
7
|
Fay TP, Lindoy LP, Manolopoulos DE. Spin relaxation in radical pairs from the stochastic Schrödinger equation. J Chem Phys 2021; 154:084121. [PMID: 33639770 DOI: 10.1063/5.0040519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We show that the stochastic Schrödinger equation (SSE) provides an ideal way to simulate the quantum mechanical spin dynamics of radical pairs. Electron spin relaxation effects arising from fluctuations in the spin Hamiltonian are straightforward to include in this approach, and their treatment can be combined with a highly efficient stochastic evaluation of the trace over nuclear spin states that is required to compute experimental observables. These features are illustrated in example applications to a flavin-tryptophan radical pair of interest in avian magnetoreception and to a problem involving spin-selective radical pair recombination along a molecular wire. In the first of these examples, the SSE is shown to be both more efficient and more widely applicable than a recent stochastic implementation of the Lindblad equation, which only provides a valid treatment of relaxation in the extreme-narrowing limit. In the second, the exact SSE results are used to assess the accuracy of a recently proposed combination of Nakajima-Zwanzig theory for the spin relaxation and Schulten-Wolynes theory for the spin dynamics, which is applicable to radical pairs with many more nuclear spins. We also analyze the efficiency of trace sampling in some detail, highlighting the particular advantages of sampling with SU(N) coherent states.
Collapse
Affiliation(s)
- Thomas P Fay
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Lachlan P Lindoy
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - David E Manolopoulos
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
8
|
Chang M, Hou Z, Wang M, Li C, Lin J. Recent Advances in Hyperthermia Therapy-Based Synergistic Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004788. [PMID: 33289219 DOI: 10.1002/adma.202004788] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Indexed: 06/12/2023]
Abstract
The past decades have witnessed hyperthermia therapy (HTT) as an emerging strategy against malignant tumors. Nanomaterial-based photothermal therapy (PTT) and magnetic hyperthermia (MHT), as highly effective and noninvasive treatment models, offer advantages over other strategies in the treatment of different types of tumors. However, both PTT and MHT cannot completely cure cancer due to recurrence and distal metastasis. In recent years, cancer immunotherapy has attracted widespread attention owing to its capability to activate the body's own natural defense to identify, attack, and eradicate cancer cells. Significant efforts have been devoted to studying the activated immune responses caused by hyperthermia-ablated tumors. In this article, the synergistic mechanism of HTT in immunotherapy, including immunogenic cell death and reversal of the immunosuppressive tumor microenvironment is discussed. The reports of the combination of HTT or HTT-based multimodal therapy with immunotherapy, including immunoadjuvant exploitation, immune checkpoint blockade therapy, and adoptive cellular immunotherapy are summarized. As highlighted, these strategies could achieve synergistically enhanced therapeutic outcomes against both primary tumors and metastatic lesions, prevent cancer recurrence, and prolong the survival period. Finally, current challenges and prospective developments in HTT-synergized immunotherapy are also reviewed.
Collapse
Affiliation(s)
- Mengyu Chang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei, 230026, P. R. China
| | - Zhiyao Hou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangdong, 511436, P. R. China
- Department of Abdominal Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, P. R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Sciences and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
9
|
Moon H, Lennon DT, Kirkpatrick J, van Esbroeck NM, Camenzind LC, Yu L, Vigneau F, Zumbühl DM, Briggs GAD, Osborne MA, Sejdinovic D, Laird EA, Ares N. Machine learning enables completely automatic tuning of a quantum device faster than human experts. Nat Commun 2020; 11:4161. [PMID: 32814777 PMCID: PMC7438325 DOI: 10.1038/s41467-020-17835-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 07/16/2020] [Indexed: 11/28/2022] Open
Abstract
Variability is a problem for the scalability of semiconductor quantum devices. The parameter space is large, and the operating range is small. Our statistical tuning algorithm searches for specific electron transport features in gate-defined quantum dot devices with a gate voltage space of up to eight dimensions. Starting from the full range of each gate voltage, our machine learning algorithm can tune each device to optimal performance in a median time of under 70 minutes. This performance surpassed our best human benchmark (although both human and machine performance can be improved). The algorithm is approximately 180 times faster than an automated random search of the parameter space, and is suitable for different material systems and device architectures. Our results yield a quantitative measurement of device variability, from one device to another and after thermal cycling. Our machine learning algorithm can be extended to higher dimensions and other technologies.
Collapse
Affiliation(s)
- H Moon
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - D T Lennon
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | | | - N M van Esbroeck
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, MB, 5600, The Netherlands
| | - L C Camenzind
- Department of Physics, University of Basel, Basel, 4056, Switzerland
| | - Liuqi Yu
- Department of Physics, University of Basel, Basel, 4056, Switzerland
| | - F Vigneau
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - D M Zumbühl
- Department of Physics, University of Basel, Basel, 4056, Switzerland
| | - G A D Briggs
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - M A Osborne
- Department of Engineering, University of Oxford, Walton Well Road, Oxford, OX2 6ED, UK
| | - D Sejdinovic
- Department of Statistics, University of Oxford, 24-29 St Giles, Oxford, OX1 3LB, UK
| | - E A Laird
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
| | - N Ares
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK.
| |
Collapse
|
10
|
Qiu W, Chen YJ, Sun Y, Xiao JL. The Optical Polaron Effect on the Coherent Time of a qubit in the RbCl Quantum Dot with Two-Dimensional Pseudoharmonic Potential. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2020. [DOI: 10.1007/s40995-020-00923-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Zhang X, Hu RZ, Li HO, Jing FM, Zhou Y, Ma RL, Ni M, Luo G, Cao G, Wang GL, Hu X, Jiang HW, Guo GC, Guo GP. Giant Anisotropy of Spin Relaxation and Spin-Valley Mixing in a Silicon Quantum Dot. PHYSICAL REVIEW LETTERS 2020; 124:257701. [PMID: 32639759 DOI: 10.1103/physrevlett.124.257701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/20/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
In silicon quantum dots (QDs), at a certain magnetic field commonly referred to as the "hot spot," the electron spin relaxation rate (T_{1}^{-1}) can be drastically enhanced due to strong spin-valley mixing. Here, we experimentally find that with a valley splitting of 78.2±1.6 μeV, this hot spot in spin relaxation can be suppressed by more than 2 orders of magnitude when the in-plane magnetic field is oriented at an optimal angle, about 9° from the [100] sample plane. This directional anisotropy exhibits a sinusoidal modulation with a 180° periodicity. We explain the magnitude and phase of this modulation using a model that accounts for both spin-valley mixing and intravalley spin-orbit mixing. The generality of this phenomenon is also confirmed by tuning the electric field and the valley splitting up to 268.5±0.7 μeV.
Collapse
Affiliation(s)
- Xin Zhang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui-Zi Hu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hai-Ou Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fang-Ming Jing
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuan Zhou
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rong-Long Ma
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ming Ni
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Gang Luo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Gang Cao
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Gui-Lei Wang
- Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xuedong Hu
- Department of Physics, University at Buffalo, SUNY, Buffalo, New York 14260, USA
| | - Hong-Wen Jiang
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - Guang-Can Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guo-Ping Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Origin Quantum Computing Company Limited, Hefei, Anhui 230026, China
| |
Collapse
|
12
|
Jones AT, Scheller CP, Prance JR, Kalyoncu YB, Zumbühl DM, Haley RP. Progress in Cooling Nanoelectronic Devices to Ultra-Low Temperatures. JOURNAL OF LOW TEMPERATURE PHYSICS 2020; 201:772-802. [PMID: 33239828 PMCID: PMC7679351 DOI: 10.1007/s10909-020-02472-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
Here we review recent progress in cooling micro-/nanoelectronic devices significantly below 10 mK. A number of groups worldwide are working to produce sub-millikelvin on-chip electron temperatures, motivated by the possibility of observing new physical effects and improving the performance of quantum technologies, sensors and metrological standards. The challenge is a longstanding one, with the lowest reported on-chip electron temperature having remained around 4 mK for more than 15 years. This is despite the fact that microkelvin temperatures have been accessible in bulk materials since the mid-twentieth century. In this review, we describe progress made in the last 5 years using new cooling techniques. Developments have been driven by improvements in the understanding of nanoscale physics, material properties and heat flow in electronic devices at ultralow temperatures and have involved collaboration between universities and institutes, physicists and engineers. We hope that this review will serve as a summary of the current state of the art and provide a roadmap for future developments. We focus on techniques that have shown, in experiment, the potential to reach sub-millikelvin electron temperatures. In particular, we focus on on-chip demagnetisation refrigeration. Multiple groups have used this technique to reach temperatures around 1 mK, with a current lowest temperature below 0.5 mK.
Collapse
Affiliation(s)
- A. T. Jones
- Department of Physics, Lancaster University, Lancaster, LA1 4YB UK
| | - C. P. Scheller
- Department of Physics, University of Basel, 4056 Basel, Switzerland
| | - J. R. Prance
- Department of Physics, Lancaster University, Lancaster, LA1 4YB UK
| | - Y. B. Kalyoncu
- Department of Physics, University of Basel, 4056 Basel, Switzerland
| | - D. M. Zumbühl
- Department of Physics, University of Basel, 4056 Basel, Switzerland
| | - R. P. Haley
- Department of Physics, Lancaster University, Lancaster, LA1 4YB UK
| |
Collapse
|
13
|
Avdeev ID, Smirnov DS. Hyperfine interaction in atomically thin transition metal dichalcogenides. NANOSCALE ADVANCES 2019; 1:2624-2632. [PMID: 36132728 PMCID: PMC9417057 DOI: 10.1039/c8na00360b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/12/2019] [Indexed: 06/11/2023]
Abstract
The spin dynamics of localized charge carriers is mainly driven by hyperfine interaction with nuclear spins. Here we develop a theory of hyperfine interaction in transition metal dichalcogenide monolayers. Using group representation theory and the tight binding model we derive effective Hamiltonians of the intervalley hyperfine interaction in the conduction and valence bands. The spin-valley locking and pronounced spin-orbit splitting lead to a specific form of hyperfine interaction, which we call "helical". We also demonstrate that the hyperfine interaction is noncollinear for chalcogen atoms in the general case. At the same time in the upper valence band the hyperfine interaction is purely of the Ising type, which suggests that the spin-valley polarization of localized holes in transition metal dichalcogenide monolayers can be conserved for a particularly long time.
Collapse
|
14
|
Camenzind LC, Yu L, Stano P, Zimmerman JD, Gossard AC, Loss D, Zumbühl DM. Spectroscopy of Quantum Dot Orbitals with In-Plane Magnetic Fields. PHYSICAL REVIEW LETTERS 2019; 122:207701. [PMID: 31172765 DOI: 10.1103/physrevlett.122.207701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 02/05/2019] [Indexed: 06/09/2023]
Abstract
We show that in-plane magnetic-field-assisted spectroscopy allows extraction of the in-plane orientation and full 3D size parameters of the quantum mechanical orbitals of a single electron GaAs lateral quantum dot with subnanometer precision. The method is based on measuring the orbital energies in a magnetic field with various strengths and orientations in the plane of the 2D electron gas. From such data, we deduce the microscopic confinement potential landscape and quantify the degree by which it differs from a harmonic oscillator potential. The spectroscopy is used to validate shape manipulation with gate voltages, agreeing with expectations from the gate layout. Our measurements demonstrate a versatile tool for quantum dots with one dominant axis of strong confinement.
Collapse
Affiliation(s)
- Leon C Camenzind
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Liuqi Yu
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Peter Stano
- Center for Emergent Matter Science, RIKEN, Saitama 351-0198, Japan
- Department of Applied Physics, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute of Physics, Slovak Academy of Sciences, 845 11 Bratislava, Slovakia
| | - Jeramy D Zimmerman
- Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Arthur C Gossard
- Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Daniel Loss
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
- Center for Emergent Matter Science, RIKEN, Saitama 351-0198, Japan
| | - Dominik M Zumbühl
- Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| |
Collapse
|
15
|
Mills AR, Zajac DM, Gullans MJ, Schupp FJ, Hazard TM, Petta JR. Shuttling a single charge across a one-dimensional array of silicon quantum dots. Nat Commun 2019; 10:1063. [PMID: 30837460 PMCID: PMC6401174 DOI: 10.1038/s41467-019-08970-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/08/2019] [Indexed: 11/09/2022] Open
Abstract
Significant advances have been made towards fault-tolerant operation of silicon spin qubits, with single qubit fidelities exceeding 99.9%, several demonstrations of two-qubit gates based on exchange coupling, and the achievement of coherent single spin-photon coupling. Coupling arbitrary pairs of spatially separated qubits in a quantum register poses a significant challenge as most qubit systems are constrained to two dimensions with nearest neighbor connectivity. For spins in silicon, new methods for quantum state transfer should be developed to achieve connectivity beyond nearest-neighbor exchange. Here we demonstrate shuttling of a single electron across a linear array of nine series-coupled silicon quantum dots in ~50 ns via a series of pairwise interdot charge transfers. By constructing more complex pulse sequences we perform parallel shuttling of two and three electrons at a time through the array. These experiments demonstrate a scalable approach to physically transporting single electrons across large silicon quantum dot arrays.
Collapse
Affiliation(s)
- A R Mills
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - D M Zajac
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - M J Gullans
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - F J Schupp
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - T M Hazard
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - J R Petta
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
16
|
Wang P, Huang K, Sun J, Hu J, Fu H, Lin X. Piezo-driven sample rotation system with ultra-low electron temperature. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:023905. [PMID: 30831686 DOI: 10.1063/1.5083994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
Piezo-driven rotator is convenient for tilted magnetic field experiments due to its precise angle control. However, the rotator itself and the sample mounted on it are difficult to be cooled down because of extra heat leaks and presumably bad thermal contacts from the piezo. Here, we report a piezo-driven sample rotation system designed for ultra-low temperature environment. The sample, as well as the rotating sample holder, can be cooled to as low as 25 mK by customized thermal links and thermal contacts. More importantly, the electron temperature in the electrical transport measurements can also be cooled down to 25 mK with the help of home-made filters. To demonstrate the application of our rotation system at ultra-low electron temperature, a measurement revealing tilt-induced localization and delocalization in the second Landau level of two-dimensional electron gas is provided.
Collapse
Affiliation(s)
- Pengjie Wang
- International Center for Quantum Materials, Peking University, Beijing 100871, China
| | - Ke Huang
- International Center for Quantum Materials, Peking University, Beijing 100871, China
| | - Jian Sun
- International Center for Quantum Materials, Peking University, Beijing 100871, China
| | - Jingjin Hu
- International Center for Quantum Materials, Peking University, Beijing 100871, China
| | - Hailong Fu
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Xi Lin
- International Center for Quantum Materials, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Basu TS, Diesch S, Obergfell M, Demsar J, Scheer E. Energy scales and dynamics of electronic excitations in functionalized gold nanoparticles measured at the single particle level. Phys Chem Chem Phys 2019; 21:13446-13452. [DOI: 10.1039/c9cp02378j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The knowledge of the electronic structure in nanoparticles and their dynamics is a prerequisite to develop miniaturized single electron devices based on nanoparticles.
Collapse
Affiliation(s)
| | - Simon Diesch
- Department of Physics
- University of Konstanz
- 78457 Konstanz
- Germany
| | - Manuel Obergfell
- Institute of Physics
- Johannes Gutenberg-University Mainz
- 55128 Mainz
- Germany
| | - Jure Demsar
- Institute of Physics
- Johannes Gutenberg-University Mainz
- 55128 Mainz
- Germany
| | - Elke Scheer
- Department of Physics
- University of Konstanz
- 78457 Konstanz
- Germany
| |
Collapse
|
18
|
Candido DR, Flatté ME, Egues JC. Blurring the Boundaries Between Topological and Nontopological Phenomena in Dots. PHYSICAL REVIEW LETTERS 2018; 121:256804. [PMID: 30608841 DOI: 10.1103/physrevlett.121.256804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Indexed: 06/09/2023]
Abstract
We investigate the electronic and transport properties of topological and nontopological InAs_{0.85}Bi_{0.15} quantum dots (QDs) described by a ∼30 meV gapped Bernevig-Hughes-Zhang (BHZ) model with cylindrical confinement, i.e., "BHZ dots." Via modified Bessel functions, we analytically show that nontopological dots quite unexpectedly have discrete helical edge states, i.e., Kramers pairs with spin-angular-momentum locking similar to topological dots. These unusual nontopological edge states are geometrically protected due to confinement for a wide range of parameters and remarkably contrast with the bulk-edge correspondence in topological insulators, as no bulk topological invariant guarantees their existence. Moreover, for a conduction window with four edge states, we find that the two-terminal conductance G versus the QD radius R and the gate V_{g} controlling its levels shows a double peak at 2e^{2}/h for both topological and trivial BHZ QDs. This is in stark contrast to conductance measurements in 2D quantum spin Hall and trivial insulators. All of these results were also found in HgTe QDs. Bi-based BHZ dots should also prove important as hosts to room temperature edge spin qubits.
Collapse
Affiliation(s)
- Denis R Candido
- Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970, São Carlos, São Paulo, Brazil
| | - Michael E Flatté
- Department of Physics and Astronomy and Optical Science and Technology Center, University of Iowa, Iowa City, Iowa 52242, USA
- International Institute of Physics, Federal University of Rio Grande do Norte, 59078-970, P.O. Box 1613, Natal, Brazil
| | - J Carlos Egues
- Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970, São Carlos, São Paulo, Brazil
- International Institute of Physics, Federal University of Rio Grande do Norte, 59078-970, P.O. Box 1613, Natal, Brazil
| |
Collapse
|
19
|
Vukušić L, Kukučka J, Watzinger H, Milem JM, Schäffler F, Katsaros G. Single-Shot Readout of Hole Spins in Ge. NANO LETTERS 2018; 18:7141-7145. [PMID: 30359041 PMCID: PMC6243395 DOI: 10.1021/acs.nanolett.8b03217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/02/2018] [Indexed: 06/08/2023]
Abstract
The strong atomistic spin-orbit coupling of holes makes single-shot spin readout measurements difficult because it reduces the spin lifetimes. By integrating the charge sensor into a high bandwidth radio frequency reflectometry setup, we were able to demonstrate single-shot readout of a germanium quantum dot hole spin and measure the spin lifetime. Hole spin relaxation times of about 90 μs at 500 mT are reported, with a total readout visibility of about 70%. By analyzing separately the spin-to-charge conversion and charge readout fidelities, we have obtained insight into the processes limiting the visibilities of hole spins. The analyses suggest that high hole visibilities are feasible at realistic experimental conditions, underlying the potential of hole spins for the realization of viable qubit devices.
Collapse
Affiliation(s)
- Lada Vukušić
- Institute
of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Josip Kukučka
- Institute
of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Hannes Watzinger
- Institute
of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Joshua Michael Milem
- Institute
of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Friedrich Schäffler
- Johannes
Kepler University, Institute of Semiconductor and Solid State Physics, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Georgios Katsaros
- Institute
of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
20
|
Stavrou VN. Spin qubits: spin relaxation in coupled quantum dots. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:455301. [PMID: 30265244 DOI: 10.1088/1361-648x/aae509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The spin-flip scattering mechanism in coupled self-assembled quantum dots made with InAs/GaAs with the use of realistic material parameters is theoretically and numerically investigated. The electron wave functions within the coupled system have been calculated by the 8-band strain dependent [Formula: see text] theory. The phonon coupling to electrons is described by deformation potential and piezoelectric acoustic phonons. First order perturbation theory has been employed to evaluate the spin relaxation rates and spin-flip time T1. The numerical results show that parameters like the interdot distance and the applied static magnetic field are of crucial importance in spin-flip mechanism. The spin relaxation time has been also studied by varying the lattice temperature and by showing the differences between the quantum computing operation temperature ([Formula: see text] K) and large temperatures.
Collapse
Affiliation(s)
- V N Stavrou
- Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242, United States of America
| |
Collapse
|