1
|
Inoue Y, Ogawa J, Morita H, Sakaue K, Wakayama T, Higashiguchi T. Megahertz detection of spectroscopic polarization by a time-encoded supercontinuum vector beam. APPLIED OPTICS 2024; 63:423-428. [PMID: 38227238 DOI: 10.1364/ao.503943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024]
Abstract
We demonstrated a 40-MHz detection of spectroscopic polarization by a supercontinuum vector beam with a wavelength-dependent polarization state. To achieve the high-repetition-rate measurement, we detected the rotation angle of polarization and the spectrum by measuring the temporal waveform using a photodetector after expanding the pulse duration of the supercontinuum vector beam. The spectrum of the supercontinuum vector beam was measured using a spectrometer. We compared it with the temporal waveforms, confirming a good agreement of spectra between the conventional spectrometer and the temporal waveforms. The detection method is useful for many applications requiring high-repetition-rate spectroscopic-polarization measurements, such as the defect inspection of thin optical materials.
Collapse
|
2
|
Nishihara T, Takakura A, Shimasaki M, Matsuda K, Tanaka T, Kataura H, Miyauchi Y. Empirical formulation of broadband complex refractive index spectra of single-chirality carbon nanotube assembly. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:1011-1020. [PMID: 39634467 PMCID: PMC11501240 DOI: 10.1515/nanoph-2021-0728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 12/07/2024]
Abstract
Assemblies of single-walled carbon nanotubes with a specific chiral structure are promising future optofunctional materials because of their strong light-matter coupling arising from sharp optical resonances of quasi-one-dimensional excitons. Their strong optical resonances, which lie in the infrared-to-visible wavelength region, can be selected by their chiralities, and this selectivity promises a wide range of applications including photonic and thermo-optic devices. However, the broadband complex optical spectra of single-chirality carbon nanotube assemblies are scarce in the literature, which has prevented researchers and engineers from designing devices using them. Here, we experimentally determine broadband complex refractive index spectra of single-chirality carbon nanotube assemblies. Free-standing carbon nanotube membranes and those placed on sapphire substrates were fabricated via filtration of the nanotube solution prepared by the separation method using gel chromatography. Transmission and reflection spectra were measured in the mid-infrared to visible wavelength region, and the complex refractive indices of nanotube assemblies were determined as a function of photon energy. The real and imaginary parts of the refractive indices of the nanotube membrane with a bulk density of 1 g cm-3 at the first subband exciton resonance were determined to be approximately 2.7-3.6 and 1.3i-2.4i, respectively. We propose an empirical formula that phenomenologically describes the complex refractive index spectra of various single-chirality nanotube membranes, which can facilitate the design of photonic devices using carbon nanotubes as the material.
Collapse
Affiliation(s)
- Taishi Nishihara
- Institute of Advanced Energy, Kyoto University, Uji611-0011, Kyoto, Japan
| | - Akira Takakura
- Institute of Advanced Energy, Kyoto University, Uji611-0011, Kyoto, Japan
| | - Masafumi Shimasaki
- Institute of Advanced Energy, Kyoto University, Uji611-0011, Kyoto, Japan
| | - Kazunari Matsuda
- Institute of Advanced Energy, Kyoto University, Uji611-0011, Kyoto, Japan
| | - Takeshi Tanaka
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba305-8565, Ibaraki, Japan
| | - Hiromichi Kataura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba305-8565, Ibaraki, Japan
| | - Yuhei Miyauchi
- Institute of Advanced Energy, Kyoto University, Uji611-0011, Kyoto, Japan
| |
Collapse
|
3
|
Konabe S, Nishihara T, Miyauchi Y. Theory of exciton thermal radiation in semiconducting single-walled carbon nanotubes. OPTICS LETTERS 2021; 46:3021-3024. [PMID: 34197369 DOI: 10.1364/ol.430011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Spectral control of thermal radiation is an essential strategy for highly efficient and functional utilization of thermal radiation energy. Among the various proposed methods, quantum confinement in low-dimensional materials is promising because of its inherent ability to emit narrowband thermal radiation. Here, we theoretically investigate thermal radiation from one-dimensional (1D) semiconductors characterized by the strong quantum correlation effect due to the Coulomb interaction. We derive a simple and useful formula for the emissivity, which is then used to calculate the thermal radiation spectrum of semiconducting single-walled carbon nanotubes as a representative of 1D semiconductors. The calculations show that the exciton state, which is an electron-hole pair mutually bound by the Coulomb interaction, causes enhancement of the radiation spectrum peak and significant narrowing of its linewidth in the near-infrared wavelength range. The theory developed here will be a firm foundation for exciton thermal radiation in 1D semiconductors, which is expected to lead to new energy harvesting technologies.
Collapse
|
4
|
Abdelsalam H, Saroka VA, Atta MM, Osman W, Zhang Q. Tunable electro-optical properties of doped chiral graphene nanoribbons. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Wang X, Wang Y, Gao W, Song L, Ran C, Chen Y, Huang W. Polarization-Sensitive Halide Perovskites for Polarized Luminescence and Detection: Recent Advances and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003615. [PMID: 33586290 DOI: 10.1002/adma.202003615] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/11/2020] [Indexed: 05/21/2023]
Abstract
While halide perovskites (HPs) have achieved enormous success in the field of optoelectronic applications, much attention has been recently drawn to the unique polarization sensitivity of HPs, either intrinsic or extrinsic, which makes HPs a potential candidate for innovative applications in directly polarized luminescence and detection. Herein, the research status in the field of polarization-sensitive HPs, including linear polarization and circular polarization, is comprehensively summarized. To evaluate the effectiveness of HPs in generating and detecting linearly or circularly polarized light, the principles and characterization methods of polarized luminescence and detection are introduced. Sequentially, the state-of-the-art development of the strategies that induce the linear or circular polarization characteristics of HPs is systematically reviewed, based on which the application of polarization-sensitive HPs in the field of polarization luminescence and detection are summarized. Moreover, the current challenges and opportunities are discussed, and prospects of the future development in this promising field are outlined.
Collapse
Affiliation(s)
- Xiaobo Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Yue Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Weiyin Gao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Lin Song
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Chenxin Ran
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Yonghua Chen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) & Institution of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) & Institution of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
6
|
Yang F, Wang M, Zhang D, Yang J, Zheng M, Li Y. Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization. Chem Rev 2020; 120:2693-2758. [PMID: 32039585 DOI: 10.1021/acs.chemrev.9b00835] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) have been attracting tremendous attention owing to their structure (chirality) dependent outstanding properties, which endow them with great potential in a wide range of applications. The preparation of chirality-pure SWCNTs is not only a great scientific challenge but also a crucial requirement for many high-end applications. As such, research activities in this area over the last two decades have been very extensive. In this review, we summarize recent achievements and accumulated knowledge thus far and discuss future developments and remaining challenges from three aspects: controlled growth, postsynthesis sorting, and characterization techniques. In the growth part, we focus on the mechanism of chirality-controlled growth and catalyst design. In the sorting part, we organize and analyze existing literature based on sorting targets rather than methods. Since chirality assignment and quantification is essential in the study of selective preparation, we also include in the last part a comprehensive description and discussion of characterization techniques for SWCNTs. It is our view that even though progress made in this area is impressive, more efforts are still needed to develop both methodologies for preparing ultrapure (e.g., >99.99%) SWCNTs in large quantity and nondestructive fast characterization techniques with high spatial resolution for various nanotube samples.
Collapse
Affiliation(s)
- Feng Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meng Wang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Daqi Zhang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Juan Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Yan Li
- Beijing National Laboratory for Molecular Science, Key Laboratory for the Physics and Chemistry of Nanodevices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
2N+4-rule and an atlas of bulk optical resonances of zigzag graphene nanoribbons. Nat Commun 2020; 11:82. [PMID: 31900390 PMCID: PMC6941967 DOI: 10.1038/s41467-019-13728-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/21/2019] [Indexed: 11/08/2022] Open
Abstract
Development of on-chip integrated carbon-based optoelectronic nanocircuits requires fast and non-invasive structural characterization of their building blocks. Recent advances in synthesis of single wall carbon nanotubes and graphene nanoribbons allow for their use as atomically precise building blocks. However, while cataloged experimental data are available for the structural characterization of carbon nanotubes, such an atlas is absent for graphene nanoribbons. Here we theoretically investigate the optical absorption resonances of armchair carbon nanotubes and zigzag graphene nanoribbons continuously spanning the tube (ribbon) transverse sizes from 0.5(0.4) nm to 8.1(12.8) nm. We show that the linear mapping is guaranteed between the tube and ribbon bulk resonance when the number of atoms in the tube unit cell is [Formula: see text], where [Formula: see text] is the number of atoms in the ribbon unit cell. Thus, an atlas of carbon nanotubes optical transitions can be mapped to an atlas of zigzag graphene nanoribbons.
Collapse
|