1
|
Cruz-Gamero JM, Ballardin D, Lecis B, Zhang CL, Cobret L, Gast A, Morisset-Lopez S, Piskorowski R, Langui D, Jose J, Chevreux G, Rebholz H. Missense mutation in the activation segment of the kinase CK2 models Okur-Chung neurodevelopmental disorder and alters the hippocampal glutamatergic synapse. Mol Psychiatry 2024:10.1038/s41380-024-02762-8. [PMID: 39367055 DOI: 10.1038/s41380-024-02762-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 09/14/2024] [Accepted: 09/23/2024] [Indexed: 10/06/2024]
Abstract
Exome sequencing has enabled the identification of causative genes of monogenic forms of autism, amongst them, in 2016, CSNK2A1, the gene encoding the catalytic subunit of the kinase CK2, linking this kinase to Okur-Chung Neurodevelopmental Syndrome (OCNDS), a newly described neurodevelopmental condition with many symptoms resembling those of autism spectrum disorder. Thus far, no preclinical model of this condition exists. Here we describe a knock-in mouse model that harbors the K198R mutation in the activation segment of the α subunit of CK2. This region is a mutational hotspot, representing one-third of patients. These mice exhibit behavioral phenotypes that mirror patient symptoms. Homozygous knock-in mice die mid-gestation while heterozygous knock-in mice are born at half of the expected mendelian ratio and are smaller in weight and size than wildtype littermates. Heterozygous knock-in mice showed alterations in cognition and memory-assessing paradigms, enhanced stereotypies, altered circadian activity patterns, and nesting behavior. Phosphoproteome analysis from brain tissue revealed alterations in the phosphorylation status of major pre- and postsynaptic proteins of heterozygous knock-in mice. In congruence, we detect reduced synaptic maturation in hippocampal neurons and attenuated long-term potentiation in the hippocampus of knock-in mice. Taken together, heterozygous knock-in mice (CK2αK198R/+) exhibit significant face validity, presenting ASD-relevant phenotypes, synaptic deficits, and alterations in synaptic plasticity, all of which strongly validate this line as a mouse model of OCNDS.
Collapse
Affiliation(s)
- Jose M Cruz-Gamero
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014, Paris, France
| | - Demetra Ballardin
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014, Paris, France
| | - Barbara Lecis
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France
| | - Chun-Lei Zhang
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014, Paris, France
| | - Laetitia Cobret
- Center for Molecular Biophysics-CNRS UPR 4301, Rue Charles Sadron, Orléans, France
| | - Alexander Gast
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, University of Münster, Münster, Germany
| | | | - Rebecca Piskorowski
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014, Paris, France
| | - Dominique Langui
- Inserm, Institut du Cerveau, Plateforme ICM-Quant, Paris, France
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, Pharmacampus, University of Münster, Münster, Germany
| | | | - Heike Rebholz
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Laboratory of Signaling mechanisms in neurological disorders, 75014, Paris, France.
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France.
- Center of Neurodegeneration, Faculty of Medicine, Danube Private University, Krems, Austria.
| |
Collapse
|
2
|
Miranda R, Ceschi L, Le Verger D, Nagapin F, Edeline JM, Chaussenot R, Vaillend C. Social and emotional alterations in mice lacking the short dystrophin-gene product, Dp71. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:21. [PMID: 39182120 PMCID: PMC11344925 DOI: 10.1186/s12993-024-00246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND The Duchenne and Becker muscular dystrophies (DMD, BMD) are neuromuscular disorders commonly associated with diverse cognitive and behavioral comorbidities. Genotype-phenotype studies suggest that severity and risk of central defects in DMD patients increase with cumulative loss of different dystrophins produced in CNS from independent promoters of the DMD gene. Mutations affecting all dystrophins are nevertheless rare and therefore the clinical evidence on the contribution of the shortest Dp71 isoform to cognitive and behavioral dysfunctions is limited. In this study, we evaluated social, emotional and locomotor functions, and fear-related learning in the Dp71-null mouse model specifically lacking this short dystrophin. RESULTS We demonstrate the presence of abnormal social behavior and ultrasonic vocalization in Dp71-null mice, accompanied by slight changes in exploratory activity and anxiety-related behaviors, in the absence of myopathy and alterations of learning and memory of aversive cue-outcome associations. CONCLUSIONS These results support the hypothesis that distal DMD gene mutations affecting Dp71 may contribute to the emergence of social and emotional problems that may relate to the autistic traits and executive dysfunctions reported in DMD. The present alterations in Dp71-null mice may possibly add to the subtle social behavior problems previously associated with the loss of the Dp427 dystrophin, in line with the current hypothesis that risk and severity of behavioral problems in patients increase with cumulative loss of several brain dystrophin isoforms.
Collapse
Affiliation(s)
- Rubén Miranda
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France.
- Department of Psychobiology and Methodology in Behavioral Sciences, Universidad Complutense de Madrid, Ciudad Universitaria, 28040, Madrid, Spain.
| | - Léa Ceschi
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France
| | - Delphine Le Verger
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France
| | - Flora Nagapin
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France
| | - Jean-Marc Edeline
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France
| | - Rémi Chaussenot
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France
| | - Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France.
| |
Collapse
|
3
|
Sheng M, Huo S, Jia L, Weng Y, Liu W, Lin Y, Yu W. NUAK1 promotes metabolic dysfunction-associated steatohepatitis progression by activating Caspase 6-driven pyroptosis and inflammation. Hepatol Commun 2024; 8:e0479. [PMID: 38967580 PMCID: PMC11227355 DOI: 10.1097/hc9.0000000000000479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/14/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND lNUAK1 is strongly associated with organ fibrosis, but its causal mechanism for modulating lipid metabolism and hepatic inflammation underlying MASH has not been fully clarified. METHOD In our study, human liver tissues from patients with MASH and control subjects were obtained to evaluate NUAK1 expression. MASH models were established using C57BL/6 mice. Liver damage and molecular mechanisms of the NUAK1-Caspase 6 signaling were tested in vivo and in vitro. RESULTS In the clinical arm, NUAK1 expression was upregulated in liver samples from patients with MASH. Moreover, increased NUAK1 was detected in mouse MASH models. NUAK1 inhibition ameliorated steatohepatitis development in MASH mice accompanied by the downregulation of hepatic steatosis and fibrosis. Intriguingly, NUAK1 was found to facilitate Caspase 6 activation and trigger pyroptosis in MASH-stressed livers. Disruption of hepatocytes Caspase 6 decreased MASH-induced liver inflammation with upregulated TAK1 but diminished RIPK1. Moreover, we found that NUAK1/Caspase 6 axis inhibition could accelerate the interaction between TAK1 and RIPK1, which in turn led to the degradation of RIPK1. CONCLUSIONS In summary, our study elucidates that NUAK1-Caspase 6 signaling controls inflammation activation in MASH through the interaction between TAK1 and RIPK1, which is crucial for controlling pyroptosis and promoting the progression of MASH.
Collapse
Affiliation(s)
- Mingwei Sheng
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Shuhan Huo
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Lili Jia
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Yiqi Weng
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Weihua Liu
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Yuanbang Lin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenli Yu
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
4
|
Lanfranchi M, Yandiev S, Meyer-Dilhet G, Ellouze S, Kerkhofs M, Dos Reis R, Garcia A, Blondet C, Amar A, Kneppers A, Polvèche H, Plassard D, Foretz M, Viollet B, Sakamoto K, Mounier R, Bourgeois CF, Raineteau O, Goillot E, Courchet J. The AMPK-related kinase NUAK1 controls cortical axons branching by locally modulating mitochondrial metabolic functions. Nat Commun 2024; 15:2487. [PMID: 38514619 PMCID: PMC10958033 DOI: 10.1038/s41467-024-46146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
The cellular mechanisms underlying axonal morphogenesis are essential to the formation of functional neuronal networks. We previously identified the autism-linked kinase NUAK1 as a central regulator of axon branching through the control of mitochondria trafficking. However, (1) the relationship between mitochondrial position, function and axon branching and (2) the downstream effectors whereby NUAK1 regulates axon branching remain unknown. Here, we report that mitochondria recruitment to synaptic boutons supports collateral branches stabilization rather than formation in mouse cortical neurons. NUAK1 deficiency significantly impairs mitochondrial metabolism and axonal ATP concentration, and upregulation of mitochondrial function is sufficient to rescue axonal branching in NUAK1 null neurons in vitro and in vivo. Finally, we found that NUAK1 regulates axon branching through the mitochondria-targeted microprotein BRAWNIN. Our results demonstrate that NUAK1 exerts a dual function during axon branching through its ability to control mitochondrial distribution and metabolic activity.
Collapse
Affiliation(s)
- Marine Lanfranchi
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Sozerko Yandiev
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Géraldine Meyer-Dilhet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Salma Ellouze
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Martijn Kerkhofs
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Raphael Dos Reis
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Audrey Garcia
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Camille Blondet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Alizée Amar
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Anita Kneppers
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Hélène Polvèche
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allée d'Italie F-69364, Lyon, France
- CECS/AFM, I-STEM, 28 rue Henri Desbruères, F-91100, Corbeil-Essonnes, France
| | - Damien Plassard
- CNRS UMR 7104, INSERM U1258, GenomEast Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Marc Foretz
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Benoit Viollet
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, 2200, Denmark
| | - Rémi Mounier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Cyril F Bourgeois
- Laboratoire de Biologie et Modelisation de la Cellule, Ecole Normale Superieure de Lyon, CNRS, UMR 5239, Inserm, U1293, Universite Claude Bernard Lyon 1, 46 allée d'Italie F-69364, Lyon, France
| | - Olivier Raineteau
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Evelyne Goillot
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France
| | - Julien Courchet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène, 69008, Lyon, France.
| |
Collapse
|
5
|
Wainberg M, Forde NJ, Mansour S, Kerrebijn I, Medland SE, Hawco C, Tripathy SJ. Genetic architecture of the structural connectome. Nat Commun 2024; 15:1962. [PMID: 38438384 PMCID: PMC10912129 DOI: 10.1038/s41467-024-46023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Myelinated axons form long-range connections that enable rapid communication between distant brain regions, but how genetics governs the strength and organization of these connections remains unclear. We perform genome-wide association studies of 206 structural connectivity measures derived from diffusion magnetic resonance imaging tractography of 26,333 UK Biobank participants, each representing the density of myelinated connections within or between a pair of cortical networks, subcortical structures or cortical hemispheres. We identify 30 independent genome-wide significant variants after Bonferroni correction for the number of measures studied (126 variants at nominal genome-wide significance) implicating genes involved in myelination (SEMA3A), neurite elongation and guidance (NUAK1, STRN, DPYSL2, EPHA3, SEMA3A, HGF, SHTN1), neural cell proliferation and differentiation (GMNC, CELF4, HGF), neuronal migration (CCDC88C), cytoskeletal organization (CTTNBP2, MAPT, DAAM1, MYO16, PLEC), and brain metal transport (SLC39A8). These variants have four broad patterns of spatial association with structural connectivity: some have disproportionately strong associations with corticothalamic connectivity, interhemispheric connectivity, or both, while others are more spatially diffuse. Structural connectivity measures are highly polygenic, with a median of 9.1 percent of common variants estimated to have non-zero effects on each measure, and exhibited signatures of negative selection. Structural connectivity measures have significant genetic correlations with a variety of neuropsychiatric and cognitive traits, indicating that connectivity-altering variants tend to influence brain health and cognitive function. Heritability is enriched in regions with increased chromatin accessibility in adult oligodendrocytes (as well as microglia, inhibitory neurons and astrocytes) and multiple fetal cell types, suggesting that genetic control of structural connectivity is partially mediated by effects on myelination and early brain development. Our results indicate pervasive, pleiotropic, and spatially structured genetic control of white-matter structural connectivity via diverse neurodevelopmental pathways, and support the relevance of this genetic control to healthy brain function.
Collapse
Affiliation(s)
- Michael Wainberg
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| | - Natalie J Forde
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Salim Mansour
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Isabel Kerrebijn
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Psychology, University of Queensland, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Colin Hawco
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | - Shreejoy J Tripathy
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
O'Connor M, Qiao H, Odamah K, Cerdeira PC, Man HY. Heterozygous Nexmif female mice demonstrate mosaic NEXMIF expression, autism-like behaviors, and abnormalities in dendritic arborization and synaptogenesis. Heliyon 2024; 10:e24703. [PMID: 38322873 PMCID: PMC10844029 DOI: 10.1016/j.heliyon.2024.e24703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/28/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a strong genetic basis. ASDs are commonly characterized by impairments in language, restrictive and repetitive behaviors, and deficits in social interactions. Although ASD is a highly heterogeneous disease with many different genes implicated in its etiology, many ASD-associated genes converge on common cellular defects, such as aberrant neuronal morphology and synapse dysregulation. Our previous work revealed that, in mice, complete loss of the ASD-associated X-linked gene NEXMIF results in a reduction in dendritic complexity, a decrease in spine and synapse density, altered synaptic transmission, and ASD-like behaviors. Interestingly, human females of NEXMIF haploinsufficiency have recently been reported to demonstrate autistic features; however, the cellular and molecular basis for this haploinsufficiency-caused ASD remains unclear. Here we report that in the brains of Nexmif± female mice, NEXMIF shows a mosaic pattern in its expression in neurons. Heterozygous female mice demonstrate behavioral impairments similar to those of knockout male mice. In the mosaic mixture of neurons from Nexmif± mice, cells that lack NEXMIF have impairments in dendritic arborization and spine development. Remarkably, the NEXMIF-expressing neurons from Nexmif± mice also demonstrate similar defects in dendritic growth and spine formation. These findings establish a novel mouse model of NEXMIF haploinsufficiency and provide new insights into the pathogenesis of NEXMIF-dependent ASD.
Collapse
Affiliation(s)
- Margaret O'Connor
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Hui Qiao
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - KathrynAnn Odamah
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | | | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, Boston, MA 02215, USA
| |
Collapse
|
7
|
Taylor LW, Simzer EM, Pimblett C, Lacey-Solymar OTT, McGeachan RI, Meftah S, Rose JL, Spires-Jones MP, Holt K, Catterson JH, Koch H, Liaquat I, Clarke JH, Skidmore J, Smith C, Booker SA, Brennan PM, Spires-Jones TL, Durrant CS. p-tau Ser356 is associated with Alzheimer's disease pathology and is lowered in brain slice cultures using the NUAK inhibitor WZ4003. Acta Neuropathol 2024; 147:7. [PMID: 38175261 PMCID: PMC10766794 DOI: 10.1007/s00401-023-02667-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/14/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
Tau hyperphosphorylation and aggregation is a common feature of many dementia-causing neurodegenerative diseases. Tau can be phosphorylated at up to 85 different sites, and there is increasing interest in whether tau phosphorylation at specific epitopes, by specific kinases, plays an important role in disease progression. The AMP-activated protein kinase (AMPK)-related enzyme NUAK1 has been identified as a potential mediator of tau pathology, whereby NUAK1-mediated phosphorylation of tau at Ser356 prevents the degradation of tau by the proteasome, further exacerbating tau hyperphosphorylation and accumulation. This study provides a detailed characterisation of the association of p-tau Ser356 with progression of Alzheimer's disease pathology, identifying a Braak stage-dependent increase in p-tau Ser356 protein levels and an almost ubiquitous presence in neurofibrillary tangles. We also demonstrate, using sub-diffraction-limit resolution array tomography imaging, that p-tau Ser356 co-localises with synapses in AD postmortem brain tissue, increasing evidence that this form of tau may play important roles in AD progression. To assess the potential impacts of pharmacological NUAK inhibition in an ex vivo system that retains multiple cell types and brain-relevant neuronal architecture, we treated postnatal mouse organotypic brain slice cultures from wildtype or APP/PS1 littermates with the commercially available NUAK1/2 inhibitor WZ4003. Whilst there were no genotype-specific effects, we found that WZ4003 results in a culture-phase-dependent loss of total tau and p-tau Ser356, which corresponds with a reduction in neuronal and synaptic proteins. By contrast, application of WZ4003 to live human brain slice cultures results in a specific lowering of p-tau Ser356, alongside increased neuronal tubulin protein. This work identifies differential responses of postnatal mouse organotypic brain slice cultures and adult human brain slice cultures to NUAK1 inhibition that will be important to consider in future work developing tau-targeting therapeutics for human disease.
Collapse
Affiliation(s)
- Lewis W Taylor
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Elizabeth M Simzer
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Claire Pimblett
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | | | - Robert I McGeachan
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- The Hospital for Small Animals, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Soraya Meftah
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jamie L Rose
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | | | - Kristján Holt
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - James H Catterson
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Henner Koch
- Department of Neurology, Epileptology, RWTH Aachen University Hospital, 52074, Aachen, Germany
| | - Imran Liaquat
- Department of Clinical Neuroscience, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, UK
| | - Jonathan H Clarke
- The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
| | - John Skidmore
- The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
| | - Colin Smith
- The Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Sam A Booker
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, The University of Edinburgh, Edinburgh, UK
| | - Paul M Brennan
- Department of Clinical Neuroscience, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, UK
- The Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Cancer Research UK Brain Tumour Centre of Excellence, CRUK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Claire S Durrant
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK.
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
8
|
Lu M, Feng R, Zhang C, Xiao Y, Yin C. Identifying Novel Drug Targets for Epilepsy Through a Brain Transcriptome-Wide Association Study and Protein-Wide Association Study with Chemical-Gene-Interaction Analysis. Mol Neurobiol 2023; 60:5055-5066. [PMID: 37246165 PMCID: PMC10415436 DOI: 10.1007/s12035-023-03382-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/04/2023] [Indexed: 05/30/2023]
Abstract
Epilepsy is a severe neurological condition affecting 50-65 million individuals worldwide that can lead to brain damage. Nevertheless, the etiology of epilepsy remains poorly understood. Meta-analyses of genome-wide association studies involving 15,212 epilepsy cases and 29,677 controls of the ILAE Consortium cohort were used to conduct transcriptome-wide association studies (TWAS) and protein-wide association studies (PWAS). Furthermore, a protein-protein interaction (PPI) network was generated using the STRING database, and significant epilepsy-susceptible genes were verified using chip data. Chemical-related gene set enrichment analysis (CGSEA) was performed to determine novel drug targets for epilepsy. TWAS analysis identified 21,170 genes, of which 58 were significant (TWASfdr < 0.05) in ten brain regions, and 16 differentially expressed genes were verified based on mRNA expression profiles. The PWAS identified 2249 genes, of which 2 were significant (PWASfdr < 0.05). Through chemical-gene set enrichment analysis, 287 environmental chemicals associated with epilepsy were identified. We identified five significant genes (WIPF1, IQSEC1, JAM2, ICAM3, and ZNF143) that had causal relationships with epilepsy. CGSEA identified 159 chemicals that were significantly correlated with epilepsy (Pcgsea < 0.05), such as pentobarbital, ketone bodies, and polychlorinated biphenyl. In summary, we performed TWAS, PWAS (for genetic factors), and CGSEA (for environmental factors) analyses and identified several epilepsy-associated genes and chemicals. The results of this study will contribute to our understanding of genetic and environmental factors for epilepsy and may predict novel drug targets.
Collapse
Affiliation(s)
- Mengnan Lu
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710054, Shanxi, China
| | - Ruoyang Feng
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shanxi, China
| | - Chenglin Zhang
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710054, Shanxi, China
| | - Yanfeng Xiao
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710054, Shanxi, China.
| | - Chunyan Yin
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710054, Shanxi, China.
| |
Collapse
|
9
|
Bennison SA, Liu X, Toyo-Oka K. Nuak kinase signaling in development and disease of the central nervous system. Cell Signal 2022; 100:110472. [PMID: 36122883 DOI: 10.1016/j.cellsig.2022.110472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 01/14/2023]
Abstract
Protein kinases represent important signaling hubs for a variety of biological functions. Many kinases are traditionally studied for their roles in cancer cell biology, but recent advances in neuroscience research show repurposed kinase function to be important for nervous system development and function. Two members of the AMP-activated protein kinase (AMPK) related family, NUAK1 and NUAK2, have drawn attention in neuroscience due to their mutations in autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), schizophrenia, and intellectual disability (ID). Furthermore, Nuak kinases have also been implicated in tauopathy and other disorders of aging. This review highlights what is known about the Nuak kinases in nervous system development and disease and explores the possibility of Nuak kinases as targets for therapeutic innovation.
Collapse
Affiliation(s)
- Sarah A Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Xiaonan Liu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
10
|
Sun BB, Loomis SJ, Pizzagalli F, Shatokhina N, Painter JN, Foley CN, Jensen ME, McLaren DG, Chintapalli SS, Zhu AH, Dixon D, Islam T, Ba Gari I, Runz H, Medland SE, Thompson PM, Jahanshad N, Whelan CD. Genetic map of regional sulcal morphology in the human brain from UK biobank data. Nat Commun 2022; 13:6071. [PMID: 36241887 PMCID: PMC9568560 DOI: 10.1038/s41467-022-33829-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
Genetic associations with macroscopic brain structure can provide insights into brain function and disease. However, specific associations with measures of local brain folding are largely under-explored. Here, we conducted large-scale genome- and exome-wide associations of regional cortical sulcal measures derived from magnetic resonance imaging scans of 40,169 individuals in UK Biobank. We discovered 388 regional brain folding associations across 77 genetic loci, with genes in associated loci enriched for expression in the cerebral cortex, neuronal development processes, and differential regulation during early brain development. We integrated brain eQTLs to refine genes for various loci, implicated several genes involved in neurodevelopmental disorders, and highlighted global genetic correlations with neuropsychiatric phenotypes. We provide an interactive 3D visualisation of our summary associations, emphasising added resolution of regional analyses. Our results offer new insights into the genetic architecture of brain folding and provide a resource for future studies of sulcal morphology in health and disease.
Collapse
Affiliation(s)
- Benjamin B Sun
- Translational Biology, Research & Development, Biogen Inc., Cambridge, MA, US.
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| | - Stephanie J Loomis
- Translational Biology, Research & Development, Biogen Inc., Cambridge, MA, US
| | - Fabrizio Pizzagalli
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Natalia Shatokhina
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Jodie N Painter
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Christopher N Foley
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Optima Partners, Edinburgh, UK
| | - Megan E Jensen
- Clinical Sciences, Research & Development, Biogen Inc., Cambridge, MA, US
| | - Donald G McLaren
- Clinical Sciences, Research & Development, Biogen Inc., Cambridge, MA, US
| | | | - Alyssa H Zhu
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Daniel Dixon
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Tasfiya Islam
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Iyad Ba Gari
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Heiko Runz
- Translational Biology, Research & Development, Biogen Inc., Cambridge, MA, US
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US.
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US.
| | | |
Collapse
|
11
|
Di Meo D, Ravindran P, Sadhanasatish T, Dhumale P, Püschel AW. The balance of mitochondrial fission and fusion in cortical axons depends on the kinases SadA and SadB. Cell Rep 2021; 37:110141. [PMID: 34936879 DOI: 10.1016/j.celrep.2021.110141] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/17/2021] [Accepted: 11/29/2021] [Indexed: 01/21/2023] Open
Abstract
Neurons are highly polarized cells that display characteristic differences in the organization of their organelles in axons and dendrites. The kinases SadA and SadB (SadA/B) promote the formation of distinct axonal and dendritic extensions during the development of cortical and hippocampal neurons. Here, we show that SadA/B are required for the specific dynamics of axonal mitochondria. Ankyrin B (AnkB) stimulates the activity of SadA/B that function as regulators of mitochondrial dynamics through the phosphorylation of tau. Suppression of SadA/B or AnkB in cortical neurons induces the elongation of mitochondria by disrupting the balance of fission and fusion. SadA/B-deficient neurons show an accumulation of hyper-fused mitochondria and activation of the integrated stress response (ISR). The normal dynamics of axonal mitochondria could be restored by mild actin destabilization. Thus, the elongation after loss of SadA/B results from an excessive stabilization of actin filaments and reduction of Drp1 recruitment to mitochondria.
Collapse
Affiliation(s)
- Danila Di Meo
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, 48149 Münster, Germany; Cells-in-Motion Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Priyadarshini Ravindran
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, 48149 Münster, Germany
| | - Tanmay Sadhanasatish
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, 48149 Münster, Germany; Cells-in-Motion Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Pratibha Dhumale
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, 48149 Münster, Germany; Cells-in-Motion Interfaculty Center, University of Münster, 48149 Münster, Germany
| | - Andreas W Püschel
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, 48149 Münster, Germany; Cells-in-Motion Interfaculty Center, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
12
|
Banday S, Pandita RK, Mushtaq A, Bacolla A, Mir US, Singh DK, Jan S, Bhat KP, Hunt CR, Rao G, Charaka VK, Tainer JA, Pandita TK, Altaf M. Autism-Associated Vigilin Depletion Impairs DNA Damage Repair. Mol Cell Biol 2021; 41:e0008221. [PMID: 33941620 PMCID: PMC8224237 DOI: 10.1128/mcb.00082-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/17/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
Vigilin (Vgl1) is essential for heterochromatin formation, chromosome segregation, and mRNA stability and is associated with autism spectrum disorders and cancer: vigilin, for example, can suppress proto-oncogene c-fms expression in breast cancer. Conserved from yeast to humans, vigilin is an RNA-binding protein with 14 tandemly arranged nonidentical hnRNP K-type homology (KH) domains. Here, we report that vigilin depletion increased cell sensitivity to cisplatin- or ionizing radiation (IR)-induced cell death and genomic instability due to defective DNA repair. Vigilin depletion delayed dephosphorylation of IR-induced γ-H2AX and elevated levels of residual 53BP1 and RIF1 foci, while reducing Rad51 and BRCA1 focus formation, DNA end resection, and double-strand break (DSB) repair. We show that vigilin interacts with the DNA damage response (DDR) proteins RAD51 and BRCA1, and vigilin depletion impairs their recruitment to DSB sites. Transient hydroxyurea (HU)-induced replicative stress in vigilin-depleted cells increased replication fork stalling and blocked restart of DNA synthesis. Furthermore, histone acetylation promoted vigilin recruitment to DSBs preferentially in the transcriptionally active genome. These findings uncover a novel vigilin role in DNA damage repair with implications for autism and cancer-related disorders.
Collapse
Affiliation(s)
- Shahid Banday
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Raj K. Pandita
- Houston Methodist Research Institute, Houston, Texas, USA
- Baylor College of Medicine, Houston, Texas, USA
| | - Arjamand Mushtaq
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Ulfat Syed Mir
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | | | - Sadaf Jan
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Krishna P. Bhat
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | | | - Ganesh Rao
- Baylor College of Medicine, Houston, Texas, USA
| | | | - John A. Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Tej K. Pandita
- Houston Methodist Research Institute, Houston, Texas, USA
- Baylor College of Medicine, Houston, Texas, USA
| | - Mohammad Altaf
- Chromatin and Epigenetics Lab, Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
13
|
Mo G, Zhang B, Jiang Q. Role of ARK5 in cancer and other diseases (Review). Exp Ther Med 2021; 22:697. [PMID: 33986861 PMCID: PMC8112134 DOI: 10.3892/etm.2021.10129] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 06/20/2020] [Indexed: 12/14/2022] Open
Abstract
Malignant tumors are often exposed to hypoxic and glucose-starved microenvironments. AMP-activated protein kinase (AMPK) is an energy sensor that is stimulated during energy-deficient conditions and protects cells from hypoxic injury by regulating metabolism. AMPK-related protein kinase 5 (ARK5) is a member of the catalytic sub-unit of the AMPK family and has an important role in energy regulation and hypoxia. ARK5 is regulated by Akt and liver kinase B1 and is associated with numerous tumor-related molecules to exert the negative effects of tumors. Studies have revealed ARK5 overexpression in cases of tumor invasion and metastasis and a positive association with the degree of cancer cell malignancy, which is regarded as a key element in determining cancer prognosis. Furthermore, ARK5 downregulation improves drug sensitivity through the epithelial-mesenchymal transition pathway, indicating that it may be a potential therapeutic target. In other non-cancer conditions, ARK5 has various roles in neurodegenerative diseases (Alzheimer's and Huntington's disease), renal disorders (diabetic nephropathy and renal fibrosis) and physiological processes (striated muscle generation). In the present review, the upstream and downstream molecular pathways of ARK5 in cancer and other diseases are described and potential therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Guoheng Mo
- Department of Neurosurgery, Queen Mary College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Bohan Zhang
- First Clinical Medical College, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qunguang Jiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
14
|
Blazejewski SM, Bennison SA, Liu X, Toyo-Oka K. High-throughput kinase inhibitor screening reveals roles for Aurora and Nuak kinases in neurite initiation and dendritic branching. Sci Rep 2021; 11:8156. [PMID: 33854138 PMCID: PMC8047044 DOI: 10.1038/s41598-021-87521-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/31/2021] [Indexed: 12/25/2022] Open
Abstract
Kinases are essential regulators of a variety of cellular signaling processes, including neurite formation—a foundational step in neurodevelopment. Aberrant axonal sprouting and failed regeneration of injured axons are associated with conditions like traumatic injury, neurodegenerative disease, and seizures. Investigating the mechanisms underlying neurite formation will allow for identification of potential therapeutics. We used a kinase inhibitor library to screen 493 kinase inhibitors and observed that 45% impacted neuritogenesis in Neuro2a (N-2a) cells. Based on the screening, we further investigated the roles of Aurora kinases A, B, and C and Nuak kinases 1 and 2. The roles of Aurora and Nuak kinases have not been thoroughly studied in the nervous system. Inhibition or overexpression of Aurora and Nuak kinases in primary cortical neurons resulted in various neuromorphological defects, with Aurora A regulating neurite initiation, Aurora B and C regulating neurite initiation and elongation, all Aurora kinases regulating arborization, and all Nuak kinases regulating neurite initiation and elongation and arborization. Our high-throughput screening and analysis of Aurora and Nuak kinases revealed their functions and may contribute to the identification of therapeutics.
Collapse
Affiliation(s)
- Sara M Blazejewski
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Sarah A Bennison
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Xiaonan Liu
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA
| | - Kazuhito Toyo-Oka
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, 19129, USA.
| |
Collapse
|
15
|
Faisal M, Kim JH, Yoo KH, Roh EJ, Hong SS, Lee SH. Development and Therapeutic Potential of NUAKs Inhibitors. J Med Chem 2020; 64:2-25. [PMID: 33356242 DOI: 10.1021/acs.jmedchem.0c00533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
NUAK isoforms, NUAK1 (ARK5) and NUAK2 (SNARK), are important members of the AMPK family of protein kinases. They are involved in a broad spectrum of physiological and cellular events, and sometimes their biological roles overlap. NUAK isoform dysregulation is associated with numerous pathological disorders, including neurodegeneration, metastatic cancer, and diabetes. Therefore, they are promising therapeutic targets in metabolic diseases and cancers; consequently, various NUAK-targeted inhibitors have been disclosed. The first part of this review comprises a brief discussion of the homology, expression, structure, and characteristics of NUAK isoforms. The second part focuses on NUAK isoforms' involvement in crucial biological operations, including mechanistic findings, highlighting how their abnormal functioning contributes to disease progression and quality of life. The third part summarizes the key findings and applications of targeting NUAK isoforms for treating multiple cancers and neurodegenerative disorders. The final part systematically presents a critical review and analysis of the literature on NUAK isoform inhibitions through small molecules.
Collapse
Affiliation(s)
- Muhammad Faisal
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jae Ho Kim
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Kyung Ho Yoo
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Eun Joo Roh
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.,Chemical Kinomics Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Soon Sun Hong
- Department of Biomedical Sciences, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| | - So Ha Lee
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
16
|
Šimić G, Vukić V, Kopić J, Krsnik Ž, Hof PR. Molecules, Mechanisms, and Disorders of Self-Domestication: Keys for Understanding Emotional and Social Communication from an Evolutionary Perspective. Biomolecules 2020; 11:E2. [PMID: 33375093 PMCID: PMC7822183 DOI: 10.3390/biom11010002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022] Open
Abstract
The neural crest hypothesis states that the phenotypic features of the domestication syndrome are due to a reduced number or disruption of neural crest cells (NCCs) migration, as these cells differentiate at their final destinations and proliferate into different tissues whose activity is reduced by domestication. Comparing the phenotypic characteristics of modern and prehistoric man, it is clear that during their recent evolutionary past, humans also went through a process of self-domestication with a simultaneous prolongation of the period of socialization. This has led to the development of social abilities and skills, especially language, as well as neoteny. Disorders of neural crest cell development and migration lead to many different conditions such as Waardenburg syndrome, Hirschsprung disease, fetal alcohol syndrome, DiGeorge and Treacher-Collins syndrome, for which the mechanisms are already relatively well-known. However, for others, such as Williams-Beuren syndrome and schizophrenia that have the characteristics of hyperdomestication, and autism spectrum disorders, and 7dupASD syndrome that have the characteristics of hypodomestication, much less is known. Thus, deciphering the biological determinants of disordered self-domestication has great potential for elucidating the normal and disturbed ontogenesis of humans, as well as for the understanding of evolution of mammals in general.
Collapse
Affiliation(s)
- Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (J.K.); (Ž.K.)
| | - Vana Vukić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (J.K.); (Ž.K.)
| | - Janja Kopić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (J.K.); (Ž.K.)
| | - Željka Krsnik
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (J.K.); (Ž.K.)
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
17
|
Martin-Kenny N, Bérubé NG. Effects of a postnatal Atrx conditional knockout in neurons on autism-like behaviours in male and female mice. J Neurodev Disord 2020; 12:17. [PMID: 32580781 PMCID: PMC7315487 DOI: 10.1186/s11689-020-09319-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/04/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Alpha-thalassemia/mental retardation, X-linked, or ATRX, is an autism susceptibility gene that encodes a chromatin remodeler. Mutations of ATRX result in the ATR-X intellectual disability syndrome and have been identified in autism spectrum disorder (ASD) patients. The mechanisms by which ATRX mutations lead to autism and autistic-like behaviours are not yet known. To address this question, we generated mice with postnatal Atrx inactivation in excitatory neurons of the forebrain and performed a battery of behavioural assays that assess autistic-like behaviours. METHODS Male and female mice with a postnatal conditional ablation of ATRX were generated using the Cre/lox system under the control of the αCaMKII gene promoter. These mice were tested in a battery of behavioural tests that assess autistic-like features. We utilized paradigms that measure social behaviour, repetitive, and stereotyped behaviours, as well as sensory gating. Statistics were calculated by two-way repeated measures ANOVA with Sidak's multiple comparison test or unpaired Student's t tests as indicated. RESULTS The behaviour tests revealed no significant differences between Atrx-cKO and control mice. We identified sexually dimorphic changes in odor habituation and discrimination; however, these changes did not correlate with social deficits. CONCLUSION The postnatal knockout of Atrx in forebrain excitatory neurons does not lead to autism-related behaviours in male or female mice.
Collapse
Affiliation(s)
- Nicole Martin-Kenny
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Division of Genetics and Development, Children's Health Research Institute, London, Ontario, Canada
| | - Nathalie G Bérubé
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
- Division of Genetics and Development, Children's Health Research Institute, London, Ontario, Canada.
- Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.
| |
Collapse
|
18
|
Abstract
The cerebral cortex is composed of an exquisitely complex network of interconnected neurons supporting the higher cognitive functions of the brain. Here, we provide a fully detailed, step-by-step protocol to perform in utero cortical electroporation of plasmids, a simple surgical procedure designed to manipulate gene expression in a subset of glutamatergic pyramidal cortical neurons in vivo. This method has been used to visualize defects in neuronal migration, axon projections, terminal axon branching, or dendrite and synapse development. For complete details on the use and execution of this protocol, please refer to Courchet et al., 2013, Mairet-Coello et al., 2013 or Shimojo et al. (2015).
Collapse
Affiliation(s)
- Géraldine Meyer-Dilhet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008 Lyon, France
| | - Julien Courchet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Institut NeuroMyoGène, F-69008 Lyon, France
| |
Collapse
|
19
|
Wang S, Tan N, Zhu X, Yao M, Wang Y, Zhang X, Xu Z. Sh3rf2 Haploinsufficiency Leads to Unilateral Neuronal Development Deficits and Autistic-Like Behaviors in Mice. Cell Rep 2019; 25:2963-2971.e6. [PMID: 30540932 DOI: 10.1016/j.celrep.2018.11.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/20/2018] [Accepted: 11/09/2018] [Indexed: 11/15/2022] Open
Abstract
Autism spectrum disorders (ASDs) include a variety of developmental brain disorders with clinical findings implicating the dysfunction of the left hemisphere. Here, we generate mice lacking one copy of Sh3rf2, which was detected in ASD patients, to determine whether Sh3rf2 is involved in brain development and whether mutation of SH3RF2 is causative for ASD and the mechanisms linking it to ASD traits. We find that mice with Sh3rf2 haploinsufficiency display significant deficits in social interaction and communication, as well as stereotyped or repetitive behaviors and hyperactivity and seizures. Disturbances in hippocampal dendritic spine development, aberrant composition of glutamatergic receptor subunits, and abnormal excitatory synaptic transmission were detected in heterozygous mutants. Remarkably, these defects are selectively unilateral. Our results support a notion that Sh3rf2 haploinsufficiency is a highly penetrant risk factor for ASD, with disease pathogenesis most likely resulting from deficits in synaptic function in the left hemisphere of the brain.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Ningdong Tan
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xingliang Zhu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Minghui Yao
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaqing Wang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing 100101, China.
| |
Collapse
|