1
|
Liu M, Nam H, Kim J, Fiete GA, Shih CK. Influence of Nanosize Hole Defects and their Geometric Arrangements on the Superfluid Density in Atomically Thin Single Crystals of Indium Superconductor. PHYSICAL REVIEW LETTERS 2021; 127:127003. [PMID: 34597098 DOI: 10.1103/physrevlett.127.127003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/11/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Using Indium sqrt[7]×sqrt[3] on Si(111) as an atomically thin superconductor platform, and by systematically controlling the density of nanohole defects (nanometer size voids), we reveal the impacts of defect density and defect geometric arrangements on superconductivity at macroscopic and microscopic length scales. When nanohole defects are uniformly dispersed in the atomic layer, the superfluid density monotonically decreases as a function of defect density (from 0.7% to 5% of the surface area) with minor change in the transition temperature T_{C}, measured both microscopically and macroscopically. With a slight increase in the defect density from 5% to 6%, these point defects are organized into defect chains that enclose individual two-dimensional patches. This new geometric arrangement of defects dramatically impacts the superconductivity, leading to the total disappearance of macroscopic superfluid density and the collapse of the microscopic superconducting gap. This study sheds new light on the understanding of how local defects and their geometric arrangements impact superconductivity in the two-dimensional limit.
Collapse
Affiliation(s)
- Mengke Liu
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Hyoungdo Nam
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Jungdae Kim
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
- Department of Physics and EHSRC, University of Ulsan, Ulsan 680-749, South Korea
| | - Gregory A Fiete
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Chih-Kang Shih
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
2
|
Yao G, Duan MC, Liu N, Wu Y, Guan DD, Wang S, Zheng H, Li YY, Liu C, Jia JF. Diamagnetic Response of Potassium-Adsorbed Multilayer FeSe Film. PHYSICAL REVIEW LETTERS 2019; 123:257001. [PMID: 31922797 DOI: 10.1103/physrevlett.123.257001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Intrigued by the discovery of high-temperature superconductivity in a single unit-cell layer of FeSe film on SrTiO_{3}, researchers recently found large superconductinglike energy gaps in K-adsorbed multilayer FeSe films by angle-resolved photoemission and scanning tunneling spectroscopy. However, the existence and nature of the high-temperature superconductivity inferred by the spectroscopic studies has not been investigated by measurements of zero resistance or the Meissner effect due to the fragility of K atoms in air. Using a self-developed multifunctional scanning tunneling microscope, we succeed in observing the diamagnetic response of K-adsorbed multilayer FeSe films, and thus find a dome-shaped relation between the critical temperature (T_{c}) and K coverage. Intriguingly, T_{c} exhibits an approximately linear dependence on the superfluid density in the whole K adsorbed region. Moreover, the quadratic low-temperature variation in the London penetration depth indicates a sign-reversal order parameter. These results provide compelling information towards further understanding of the high-temperature superconductivity in FeSe-derived superconductors.
Collapse
Affiliation(s)
- Gang Yao
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ming-Chao Duan
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ningning Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanfu Wu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Dan-Dan Guan
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Shiyong Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Hao Zheng
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Yao-Yi Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Canhua Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- Tsung-Dao Lee Institute, Shanghai 200240, China
| | - Jin-Feng Jia
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- Tsung-Dao Lee Institute, Shanghai 200240, China
| |
Collapse
|