1
|
Two-dimensional quantum universality in the spin-1/2 triangular-lattice quantum antiferromagnet Na 2BaCo(PO 4) 2. Proc Natl Acad Sci U S A 2022; 119:e2211193119. [PMID: 36520670 PMCID: PMC9907114 DOI: 10.1073/pnas.2211193119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
An interplay of geometrical frustration and strong quantum fluctuations in a spin-1/2 triangular-lattice antiferromagnet (TAF) can lead to exotic quantum states. Here, we report the neutron-scattering, magnetization, specific heat, and magnetocaloric studies of the recently discovered spin-1/2 TAF Na2BaCo(PO4)2, which can be described by a spin-1/2 easy axis XXZ model. The zero-field neutron diffraction experiment reveals an incommensurate antiferromagnetic ground state with a significantly reduced ordered moment of about 0.54(2) μB/Co. Different magnetic phase diagrams with magnetic fields in the ab plane and along the easy c-axis were extracted based on the magnetic susceptibility, specific heat, and elastic neutron-scattering results. In addition, two-dimensional (2D) spin dispersion in the triangular plane was observed in the high-field polarized state, and microscopic exchange parameters of the spin Hamiltonian have been determined through the linear spin wave theory. Consistently, quantum critical behaviors with the universality class of d = 2 and νz = 1 were established in the vicinity of the saturation field, where a Bose-Einstein condensation (BEC) of diluted magnons occurs. The newly discovered quantum criticality and fractional magnetization phase in this ideal spin-1/2 TAF present exciting opportunities for exploring exotic quantum phenomena.
Collapse
|
2
|
Abstract
We address spin transport in the easy-axis Heisenberg spin chain subject to different integrability-breaking perturbations. We find subdiffusive spin transport characterized by dynamical exponent z = 4 up to a timescale parametrically long in the anisotropy. In the limit of infinite anisotropy, transport is subdiffusive at all times; for finite anisotropy, one eventually recovers diffusion at late times but with a diffusion constant independent of the strength of the perturbation and solely fixed by the value of the anisotropy. We provide numerical evidence for these findings, and we show how they can be understood in terms of the dynamical screening of the relevant quasiparticle excitations and effective dynamical constraints. Our results show that the diffusion constant of near-integrable diffusive spin chains is generically not perturbative in the integrability-breaking strength.
Collapse
|
3
|
Facheris L, Povarov KY, Nabi SD, Mazzone DG, Lass J, Roessli B, Ressouche E, Yan Z, Gvasaliya S, Zheludev A. Spin Density Wave versus Fractional Magnetization Plateau in a Triangular Antiferromagnet. PHYSICAL REVIEW LETTERS 2022; 129:087201. [PMID: 36053701 DOI: 10.1103/physrevlett.129.087201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
We report an excellent realization of the highly nonclassical incommensurate spin-density wave (SDW) state in the quantum frustrated antiferromagnetic insulator Cs_{2}CoBr_{4}. In contrast to the well-known Ising spin chain case, here the SDW is stabilized by virtue of competing planar in-chain anisotropies and frustrated interchain exchange. Adjacent to the SDW phase is a broad m=1/3 magnetization plateau that can be seen as a commensurate locking of the SDW state into the up-up-down (UUD) spin structure. This represents the first example of the long-sought SDW-UUD transition in triangular-type quantum magnets.
Collapse
Affiliation(s)
- L Facheris
- Laboratory for Solid State Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - K Yu Povarov
- Laboratory for Solid State Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - S D Nabi
- Laboratory for Solid State Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - D G Mazzone
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - J Lass
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
- Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - B Roessli
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - E Ressouche
- Université Grenoble Alpes, CEA, IRIG, MEM, MDN, 38000 Grenoble, France
| | - Z Yan
- Laboratory for Solid State Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - S Gvasaliya
- Laboratory for Solid State Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - A Zheludev
- Laboratory for Solid State Physics, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
4
|
Strongly Correlated Quantum Spin Liquids versus Heavy Fermion Metals: A Review. MATERIALS 2022; 15:ma15113901. [PMID: 35683199 PMCID: PMC9182384 DOI: 10.3390/ma15113901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/15/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022]
Abstract
This review considers the topological fermion condensation quantum phase transition (FCQPT) that explains the complex behavior of strongly correlated Fermi systems, such as frustrated insulators with quantum spin liquid and heavy fermion metals. The review contrasts theoretical consideration with recent experimental data collected on both heavy fermion metals (HF) and frustrated insulators. Such a method allows to understand experimental data. We also consider experimental data collected on quantum spin liquid in Lu3Cu2Sb3O14 and quasi-one dimensional (1D) quantum spin liquid in both YbAlO3 and Cu(C4H4N2)(NO3)2 with the aim to establish a sound theoretical explanation for the observed scaling laws, Landau Fermi liquid (LFL) and non-Fermi-liquid (NFL) behavior exhibited by these frustrated insulators. The recent experimental data on the heavy-fermion metal α−YbAl1−xFexB4, with x=0.014, and on its sister compounds β−YbAlB4 and YbCo2Ge4, carried out under the application of magnetic field as a control parameter are analyzed. We show that the thermodynamic and transport properties as well as the empirical scaling laws follow from the fermion condensation theory. We explain how both the similarity and the difference in the thermodynamic and transport properties of α−YbAl1−xFexB4 and in its sister compounds β−YbAlB4 and YbCo2Ge4 emerge, as well as establish connection of these (HF) metals with insulators Lu3Cu2Sb3O14, Cu(C4H4N2)(NO3)2 and YbAlO3. We demonstrate that the universal LFL and NFL behavior emerge because the HF compounds and the frustrated insulators are located near the topological FCQPT or are driven by the application of magnetic fields.
Collapse
|
5
|
Synthesis, crystal structure and magnetic properties of KLnSe2 (Ln = La, Ce, Pr, Nd) structures: A family of 2D triangular lattice frustrated magnets. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Podlesnyak A, Nikitin SE, Ehlers G. Low-energy spin dynamics in rare-earth perovskite oxides. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:403001. [PMID: 34252895 DOI: 10.1088/1361-648x/ac1367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
We review recent studies of spin dynamics in rare-earth orthorhombic perovskite oxides of the type RMO3, where R is a rare-earth ion and M is a transition-metal ion, using single-crystal inelastic neutron scattering (INS). After a short introduction to the magnetic INS technique in general, the results of INS experiments on both transition-metal and rare-earth subsystems for four selected compounds (YbFeO3, TmFeO3, YFeO3, YbAlO3) are presented. We show that the spectrum of magnetic excitations consists of two types of collective modes that are well separated in energy: gapped magnons with a typical bandwidth of <70 meV, associated with the antiferromagnetically (AFM) ordered transition-metal subsystem, and AFM fluctuations of <5 meV within the rare-earth subsystem, with no hybridization of those modes. We discuss the high-energy conventional magnon excitations of the 3dsubsystem only briefly, and focus in more detail on the spectacular dynamics of the rare-earth sublattice in these materials. We observe that the nature of the ground state and the low-energy excitation strongly depends on the identity of the rare-earth ion. In the case of non-Kramers ions, the low-symmetry crystal field completely eliminates the degeneracy of the multiplet state, creating a rich magnetic field-temperature phase diagram. In the case of Kramers ions, the resulting ground state is at least a doublet, which can be viewed as an effective quantum spin-1/2. Equally important is the fact that in Yb-based materials the nearest-neighbor exchange interaction dominates in one direction, despite the three-dimensional nature of the orthoperovskite crystal structure. The observation of a fractional spinon continuum and quantum criticality in YbAlO3demonstrates that Kramers rare-earth based magnets can provide realizations of various aspects of quantum low-dimensional physics.
Collapse
Affiliation(s)
- A Podlesnyak
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - S E Nikitin
- Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - G Ehlers
- Neutron Technologies Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| |
Collapse
|
7
|
Multiple fermion scattering in the weakly coupled spin-chain compound YbAlO 3. Nat Commun 2021; 12:3599. [PMID: 34127661 PMCID: PMC8203633 DOI: 10.1038/s41467-021-23585-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 04/30/2021] [Indexed: 11/29/2022] Open
Abstract
The Heisenberg antiferromagnetic spin-1/2 chain, originally introduced almost a century ago, is one of the best studied models in quantum mechanics due to its exact solution, but nevertheless it continues to present new discoveries. Its low-energy physics is described by the Tomonaga-Luttinger liquid of spinless fermions, similar to the conduction electrons in one-dimensional metals. In this work we investigate the Heisenberg spin-chain compound YbAlO3 and show that the weak interchain coupling causes Umklapp scattering between the left- and right-moving fermions and stabilizes an incommensurate spin-density wave order at q = 2kF under finite magnetic fields. These Umklapp processes open a route to multiple coherent scattering of fermions, which results in the formation of satellites at integer multiples of the incommensurate fundamental wavevector Q = nq. Our work provides surprising and profound insight into bandstructure control for emergent fermions in quantum materials, and shows how neutron diffraction can be applied to investigate the phenomenon of coherent multiple scattering in metals through the proxy of quantum magnetic systems. A field-induced incommensurate spin density wave order was observed in the spin-chain material YbAlO3; however, its mechanism is not fully understood. Here, using neutron scattering and numerical calculations, the authors propose a mechanism based on multiple fermion scattering caused by weak inter-chain coupling.
Collapse
|
8
|
Hester G, DeLazzer TN, Lim SS, Brown CM, Ross KA. Néel ordering in the distorted honeycomb pyrosilicate: C-Er 2Si 2O 7. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:10.1088/1361-648X/abd5f8. [PMID: 33352544 PMCID: PMC10629842 DOI: 10.1088/1361-648x/abd5f8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
The rare-earth pyrosilicate family of compounds (RE2Si2O7) hosts a variety of polymorphs, some with honeycomb-like geometries of the rare-earth sublattices, and the magnetism has yet to be deeply explored in many of the cases. Here we report on the ground state properties of C-Er2Si2O7. C-Er2Si2O7crystallizes in the C2/m space group and the Er3+atoms form a distorted honeycomb lattice in thea-bplane. We have utilized specific heat, DC susceptibility, and neutron diffraction measurements to characterize C-Er2Si2O7. Our specific heat and DC susceptibility measurements show signatures of antiferromagnetic ordering at 2.3 K. Neutron powder diffraction confirms this transition temperature and the relative intensities of the magnetic Bragg peaks are consistent with a collinear Néel state in the magnetic space group C2'/m, with ordered moment of 6.61μBcanted 13° away from thec-axis toward thea-axis. These results are discussed in relation to the isostructural quantum dimer magnet compound Yb2Si2O7.
Collapse
Affiliation(s)
- Gavin Hester
- Department of Physics, Colorado State University, 200 W. Lake St., Fort Collins, CO 80523-1875, USA
| | - T. N. DeLazzer
- Department of Physics, Colorado State University, 200 W. Lake St., Fort Collins, CO 80523-1875, USA
| | - S. S. Lim
- Department of Physics, Colorado State University, 200 W. Lake St., Fort Collins, CO 80523-1875, USA
| | - C. M. Brown
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899-6102, USA
| | - K. A. Ross
- Department of Physics, Colorado State University, 200 W. Lake St., Fort Collins, CO 80523-1875, USA
- Quantum Materials Program, CIFAR, Toronto, Ontario M5G 1Z8, Canada
| |
Collapse
|
9
|
Van Hove singularity in the magnon spectrum of the antiferromagnetic quantum honeycomb lattice. Nat Commun 2021; 12:171. [PMID: 33420023 PMCID: PMC7794317 DOI: 10.1038/s41467-020-20335-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/24/2020] [Indexed: 11/08/2022] Open
Abstract
In quantum magnets, magnetic moments fluctuate heavily and are strongly entangled with each other, a fundamental distinction from classical magnetism. Here, with inelastic neutron scattering measurements, we probe the spin correlations of the honeycomb lattice quantum magnet YbCl3. A linear spin wave theory with a single Heisenberg interaction on the honeycomb lattice, including both transverse and longitudinal channels of the neutron response, reproduces all of the key features in the spectrum. In particular, we identify a Van Hove singularity, a clearly observable sharp feature within a continuum response. The demonstration of such a Van Hove singularity in a two-magnon continuum is important as a confirmation of broadly held notions of continua in quantum magnetism and additionally because analogous features in two-spinon continua could be used to distinguish quantum spin liquids from merely disordered systems. These results establish YbCl3 as a benchmark material for quantum magnetism on the honeycomb lattice.
Collapse
|
10
|
Nagler SE, Tennant DA. Pulsed spallation neutron spectroscopy of low dimensional magnets: past, present, and future. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:374004. [PMID: 32554872 DOI: 10.1088/1361-648x/ab60e5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/11/2019] [Indexed: 06/11/2023]
Abstract
The early 1990s saw the first useful application of pulsed neutron spectroscopy to the study of excitations in low dimensional magnetic systems, with Roger Cowley as a key participant in important early experiments. Since that time the technique has blossomed as a powerful tool utilizing vastly improved neutron instrumentation coupled with more powerful pulsed sources. Here we review representative experiments illustrating some of the fascinating physics that has been revealed in quasi-one and two dimensional systems.
Collapse
Affiliation(s)
- S E Nagler
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States of America
| | - D A Tennant
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States of America
- Oak Ridge National Laboratory, Shull-Wollan Center, Oak Ridge, TN, United States of America
| |
Collapse
|
11
|
Karl'ová K, Strečka J, Lyra ML. Breakdown of intermediate one-half magnetization plateau of spin-1/2 Ising-Heisenberg and Heisenberg branched chains at triple and Kosterlitz-Thouless critical points. Phys Rev E 2019; 100:042127. [PMID: 31770992 DOI: 10.1103/physreve.100.042127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Indexed: 11/07/2022]
Abstract
The spin-1/2 Ising-Heisenberg branched chain composed of regularly alternating Ising spins and Heisenberg dimers involving an additional side branching is rigorously solved in a magnetic field by the transfer-matrix approach. The ground-state phase diagram, the magnetization process and the concurrence measuring a degree of bipartite entanglement within the Heisenberg dimers are examined in detail. Three different ground states were found depending on a mutual interplay between the magnetic field and two different coupling constants: the modulated quantum antiferromagnetic phase, the quantum ferrimagnetic phase, and the classical ferromagnetic phase. Two former quantum ground states are manifested in zero-temperature magnetization curves as intermediate plateaus at zero and one-half of the saturation magnetization, whereas the one-half plateau disappears at a triple point induced by a strong-enough ferromagnetic Ising coupling. The ground-state phase diagram and zero-temperature magnetization curves of the analogous spin-1/2 Heisenberg branched chain were investigated using density-matrix renormalization group calculations. The latter fully quantum Heisenberg model involves, besides two gapful phases manifested as zero and one-half magnetization plateaus, gapless quantum spin-liquid phase. The intermediate one-half plateau of the spin-1/2 Heisenberg branched chain vanishes at Kosterlitz-Thouless quantum critical point between gapful and gapless quantum ground states unlike the triple point of the spin-1/2 Ising-Heisenberg branched chain.
Collapse
Affiliation(s)
- Katarína Karl'ová
- Institute of Physics, Faculty of Science, P. J. Šafárik University, 04001 Košice, Slovakia
| | - Jozef Strečka
- Institute of Physics, Faculty of Science, P. J. Šafárik University, 04001 Košice, Slovakia
| | - Marcelo L Lyra
- Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió-AL, Brazil
| |
Collapse
|
12
|
Wieser R. Investigation of quantum and thermal fluctuations ferromagnetic spin chains with easy-plane anisotropy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:325801. [PMID: 31051487 DOI: 10.1088/1361-648x/ab1f3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
One-dimensional ferromagnetic S = 1/2 and S = 1 spin chains with easy-plane and easy-axis exchange anisotropy are studied by the double-time Green's function method. The XYZ model can be used to describe several chain systems as the ferromagnetic spin chain of [Formula: see text] (CHAB). Alternatively, ferromagnetic spin-spirals with Dzyaloshinsky-Moriya interaction. To study quantum and thermal fluctuations the magnetization and susceptibility are calculated and analyzed as a function of the external field, the strength of the anisotropy and the chain length.
Collapse
Affiliation(s)
- R Wieser
- School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|