1
|
Ye J, Liang Q, Tan Q, Chai M, Cheng W, Fan M, Zhang Y, Zhan J, Wang Y, Wen J, Zhang Y, Zhao X, Zhang D. A bulged-type enzyme-free recognition strategy designed for single nucleotide polymorphisms integrating with label-free electrochemical biosensor. Biosens Bioelectron 2024; 263:116601. [PMID: 39053148 DOI: 10.1016/j.bios.2024.116601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Compared to conventional nucleic acid detection methods, label-free single nucleotide polymorphism (SNP) detection presents challenging due to the necessity of discerning single base mismatches, especially in the field of enzyme-free detection. In this study, we introduce a novel bulged-type DNA duplex probe designed to significantly amplify single-base differences. This probe is integrated with programmable DNA-based nanostructures to develop a sensitive, label-free biosensor for nonenzymatic SNP detection. The duplex probe with one bulge could selectively identify wild-typed DNA (WT) and mutant-type DNA (MT) based on a competitive strand displacement reaction mechanism. The hyperbranched HCR (HHCR) by incorporating of hairpin DNA into the DNA tetrahedron and surface-tethering on the portable screen printing electrode (SPCE) significantly favor the formation of negatively charged DNA nanostructure. We harnessed strong repulsion of DNA nanostructure towards the electroactive [Fe(CN)₆]³⁻/⁴⁻ in combination with electrochemical technique to create a label-free biosensor. This simple, enzyme-free and label-free biosensor could detect MT with a detection limit of 56 aM, even in multiple sequence backgrounds. The study served as the proof-of-concept for the integration of enzyme-free competitive mechanism and label-free strategy, which can be extended as a powerful tool to various fields.
Collapse
Affiliation(s)
- Jing Ye
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Qi Liang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Qianglong Tan
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Mengyao Chai
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Wendai Cheng
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Minzhi Fan
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Yunshan Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Jie Zhan
- New Materials Computing Center, Zhejiang Laboratory, Hangzhou, 311121, China
| | - Yaxin Wang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Jiahong Wen
- The College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yongjun Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xiaoyu Zhao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Diming Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou, 311121, China.
| |
Collapse
|
2
|
Choi YJ, Haddadnezhad M, Baek SJ, Lee CN, Park S, Sim SJ. Plasmonic Nanogap-Enhanced Tunable Three-Dimensional Nanoframes in Application to Clinical Diagnosis of Alzheimer's Disease. ACS Sens 2024; 9:5587-5595. [PMID: 39356173 DOI: 10.1021/acssensors.4c02037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Advancements in nanotechnology led to significant improvements in synthesizing plasmon-enhanced nanoarchitectures for biosensor applications, and high-yield productivity at low cost is vital to step further into medical commerce. Metal nanoframes via wet chemistry are gaining attention for their homogeneous structure and outstanding catalytic and optical properties. However, nanoframe morphology should be considered delicately when brought to biosensors to utilize its superior characteristics thoroughly, and the need to prove its clinical applicability still remains. Herein, we controlled the frameworks of double-walled nanoframes (DWFs) precisely via wet chemistry to construct a homogeneous plasmon-enhanced nanotransducer for localized surface plasmon resonance biosensors. By tuning the physical properties considering the finite-difference time-domain simulation results, biomolecular interactions were feasible in the electromagnetic field-enhanced nanospace. As a result, DWF10 exhibited a 10-fold lower detection limit of 2.21 fM compared to DWF14 for tau detection. Further application into blood-based clinical and Alzheimer's disease (AD) diagnostics, notable improvement in classifying mild cognitive impairment patients against healthy controls and AD patients, was demonstrated along with impressive AUC values. Thus, in response to diverse detection methods, optimizing nanoframe dimensions such as nanogap and frame thickness to maximize sensor performance is critical to realize future POCT diagnosis.
Collapse
Affiliation(s)
- Young Jae Choi
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - MohammadNavid Haddadnezhad
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Seung Jong Baek
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Chan-Nyoung Lee
- Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
Seifzadeh SS, Borghei YS, Roknabadi N, Mowla SJ. A novel approach of differentiation of adenoma and carcinoma in lung cancer based on biogenic in situ synthesis of gold nanostructures on various oligonucleotide motifs. Mikrochim Acta 2024; 191:690. [PMID: 39438316 DOI: 10.1007/s00604-024-06744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
A unique approach is introduced for constructing gold nanocrystals (AuNCs) with RNA motif-directed morphologies in a sequence-independent manner and its applications in the clinical area are described. By using this method, a label-free LSPR-based detection method for the SOX2OT transcript, long non-coding RNAs (lncRNAs), which is a prognostic indicator of poor survival in lung cancer patients is presented. For the first time, we examined how the structural changes of RNA after the heteroduplex formation with a specific DNA probe can change the morphology and LSPR band of AuNCs. Using this method, is was possible to differentiate lung squamous cell carcinoma from adenocarcinoma samples without a need for a prior amplification of the target lncRNA. The approach of using specific DNA probe enables the in situ synthesis of nanocrystals in a different way and expands this method for future translational medicine, particularly detection of specific RNA.
Collapse
Affiliation(s)
- Seyedeh Saina Seifzadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yasaman-Sadat Borghei
- Center for Bioscience & Technology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran, Iran.
| | - Nastaran Roknabadi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
4
|
Chen X, Ding L, Wang Y, Gao Z, Li J, Liu X, Wang L, Zhu Y, Fan C, Jia S, Yao G. Welded Gold Nanoparticle Assemblies Defined Plasmonic Coupling. NANO LETTERS 2024; 24:8956-8963. [PMID: 38984788 DOI: 10.1021/acs.nanolett.4c01887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Nanoparticle assemblies with interparticle ohmic contacts are crucial for nanodevice fabrication. Despite tremendous progress in DNA-programmable nanoparticle assemblies, seamlessly welding discrete components into welded continuous three-dimensional (3D) configurations remains challenging. Here, we introduce a single-stranded DNA-encoded strategy to customize welded metal nanostructures with tunable morphologies and plasmonic properties. We demonstrate the precise welding of gold nanoparticle assemblies into continuous metal nanostructures with interparticle ohmic contacts through chemical welding in solution. We find that the welded gold nanoparticle assemblies show a consistent morphology with welded efficiency over 90%, such as the rod-like, triangular, and tetrahedral metal nanostructures. Next, we show the versatility of this strategy by welding gold nanoparticle assemblies of varied sizes and shapes. Furthermore, the experiment and simulation show that the welded gold nanoparticle assemblies exhibit defined plasmonic coupling. This single-stranded DNA encoded welding system may provide a new route for accurately building functional plasmonic nanomaterials and devices.
Collapse
Affiliation(s)
- Xiaoliang Chen
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhang Jiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Longjiang Ding
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhang Jiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Zhaoshuai Gao
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhang Jiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Li
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhang Jiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lihua Wang
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Ying Zhu
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhang Jiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sisi Jia
- Zhangjiang Laboratory, Shanghai 201210, China
| | - Guangbao Yao
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhang Jiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Sun M, Xie M, Jiang J, Qi Z, Wang L, Chao J. Customized Self-Assembled Gold Nanoparticle-DNA Origami Composite Templates for Shape-Directed Growth of Plasmonic Structures. NANO LETTERS 2024; 24:6480-6487. [PMID: 38771966 DOI: 10.1021/acs.nanolett.4c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The metal plasmonic nanostructure has the optical property of plasmon resonance, which holds great potential for development in nanophotonics, bioelectronics, and molecular detection. However, developing a general and straightforward method to prepare metal plasmonic nanostructures with a controllable size and morphology still poses a challenge. Herein, we proposed a synthesis strategy that utilized a customizable self-assembly template for shape-directed growth of metal structures. We employed gold nanoparticles (AuNPs) as connectors and DNA nanotubes as branches, customizing gold nanoparticle-DNA origami composite nanostructures with different branches by adjusting the assembly ratio between the connectors and branches. Subsequently, various morphologies of plasmonic metal nanostructures were created using this template shape guided strategy, which exhibited enhancement of surface-enhanced Raman scattering (SERS) signals. This strategy provides a new approach for synthesizing metallic nanostructures with multiple morphologies and opens up another possibility for the development of customizable metallic plasmonic structures with broader applications.
Collapse
Affiliation(s)
- Mengyao Sun
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Mo Xie
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jinke Jiang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhonglin Qi
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jie Chao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
6
|
Anil A, Chaskar J, Pawar AB, Tiwari A, Chaskar AC. Recent advances in DNA-based probes for photoacoustic imaging. J Biotechnol 2024; 382:8-20. [PMID: 38211667 DOI: 10.1016/j.jbiotec.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 11/29/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024]
Abstract
Photoacoustic imaging(PAI) is a widely developing imaging modality that has seen tremendous evolvement in the last decade. PAI has gained the upper hand in the imaging field as it takes advantage of optical absorption and ultrasound detection that imparts higher resolution, rich contrast and elevated penetration depth. Unlike other imaging techniques, PAI does not use ionising radiation and is a better, cost-effective and healthier alternative to other imaging techniques. It offers greater specificity than conventional ultrasound imaging with the ability to detect haemoglobin, lipids, water and other light-absorbing chromophores. These properties of PAI have led to its extended applications in the biomedical field in the treatment of diseases such as cancer. This paper reviews how DNA probes have been used in PAI, the various techniques by which it has been modified, and their role in the process. We also focus on different nanocomposites containing DNA having PAI and photothermal therapy(PTT) properties for detection, diagnosis and therapy, its constituents and the role of DNA in it.
Collapse
Affiliation(s)
- Anusri Anil
- National Centre for Nanosciences and Nanotechnology, University of Mumbai, Kalina, Mumbai 400098, India
| | - Jyotsna Chaskar
- National Centre for Nanosciences and Nanotechnology, University of Mumbai, Kalina, Mumbai 400098, India
| | - Avinash B Pawar
- Department of Chemistry, Bharati Vidyapeeth (Deemed to be University), Yashwantrao Mohite College of Arts, Science & Commerce, Pune 411038, India
| | - Abhishekh Tiwari
- National Centre for Nanosciences and Nanotechnology, University of Mumbai, Kalina, Mumbai 400098, India.
| | - Atul Changdev Chaskar
- National Centre for Nanosciences and Nanotechnology, University of Mumbai, Kalina, Mumbai 400098, India; Department of Chemistry, Institute of Chemical Technology, Mumbai.
| |
Collapse
|
7
|
Kim D, Kim SJ, Jeong J, Han S, Kim H, Lee S, Choi I, Hong J, Jin JO, Lee JB. Multimodal Golden DNA Superstructures (GDSs) for Highly Efficient Photothermal Immunotherapy. ACS NANO 2024; 18:1744-1755. [PMID: 38174995 DOI: 10.1021/acsnano.3c12535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
DNA-templated metallization has emerged as an efficient strategy for creating nanoscale-metal DNA hybrid structures with a desirable conformation and function. Despite the potential of DNA-metal hybrids, their use as combinatory therapeutic agents has rarely been examined. Herein, we present a simple approach for fabricating a multipurpose DNA superstructure that serves as an efficient photoimmunotherapy agent. Specifically, we adsorb and locally concentrate Au ions onto DNA superstructures through induced local reduction, resulting in the formation of Au nanoclusters. The mechanical and optical properties of these metallic nanoclusters can be rationally controlled by their conformations and metal ions. The resulting golden DNA superstructures (GDSs) exhibit significant photothermal effects that induce cancer cell apoptosis. When sequence-specific immunostimulatory effects of DNA are combined, GDSs provide a synergistic effect to eradicate cancer and inhibit metastasis, demonstrating potential as a combinatory therapeutic agent for tumor treatment. Altogether, the DNA superstructure-templated metal casting system offers promising materials for future biomedical applications.
Collapse
Affiliation(s)
- Dajeong Kim
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - So-Jung Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Department of Microbiology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jaepil Jeong
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Sangwoo Han
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Hyejin Kim
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Seungki Lee
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jun-O Jin
- Department of Microbiology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea
| |
Collapse
|
8
|
Xiao Y, Zhang Z, Yin S, Ma X. Nanoplasmonic biosensors for precision medicine. Front Chem 2023; 11:1209744. [PMID: 37483272 PMCID: PMC10359043 DOI: 10.3389/fchem.2023.1209744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Nanoplasmonic biosensors have a huge boost for precision medicine, which allows doctors to better understand diseases at the molecular level and to improve the earlier diagnosis and develop treatment programs. Unlike traditional biosensors, nanoplasmonic biosensors meet the global health industry's need for low-cost, rapid and portable aspects, while offering multiplexing, high sensitivity and real-time detection. In this review, we describe the common detection schemes used based on localized plasmon resonance (LSPR) and highlight three sensing classes based on LSPR. Then, we present the recent applications of nanoplasmonic in other sensing methods such as isothermal amplification, CRISPR/Cas systems, lab on a chip and enzyme-linked immunosorbent assay. The advantages of nanoplasmonic-based integrated sensing for multiple methods are discussed. Finally, we review the current applications of nanoplasmonic biosensors in precision medicine, such as DNA mutation, vaccine evaluation and drug delivery. The obstacles faced by nanoplasmonic biosensors and the current countermeasures are discussed.
Collapse
Affiliation(s)
- Yiran Xiao
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | | | - Shi Yin
- Briteley Institute of Life Sciences, Yantai, Shandong, China
| | - Xingyi Ma
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, China
- Biosen International, Jinan, Shandong, China
- Briteley Institute of Life Sciences, Yantai, Shandong, China
| |
Collapse
|
9
|
Song S, Lee JU, Jeon MJ, Kim S, Lee CN, Sim SJ. Precise profiling of exosomal biomarkers via programmable curved plasmonic nanoarchitecture-based biosensor for clinical diagnosis of Alzheimer's disease. Biosens Bioelectron 2023; 230:115269. [PMID: 37001292 DOI: 10.1016/j.bios.2023.115269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease of complex pathogenesis, with overt symptoms following disease progression. Early AD diagnosis is challenging due to the lack of robust biomarkers and limited patient access to diagnostics via neuroimaging and cerebrospinal fluid (CSF) tests. Exosomes present in body fluids are attracting attention as diagnostic biomarkers that directly reflect neuropathological features within the brain. In particular, exosomal miRNAs (exomiRs) signatures are involved in AD pathogenesis, showing a different expression between patients and the healthy controls (HCs). However, low yield and high homologous nature impede the accuracy and reproducibility of exosome blood-based AD diagnostics. Here, we developed a programmable curved plasmonic nanoarchitecture-based biosensor to analyze exomiRs in clinical serum samples for accurate AD diagnosis. To allow the detection of exomiRs in serum at attomolar levels, nanospaces (e.g., nanocrevice and nanocavity) were introduced into the nanostructures to dramatically increase the spectral sensitivity by adjusting the bending angle of the plasmonic nanostructure through sodium chloride concentration control. The developed biosensor classifies individuals into AD, mild cognitive impairment (MCI) patients, and HCs through profiling and quantifying exomiRs. Furthermore, integrating analysis expression patterns of multiple exosomal biomarkers improved serum-based diagnostic performance (average accuracy of 98.22%). Therefore, precise, highly sensitive serum-derived exosomal biomarker detection-based plasmonic biosensor has a robust capacity to predict the molecular pathologic of neurodegenerative disease, progression of cognitive decline, MCI/AD conversion, as well as early diagnosis and treatment.
Collapse
|
10
|
Liu H, Ahn DJ. Non-specific protein removal and specific protein capture simultaneously using a hydrodynamic force induced under vortex flow. Macromol Res 2023. [DOI: 10.1007/s13233-023-00131-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
11
|
Karimiravesh R, Mohabati Mobarez A, Behmanesh M, Nikkhah M, Talebi Bezmin Abadi A, Esmaeilli S. Design of an optical nanobiosensor for detection of Legionella pneumophila in water samples. IRANIAN JOURNAL OF MICROBIOLOGY 2022; 14:802-812. [PMID: 36721447 PMCID: PMC9867621 DOI: 10.18502/ijm.v14i6.11254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background and Objectives Legionella spp. is a causative agent of Legionnaires' disease that creates public health problems. Isolation of these bacteria from water sources is essential to identify outbreak origins and prevent disease. Diagnostic biosensors for water quality control to protect consumers from water-borne infections can predict many outbreaks. Gold nanoparticles conjugated probes are a new generation of diagnostic tools. In this study, an optical nano biosensor was designed and characterized to detect Legionella pneumophila in water samples rapidly. Materials and Methods Thiolated probes designed for the mip gene were attached to gold nanoparticles and then water samples containing Legionella pneumophila were examined. Results The limit of detection for PCR and biosensor was 104 and 103 copy numbers/μl, respectively. Biosensor sensitivity and PCR were reported to be 90% (18 out of 20) and 85% (17 out of 20), respectively. Specificity 100% has been reported for both methods. Conclusion According to the obtained results, this method has the potential to diagnose L. pneumophila with high sensitivity and specificity. This system can be employed as a practical tool for rapid, accurate, high-sensitivity, and acceptable detection of Legionella pneumophila in contaminated water, which is cost-effective in terms of cost and time.
Collapse
Affiliation(s)
- Raheleh Karimiravesh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ashraf Mohabati Mobarez
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran,Corresponding author: Ashraf Mohabati Mobarez, Ph.D, Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Tel: +98-21-82883862 Fax: +98-21-82884555
| | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amin Talebi Bezmin Abadi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saber Esmaeilli
- National Reference Laboratory for Plague, Tularemia and Q fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, Kabudar Ahang, Hamadan, Iran,Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
12
|
Cazacu A, Dobromir M, Chiruță C, Ursu EL. Chitosan-Mediated Environment-Friendly Synthesis of Gold Nanoparticles with Enhanced Photonic Reactivity. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4186. [PMID: 36500809 PMCID: PMC9736017 DOI: 10.3390/nano12234186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
We developed a very simple, efficient and environment-friendly synthesis method for the manufacturing of high-performance chitosan-capped gold nanoparticles that could be used for biosensing applications. Gold nanoparticles were prepared through the spontaneous reduction of chloroauric acid by chitosan, which was used as both a reducing and a stabilizing agent. The samples were heated to a temperature of 60 °C under ultrasonic conditions. The composite system made of chitosan as a matrix and gold nanoparticles demonstrated a high stability in an aqueous buffer solution. The nanoparticles displayed an enhancement in photonic performance compared with the same property of individual components as a result of surface plasmon resonance at the interface between the structural phases of the hybrid structure. The enhanced photonic reactivity of the hybrid nanostructure may offer new insights for future possible biosensing applications.
Collapse
Affiliation(s)
- Ana Cazacu
- Department of Exact Sciences, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700490 Iasi, Romania
| | - Marius Dobromir
- Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, 700506 Iasi, Romania
| | - Ciprian Chiruță
- Department of Exact Sciences, “Ion Ionescu de la Brad” Iasi University of Life Sciences, 700490 Iasi, Romania
| | - Elena-Laura Ursu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| |
Collapse
|
13
|
Zeng P, Hang L, Zhang G, Wang Y, Chen Z, Yu J, Zhang T, Cai W, Li Y. Atom Absorption Energy Directed Symmetry-Breaking Synthesis of Au-Ag Hierarchical Nanostructures and Their Efficient Photothermal Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204748. [PMID: 36180406 DOI: 10.1002/smll.202204748] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Asymmetric plasmonic hierarchical nanostructures (HNs) are of great significance in optics, catalysis, and sensors, but the complex growth kinetics and lack of fine structure design limit their practical applications. Herein, a new atom absorption energy strategy is developed to achieve a series of Au-Ag HNs with the continuously tuned contact area in Janus and Ag island number/size on Au seeds. Different from the traditional passive growth mode, this strategy endows seed with a hand to capture the hetero atoms in a proactive manner, which is beyond the size, shape, and assembles of Au seed. Density functional theory reveals ththe adsorption of PDDA on Au surface leads to lower formation energy of Au-Ag bonds (-3.96 eV) than FSDNA modified Au surface (-2.44 eV). The competitive adsorption of two ligands on Au seed is the decisive factor for the formation of diverse Au-Ag HNs. In particular, the Au-Ag2 HNs exhibit outstanding photothermal conversion capability in the near-infrared window, and in vivo experiments verify them as superior photothermal therapy agents. This work highlights the importance of the atom absorption energy strategy in unlocking the diversity of HNs and may push the synthesis and application of superstructures to a higher level.
Collapse
Affiliation(s)
- Pan Zeng
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lifeng Hang
- The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, 518037, P. R. China
| | - Guofeng Zhang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Yifan Wang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhiming Chen
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jie Yu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Tao Zhang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Weiping Cai
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Yue Li
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
14
|
Lei P, Li Y, Song X, Hao Y, Deng Z. DNA‐Programmable AgAuS‐Primed Conductive Nanowelding Wires‐Up Wet Colloids. Angew Chem Int Ed Engl 2022; 61:e202203568. [DOI: 10.1002/anie.202203568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Pengcheng Lei
- Center for Bioanalytical Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Yanjuan Li
- Center for Bioanalytical Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Xiaojun Song
- Center for Bioanalytical Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Yan Hao
- Center for Bioanalytical Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Zhaoxiang Deng
- Center for Bioanalytical Chemistry Department of Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
15
|
Liu H, Ahn DJ. Anisotropic CdSe Tetrapods in Vortex Flow for Removing Non-Specific Binding and Increasing Protein Capture. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22155929. [PMID: 35957486 PMCID: PMC9371395 DOI: 10.3390/s22155929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 06/09/2023]
Abstract
Non-specific binding (NSB) is one of the important issues in biosensing performance. Herein, we designed a strategy for removing non-specific binding including anti-mouse IgG antibody and bovine serum albumin (BSA) by utilizing anisotropic cadmium selenide tetrapods (CdSe TPs) in a vortex flow. The shear force on the tetrapod nanoparticles was increased by controlling the rotation rate of the vortex flow from 0 rpm to 1000 rpm. As a result, photoluminescence (PL) signals of fluorescein (FITC)-conjugated protein, anti-mouse IgG antibody-FITC and bovine serum albumin (BSA)-FITC, were reduced by 35% and 45%, respectively, indicating that NSB can be removed under vortex flow. In particular, simultaneous NSB removal and protein capture can be achieved even with mixture solutions of target antibodies and anti-mouse IgG antibodies by applying cyclic mode vortex flow on anisotropic CdSe TPs. These results demonstrate successfully that NSB can be diminished by rotating CdSe TPs to generate shear force under vortex flow. This study opens up new research protocols for utilization of anisotropic nanoparticles under vortex flow, which increases the feasibility of protein capture and non-specific proteins removal for biosensors.
Collapse
Affiliation(s)
- Hanzhe Liu
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea
| | - Dong June Ahn
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| |
Collapse
|
16
|
Das B, Lou-Franco J, Gilbride B, Ellis MG, Stewart LD, Grant IR, Balasubramanian P, Cao C. Peroxidase-Mimicking Activity of Biogenic Gold Nanoparticles Produced from Prunus nepalensis Fruit Extract: Characterizations and Application for the Detection of Mycobacterium bovis. ACS APPLIED BIO MATERIALS 2022; 5:2712-2725. [PMID: 35545815 PMCID: PMC9214696 DOI: 10.1021/acsabm.2c00180] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/29/2022] [Indexed: 11/28/2022]
Abstract
In the present study, a facile, eco-friendly, and controlled synthesis of gold nanoparticles (Au NPs) using Prunus nepalensis fruit extract is reported. The biogenically synthesized Au NPs possess ultra-active intrinsic peroxidase-like activity for the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2. Chemical analysis of the fruit extract demonstrated the presence of various bioactive molecules such as amino acids (l-alanine and aspartic acids), organic acids (benzoic acid and citric acid), sugars (arabinose and glucose), phenolic acid, and bioflavonoids (niacin and myo-inositol), which likely attributed to the formation of stable biogenic Au NPs with excellent peroxidase-mimicking activity. In comparison with the natural horseradish peroxidase (HRP) enzyme, the biogenic Au NPs displayed a 9.64 times higher activity with regard to the reaction velocity at 6% (v/v) H2O2, presenting a higher affinity toward the TMB substrate. The Michaelis-Menten constant (KM) values for the biogenic Au NPs and HRP were found to be 6.9 × 10-2 and 7.9 × 10-2 mM, respectively, at the same concentration of 100 pM. To investigate its applicability for biosensing, a monoclonal antibody specific for Mycobacterium bovis (QUBMA-Bov) was directly conjugated to the surface of the biogenic Au NPs. The obtained results indicate that the biogenic Au NPs-QUBMA-Bov conjugates are capable of detecting M. bovis based on a colorimetric immunosensing method within a lower range of 100 to 102 cfu mL-1 with limits of detection of ∼53 and ∼71 cfu mL-1 in an artificial buffer solution and in a soft cheese spiked sample, respectively. This strategy demonstrates decent specificity in comparison with those of other bacterial and mycobacterial species. Considering these findings together, this study indicates the potential for the development of a cost-effective biosensing platform with high sensitivity and specificity for the detection of M. bovis using antibody-conjugated Au nanozymes.
Collapse
Affiliation(s)
- Bhaskar Das
- School
of Biological Sciences, Queen’s University
of Belfast, Belfast BT9 5DL, U.K.
- Department
of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India
| | - Javier Lou-Franco
- School
of Biological Sciences, Queen’s University
of Belfast, Belfast BT9 5DL, U.K.
| | - Brendan Gilbride
- School
of Biological Sciences, Queen’s University
of Belfast, Belfast BT9 5DL, U.K.
| | - Matthew G. Ellis
- School
of Biological Sciences, Queen’s University
of Belfast, Belfast BT9 5DL, U.K.
- Nanophotonics
Centre, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Linda D. Stewart
- School
of Biological Sciences, Queen’s University
of Belfast, Belfast BT9 5DL, U.K.
| | - Irene R. Grant
- School
of Biological Sciences, Queen’s University
of Belfast, Belfast BT9 5DL, U.K.
| | - Paramasivan Balasubramanian
- Department
of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India
| | - Cuong Cao
- School
of Biological Sciences, Queen’s University
of Belfast, Belfast BT9 5DL, U.K.
- Material
and Advanced Technologies for Healthcare, Queen’s University of Belfast, Belfast BT7 1NN, U.K.
| |
Collapse
|
17
|
Lei P, Li Y, Song X, Hao Y, Deng Z. DNA‐Programmable AgAuS‐Primed Conductive Nanowelding Wires up Wet Colloids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pengcheng Lei
- University of Science and Technology of China Department of Chemistry CHINA
| | - Yanjuan Li
- University of Science and Technology of China Department of Chemistry CHINA
| | - Xiaojun Song
- University of Science and Technology of China Department of Chemistry CHINA
| | - Yan Hao
- University of Science and Technology of China Department of Chemistry CHINA
| | - Zhaoxiang Deng
- University of Science and Technology of China Department of Chemistry 96 Jinzhai Road 230026 Hefei CHINA
| |
Collapse
|
18
|
Yaraki MT, Zahed Nasab S, Zare I, Dahri M, Moein Sadeghi M, Koohi M, Tan YN. Biomimetic Metallic Nanostructures for Biomedical Applications, Catalysis, and Beyond. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Shima Zahed Nasab
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Mohammad Dahri
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Mohammad Moein Sadeghi
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Maedeh Koohi
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Islamic Republic of Iran
| | - Yen Nee Tan
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
- Newcastle Research and Innovation Institute, Newcastle University in Singapore, 80 Jurong East Street 21, No. 05-04, 609607, Singapore
| |
Collapse
|
19
|
Hu T, Chen Z, Zhang G, Sun N, Zhao P, Liu X, Xie Y. Effect of rhodamine 6G dye molecular interactions on counterintuitive self-assembly of noble metal nanorods. J Colloid Interface Sci 2022; 614:468-477. [PMID: 35108638 DOI: 10.1016/j.jcis.2022.01.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/09/2022] [Accepted: 01/17/2022] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Self-assembled nanostructures with highly ordered and diversified patterns can be obtained by adding additives that directionally control the interparticle interactions. However, due to the complex non-covalent weak interactions in the self-assembly process, the active mechanism of additives is not fully understood, resulting in the limitation of obtaining the nano-superstructures. The introduction of rhodamine 6G (R6G) enables gold nanorods (GNRs) self-assembled into a counterintuitive tetragonal superlattice, during which the exploration of the influence of R6G molecular interactions on the GNRs self-assembly is of importance. EXPERIMENTS We present the detailed investigations of spacial configuration, binding modes, and aggregated degree of R6G molecule on formation of the tetragonal GNRs superlattices by combining the experimental and simulated results. FINDINGS By analyzing the peak position and peak intensity in the fluorescent spectra of assembled samples and pure R6G samples, H-dimer is verified as the main cause for inducing the tetragonal superstructures. Molecular dynamics simulations reveal that 2-3 H-dimers adsorbed obliquely in a zigzag chain manner on the surface of GNRs is the most stable state of the self-assembly. This work would contribute to a deeper understanding of the complex colloidal nanoparticle self-assemblies and push forward the development of the bottom-up nanoscale superstructures.
Collapse
Affiliation(s)
- Tonghua Hu
- School of Physics, Beihang University, Beijing 100191, China
| | - Ziyu Chen
- School of Physics, Beihang University, Beijing 100191, China; Key Laboratory of Intelligent Systems and Equipment Electromagnetic Environment Effect, School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
| | - Guimei Zhang
- School of Physics, Beihang University, Beijing 100191, China
| | - Ningfei Sun
- School of Physics, Beihang University, Beijing 100191, China
| | - Peng Zhao
- School of Physics, Beihang University, Beijing 100191, China
| | - Xiaoduo Liu
- School of Physics, Beihang University, Beijing 100191, China
| | - Yong Xie
- School of Physics, Beihang University, Beijing 100191, China; Key Laboratory of Intelligent Systems and Equipment Electromagnetic Environment Effect, School of Electronic and Information Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
20
|
Kim D, Han S, Ji Y, Youn H, Kim H, Ko O, Lee JB. RNA polymerization actuating nucleic acid membrane (RANAM)-based biosensing for universal RNA virus detection. Biosens Bioelectron 2022; 199:113880. [PMID: 34915215 PMCID: PMC8662841 DOI: 10.1016/j.bios.2021.113880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/18/2022]
Abstract
The coronavirus disease (COVID-19) pandemic has shown the importance of early disease diagnosis in preventing further infection and mortality. Despite major advances in the development of highly precise and rapid detection approaches, the time-consuming process of designing a virus-specific diagnostic kit has been a limiting factor in the early management of the pandemic. Here, we propose an RNA polymerase activity-sensing strategy utilizing an RNA polymerization actuating nucleic acid membrane (RANAM) partially metallized with gold for colorimetric RNA virus detection. Following RANAM-templated amplification of newly synthesized RNA, the presence of the RNA polymerase was determined by visualization of the inhibition of an oxidation/reduction (redox) reaction between 3,3',5,5'-tetramethylbenzidine (TMB) and blocked Au3+. As a proof of concept, a viral RNA-dependent RNA polymerase (RdRP), which is found in various RNA virus-infected cells, was chosen as a target molecule. With this novel RANAM biosensor, as little as 10 min of RdRP incubation could significantly reduce the colorimetric signal. Further development into an easy-to-use prototype kit in viral infection diagnosis detected RdRP present at levels even as low as 100 aM. Color formation based on the presence of RdRP could be simply and clearly confirmed through smartphone-assisted color imaging of the prototype kit. This study provides a non-PCR-based RNA virus detection including its variants using RdRP-mediated polymerization.
Collapse
Affiliation(s)
- Dajeong Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Sangwoo Han
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Yoonbin Ji
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Heejeong Youn
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Hyejin Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Ohsung Ko
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea.
| |
Collapse
|
21
|
Gong L, Feng L, Zheng Y, Luo Y, Zhu D, Chao J, Su S, Wang L. Molybdenum Disulfide-Based Nanoprobes: Preparation and Sensing Application. BIOSENSORS 2022; 12:bios12020087. [PMID: 35200348 PMCID: PMC8869503 DOI: 10.3390/bios12020087] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 05/08/2023]
Abstract
The use of nanoprobes in sensors is a popular way to amplify their analytical performance. Coupled with two-dimensional nanomaterials, nanoprobes have been widely used to construct fluorescence, electrochemical, electrochemiluminescence (ECL), colorimetric, surface enhanced Raman scattering (SERS) and surface plasmon resonance (SPR) sensors for target molecules' detection due to their extraordinary signal amplification effect. The MoS2 nanosheet is an emerging layered nanomaterial with excellent chemical and physical properties, which has been considered as an ideal supporting substrate to design nanoprobes for the construction of sensors. Herein, the development and application of molybdenum disulfide (MoS2)-based nanoprobes is reviewed. First, the preparation principle of MoS2-based nanoprobes was introduced. Second, the sensing application of MoS2-based nanoprobes was summarized. Finally, the prospect and challenge of MoS2-based nanoprobes in future were discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shao Su
- Correspondence: (S.S.); (L.W.)
| | | |
Collapse
|
22
|
Xie M, Hu Y, Yin J, Zhao Z, Chen J, Chao J. DNA Nanotechnology-Enabled Fabrication of Metal Nanomorphology. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9840131. [PMID: 35935136 PMCID: PMC9275100 DOI: 10.34133/2022/9840131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/24/2022] [Indexed: 11/09/2022]
Abstract
In recent decades, DNA nanotechnology has grown into a highly innovative and widely established field. DNA nanostructures have extraordinary structural programmability and can accurately organize nanoscale materials, especially in guiding the synthesis of metal nanomaterials, which have unique advantages in controlling the growth morphology of metal nanomaterials. This review started with the evolution in DNA nanotechnology and the types of DNA nanostructures. Next, a DNA-based nanofabrication technology, DNA metallization, was introduced. In this section, we systematically summarized the DNA-oriented synthesis of metal nanostructures with different morphologies and structures. Furthermore, the applications of metal nanostructures constructed from DNA templates in various fields including electronics, catalysis, sensing, and bioimaging were figured out. Finally, the development prospects and challenges of metal nanostructures formed under the morphology control by DNA nanotechnology were discussed.
Collapse
Affiliation(s)
- Mo Xie
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yang Hu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jue Yin
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ziwei Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jing Chen
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jie Chao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
23
|
Targeted design of green carbon dot-CA-125 aptamer conjugate for the fluorescence imaging of ovarian cancer cell. Cell Biochem Biophys 2021; 80:75-88. [PMID: 34716880 DOI: 10.1007/s12013-021-01034-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
Aptamer-Carbon Dot (CD) bioconjugation is an attractive target-tracking strategy in detecting cell surface antigens. This study describes an effective imaging paradigm for CA-125 antigen imaging. Our experience encompasses green CD synthesis and characterization, CD-capture probe conjugation through covalent bonding, the hybridization linkage of CD-probe to aptamer and their coupling confirmation, and fluorescent targeted imaging of ovarian cancer cells. As a result, the synthesized CDs from lemon extract by hydrothermal reaction show average size of 2 nm with maximum fluorescence intensity at excitation/emission 360/450 nm. CD-probe construction was provided by functional group interactions of CD and probe via EDC/NHS chemistry. The linkage of CD-probe to aptamer was conducted by Watson-Crick nucleotide pairing. The assessment of CD-probe and CD-probe-aptamer fabrication was validated by the increase in surface roughness through AFM analysis, the diminish of fluorescence intensity of CD after bioconjugation, and particle size growth of the construct. Conjugates with negligible cytotoxicity, appropriate zeta potential, and good aptamer release were applied in cellular imaging. This targeted diagnosis method was employed the four reported DNA aptamers toward fluorescence intensity. The DOV-3 aptamer showed more qualified detection over other aptamer conjugates during fluorescent microscopy analysis. In conclusion, the CD-probe-aptamer conjugate applications as toxic-free method can open new horizons in fluorescent nano-imaging in the field of targeted cancer cell diagnosis.
Collapse
|
24
|
Feng J, Xu D, Yang F, Chen J, Wu C, Yin Y. Surface Engineering and Controlled Ripening for Seed‐Mediated Growth of Au Islands on Au Nanocrystals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ji Feng
- Department Department of Chemistry University of California Riverside CA 92521 USA
| | - Dongdong Xu
- School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Fan Yang
- Department Department of Chemistry University of California Riverside CA 92521 USA
| | - Jinxing Chen
- Department Department of Chemistry University of California Riverside CA 92521 USA
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Institute of Functional Nano and Soft Materials (FUNSOM) Soochow University Suzhou 215123 China
| | - Chaolumen Wu
- Department Department of Chemistry University of California Riverside CA 92521 USA
| | - Yadong Yin
- Department Department of Chemistry University of California Riverside CA 92521 USA
| |
Collapse
|
25
|
Feng J, Xu D, Yang F, Chen J, Wu C, Yin Y. Surface Engineering and Controlled Ripening for Seed-Mediated Growth of Au Islands on Au Nanocrystals. Angew Chem Int Ed Engl 2021; 60:16958-16964. [PMID: 34077601 DOI: 10.1002/anie.202105856] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Indexed: 11/07/2022]
Abstract
Engineering the nucleation and growth of plasmonic metals (Ag and Au) on their pre-existing seeds is expected to produce nanostructures with unconventional morphologies and plasmonic properties that may find unique applications in sensing, catalysis, and broadband energy harvesting. Typical seed-mediated growth processes take advantage of the perfect lattice match between the deposited metal and seeds to induce conformal coating, leading to either simple size increases (e.g., Au on Au) or the formation of core-shell structures (e.g., Ag on Au) with limited morphology change. In this work, we show that the introduction of a thin layer of metal with considerable lattice mismatch can effectively induce the nucleation of well-defined Au islands on Au nanocrystal seeds. By controlling the interfacial energy between the seed and the deposited material, the oxidative ripening, and the surface diffusion of metal precursors, we can regulate the number of islands on the seeds and produce complex Au nanostructures with morphologies tunable from core-satellites to tetramers, trimers, and dimers.
Collapse
Affiliation(s)
- Ji Feng
- Department Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Dongdong Xu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Fan Yang
- Department Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Jinxing Chen
- Department Department of Chemistry, University of California, Riverside, CA, 92521, USA.,Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Chaolumen Wu
- Department Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Yadong Yin
- Department Department of Chemistry, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
26
|
Plasmonic Biosensors for Single-Molecule Biomedical Analysis. BIOSENSORS-BASEL 2021; 11:bios11040123. [PMID: 33921010 PMCID: PMC8071374 DOI: 10.3390/bios11040123] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022]
Abstract
The rapid spread of epidemic diseases (i.e., coronavirus disease 2019 (COVID-19)) has contributed to focus global attention on the diagnosis of medical conditions by ultrasensitive detection methods. To overcome this challenge, increasing efforts have been driven towards the development of single-molecule analytical platforms. In this context, recent progress in plasmonic biosensing has enabled the design of novel detection strategies capable of targeting individual molecules while evaluating their binding affinity and biological interactions. This review compiles the latest advances in plasmonic technologies for monitoring clinically relevant biomarkers at the single-molecule level. Functional applications are discussed according to plasmonic sensing modes based on either nanoapertures or nanoparticle approaches. A special focus was devoted to new analytical developments involving a wide variety of analytes (e.g., proteins, living cells, nucleic acids and viruses). The utility of plasmonic-based single-molecule analysis for personalized medicine, considering technological limitations and future prospects, is also overviewed.
Collapse
|
27
|
Gao Q, Zhang J, Gao J, Zhang Z, Zhu H, Wang D. Gold Nanoparticles in Cancer Theranostics. Front Bioeng Biotechnol 2021; 9:647905. [PMID: 33928072 PMCID: PMC8076689 DOI: 10.3389/fbioe.2021.647905] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Conventional cancer treatments, such as surgical resection, radiotherapy, and chemotherapy, have achieved significant progress in cancer therapy. Nevertheless, some limitations (such as toxic side effects) are still existing for conventional therapies, which motivate efforts toward developing novel theranostic avenues. Owning many merits such as easy surface modification, unique optical properties, and high biocompatibility, gold nanoparticles (AuNPs and GNPs) have been engineered to serve as targeted delivery vehicles, molecular probes, sensors, and so on. Their small size and surface characteristics enable them to extravasate and access the tumor microenvironment (TME), which is a promising solution to realize highly effective treatments. Moreover, stimuli-responsive properties (respond to hypoxia and acidic pH) of nanoparticles to TME enable GNPs’ unrivaled control for effective transport of therapeutic cargos. In this review article, we primarily introduce the basic properties of GNPs, further discuss the recent progress in gold nanoparticles for cancer theranostics, with an additional concern about TME stimuli-responsive studies.
Collapse
Affiliation(s)
- Qinyue Gao
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jingjing Zhang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jie Gao
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhengyang Zhang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Haitao Zhu
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Dongqing Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
28
|
Abstract
The field of single nanoparticle plasmonics has grown enormously. There is no doubt that a wide diversity of the nanoplasmonic techniques and nanostructures represents a tremendous opportunity for fundamental biomedical studies as well as sensing and imaging applications. Single nanoparticle plasmonic biosensors are efficient in label-free single-molecule detection, as well as in monitoring real-time binding events of even several biomolecules. In the present review, we have discussed the prominent advantages and advances in single particle characterization and synthesis as well as new insight into and information on biomedical diagnosis uniquely obtained using single particle approaches. The approaches include the fundamental studies of nanoplasmonic behavior, two typical methods based on refractive index change and characteristic light intensity change, exciting innovations of synthetic strategies for new plasmonic nanostructures, and practical applications using single particle sensing, imaging, and tracking. The basic sphere and rod nanostructures are the focus of extensive investigations in biomedicine, while they can be programmed into algorithmic assemblies for novel plasmonic diagnosis. Design of single nanoparticles for the detection of single biomolecules will have far-reaching consequences in biomedical diagnosis.
Collapse
Affiliation(s)
- Xingyi Ma
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea.
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea.
| |
Collapse
|
29
|
Ngo LT, Wang WK, Tseng YT, Chang TC, Kuo PL, Chau LK, Huang TT. MutS protein-based fiber optic particle plasmon resonance biosensor for detecting single nucleotide polymorphisms. Anal Bioanal Chem 2021; 413:3329-3337. [PMID: 33712917 DOI: 10.1007/s00216-021-03271-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/08/2021] [Accepted: 03/04/2021] [Indexed: 01/29/2023]
Abstract
A new biosensing method is presented to detect gene mutation by integrating the MutS protein from bacteria with a fiber optic particle plasmon resonance (FOPPR) sensing system. In this method, the MutS protein is conjugated with gold nanoparticles (AuNPs) deposited on an optical fiber core surface. The target double-stranded DNA containing an A and C mismatched base pair in a sample can be captured by the MutS protein, causing increased absorption of green light launching into the fiber and hence a decrease in transmitted light intensity through the fiber. As the signal change is enhanced through consecutive total internal reflections along the fiber, the limit of detection for an AC mismatch heteroduplex DNA can be as low as 0.49 nM. Because a microfluidic chip is used to contain the optical fiber, the narrow channel width allows an analysis time as short as 15 min. Furthermore, the label-free and real-time nature of the FOPPR sensing system enables determination of binding affinity and kinetics between MutS and single-base mismatched DNA. The method has been validated using a heterozygous PCR sample from a patient to determine the allelic fraction. The obtained allelic fraction of 0.474 reasonably agrees with the expected allelic fraction of 0.5. Therefore, the MutS-functionalized FOPPR sensor may potentially provide a convenient quantitative tool to detect single nucleotide polymorphisms in biological samples with a short analysis time at the point-of-care sites.
Collapse
Affiliation(s)
- Loan Thi Ngo
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection, National Chung Cheng University, Chiayi, 62102, Taiwan
| | - Wei-Kai Wang
- Department of Dentistry, Institute of Oral Medicine, Department of Stomatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yen-Ta Tseng
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection, National Chung Cheng University, Chiayi, 62102, Taiwan
| | - Ting-Chou Chang
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection, National Chung Cheng University, Chiayi, 62102, Taiwan
| | - Pao-Lin Kuo
- Department of Obstetrics Gynecology, National Cheng Kung University Hospital, College of Medicine and Hospital, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Lai-Kwan Chau
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection, National Chung Cheng University, Chiayi, 62102, Taiwan.
| | - Tze-Ta Huang
- Department of Dentistry, Institute of Oral Medicine, Department of Stomatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
30
|
Sokolov PA, Ramazanov RR, Rolich VI, Popova MA, Shalygin VE, Kasyanenko NA. Stabilization of DNA by sodium and magnesium ions during the synthesis of DNA-bridged gold nanoparticles. NANOTECHNOLOGY 2021; 32:045604. [PMID: 33045696 DOI: 10.1088/1361-6528/abc037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanostructures synthesized using DNA-conjugated gold nanoparticles have a wide range of applications in the field of biosensorics. The stability of the DNA duplex plays a critical role as it determines the final geometry of these nanostructures. The main way to control DNA stability is to maintain a high ionic strength of the buffer solution; at the same time, high salt concentrations lead to an aggregation of nanoparticles. In this study, by means of the instrumentality of DNA-bridged seeds using tris(hydroxymethyl)aminomethane as a soft reducing agent the dumbbell-like gold nanoparticles up to 35 nm were synthesized with a high concentration of sodium ions of up to 100 mM and magnesium ions up to 1 mM. We also examined at the atomic level the details of the effect of the gold nanoparticle surface, as well as Na+ and Mg2+ ions, on the stability of nucleotide pairs located in close proximity to the grafting site.
Collapse
Affiliation(s)
- Petr A Sokolov
- St. Petersburg University, 7/9 Universitetskaya Emb., St. Petersburg, 199034, Russia
| | - Ruslan R Ramazanov
- St. Petersburg University, 7/9 Universitetskaya Emb., St. Petersburg, 199034, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy Prospect V.O. 31, St. Petersburg, 199004, Russia
| | - Valeriy I Rolich
- St. Petersburg University, 7/9 Universitetskaya Emb., St. Petersburg, 199034, Russia
| | - Maria A Popova
- St. Petersburg University, 7/9 Universitetskaya Emb., St. Petersburg, 199034, Russia
| | - Vyacheslav E Shalygin
- St. Petersburg University, 7/9 Universitetskaya Emb., St. Petersburg, 199034, Russia
| | - Nina A Kasyanenko
- St. Petersburg University, 7/9 Universitetskaya Emb., St. Petersburg, 199034, Russia
| |
Collapse
|
31
|
Ma J, Niu H, Gu S. The spatial organization of trace silver atoms on a DNA template. RSC Adv 2020; 11:1153-1163. [PMID: 35423706 PMCID: PMC8693506 DOI: 10.1039/d0ra08066g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
DNA with programmable information can be used to encode the spatial organization of silver atoms. Based on the primary structures of a DNA template containing a controllable base arrangement and number, the surrounding environment and cluster together can induce the folding of the DNA template into an appropriate secondary structure for forming AgNCs with different fluorescence emissions, such as i-motif, G-quadruplex, dimeric template, triplex, monomeric or dimeric C-loop, emitter pair, and G-enhancer/template conjugate. Stimuli can induce the dynamic structural transformation of the DNA template with a recognition site for favourably or unfavourably forming AgNCs, along with varied fluorescence intensities and colours. The array of several or more of the same and different clusters can be performed on simple and complex nanostructures, while maintaining their original properties. By sorting out this review, we systematically conclude the link between the performance of AgNCs and the secondary structure of the DNA template, and summarize the precise arrangement of nanoclusters on DNA nanotechnology. This clear review on the origin and controllability of AgNCs based on the secondary structure of the DNA template is beneficial for exploring the new probe and optical devices.
Collapse
Affiliation(s)
- Jinliang Ma
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang Henan 471023 China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Huawei Niu
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang Henan 471023 China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang Henan 471023 China
| |
Collapse
|
32
|
Sha Q, Guan R, Su H, Zhang L, Liu BF, Hu Z, Liu X. Carbohydrate-protein template synthesized high mannose loading gold nanoclusters: A powerful fluorescence probe for sensitive Concanavalin A detection and specific breast cancer cell imaging. Talanta 2020; 218:121130. [PMID: 32797887 DOI: 10.1016/j.talanta.2020.121130] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022]
Abstract
Protein-encapsulated gold nanoclusters (Au NCs) have recently gained much attention in biosensing and bioimaging applications owing to their remarkable fluorescence properties, nontoxicity and good biocompatibility. In this work, the mannose was grafted onto the bovine serum albumin (BSA) encapsulated Au NCs (BSA-Au NCs) to produce a mannose functionalized BSA-Au NCs (Man-BSA-Au NCs) as a new fluorescence probe for Concanavalin A (Con A) detection and human breast cancer cell imaging. A new strategy with mannose-BSA conjugates as template was firstly applied for the synthesis of Man-BSA-Au NCs, leading to a high loading of mannose (767.6 ± 7.2 mg/L) onto BSA-Au NCs. The as-prepared Man-BSA-Au NCs showed advantages of facile preparation, good monodispersity and strong red-emission. Notably, aggregation-induced fluorescence quenching of Man-BSA-Au NCs was triggered by Con A due to the multivalent cooperative interactions between mannose and Con A, which was subsequently confirmed by MALDI-TOF MS. Hence highly selective and sensitive fluorescence detection of Con A was achieved by using Man-BSA-Au NCs as a fluorescence sensor. A good linear relationship was obtained over the range of 0.01-1 μM (R2 = 0.994) with a detection limit of 0.62 nM (S/N = 3). The developed sensor was then applied to determine Con A in human serum with acceptable recoveries of 93.70-104.8%. Moreover, based on the specific recognition between mannose and overexpressed mannose receptors on human breast cancer cells, the Man-BSA-Au NCs were successfully utilized for cancer cell imaging with good specificity.
Collapse
Affiliation(s)
- Qiuyue Sha
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ruixue Guan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huiying Su
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liang Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhaoyu Hu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Xin Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics, Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
33
|
Lee JU, Kim S, Sim SJ. SERS-based Nanoplasmonic Exosome Analysis: Enabling Liquid Biopsy for Cancer Diagnosis and Monitoring Progression. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-020-4301-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Mehta N, Sahu SP, Shaik S, Devireddy R, Gartia MR. Dark-field hyperspectral imaging for label free detection of nano-bio-materials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1661. [PMID: 32755036 DOI: 10.1002/wnan.1661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/21/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022]
Abstract
Nanomaterials are playing an increasingly important role in cancer diagnosis and treatment. Nanoparticle (NP)-based technologies have been utilized for targeted drug delivery during chemotherapies, photodynamic therapy, and immunotherapy. Another active area of research is the toxicity studies of these nanomaterials to understand the cellular uptake and transport of these materials in cells, tissues, and environment. Traditional techniques such as transmission electron microscopy, and mass spectrometry to analyze NP-based cellular transport or toxicity effect are expensive, require extensive sample preparation, and are low-throughput. Dark-field hyperspectral imaging (DF-HSI), an integration of spectroscopy and microscopy/imaging, provides the ability to investigate cellular transport of these NPs and to quantify the distribution of them within bio-materials. DF-HSI also offers versatility in non-invasively monitoring microorganisms, single cell, and proteins. DF-HSI is a low-cost, label-free technique that is minimally invasive and is a viable choice for obtaining high-throughput quantitative molecular analyses. Multimodal imaging modalities such as Fourier transform infrared and Raman spectroscopy are also being integrated with HSI systems to enable chemical imaging of the samples. HSI technology is being applied in surgeries to obtain molecular information about the tissues in real-time. This article provides brief overview of fundamental principles of DF-HSI and its application for nanomaterials, protein-detection, single-cell analysis, microbiology, surgical procedures along with technical challenges and future integrative approach with other imaging and measurement modalities. This article is categorized under: Diagnostic Tools > in vitro Nanoparticle-Based Sensing Diagnostic Tools > in vivo Nanodiagnostics and Imaging Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.
Collapse
Affiliation(s)
- Nishir Mehta
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Sushant P Sahu
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Shahensha Shaik
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Ram Devireddy
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Manas Ranjan Gartia
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
35
|
Yoo S, Lee J, Kim J, Kim JM, Haddadnezhad M, Lee S, Choi S, Park D, Nam JM, Park S. Silver Double Nanorings with Circular Hot Zone. J Am Chem Soc 2020; 142:12341-12348. [DOI: 10.1021/jacs.0c04419] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sungjae Yoo
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Junghwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Jae-Myoung Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | | | - Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Sungwoo Choi
- Department of Applied Optics and Physics, Hallym University, Chuncheon 24252, South Korea
| | - Doojae Park
- Department of Applied Optics and Physics, Hallym University, Chuncheon 24252, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, South Korea
| |
Collapse
|
36
|
Sang S, Guo X, Wang J, Li H, Ma X. Real-time and label-free detection of VKORC1 genes based on a magnetoelastic biosensor for warfarin therapy. J Mater Chem B 2020; 8:6271-6276. [PMID: 32426797 DOI: 10.1039/d0tb00354a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Various thrombotic disorders have been treated with the anticoagulant warfarin. However, a small change in warfarin concentration may lead to drug adverse reactions or therapeutic failure due to its narrow therapeutic index. Therefore, the dose of warfarin must be monitored for each patient during therapy in real-time and in a sensitive and stable manner. In this work, we designed a magnetoelastic (ME) biosensor using Metglas alloy 2826 to detect VKORC1 genotypes, which is one of the most important known genetic determinants of warfarin dosing. The sensor enabled both fast responses to DNA binding and wireless transmission of signals. Specifically in the target recognition layer, the sensor introduced an avidin-biotin interaction system for signal amplification by increasing the surface load mass. The resonance frequency shift of the signal was linear to the concentration of the target in the range of 0.1 fM to 10 pM, with a detection limit (LOD) of 0.00389 fM (S/N = 3) and a sensitivity of 45.7 Hz pM-1. Importantly, this ME-based biosensor was small and portable without the use of any optical labels, which has high potential to be applied in advanced biomedical diagnosis of nucleic acids and proteins.
Collapse
Affiliation(s)
- Shengbo Sang
- MicroNano System Research Center, College of Information and Computer & Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024, China
| | | | | | | | | |
Collapse
|
37
|
Tian Y, Zhang L, Wang L. DNA-Functionalized Plasmonic Nanomaterials for Optical Biosensing. Biotechnol J 2019; 15:e1800741. [PMID: 31464360 DOI: 10.1002/biot.201800741] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/20/2019] [Indexed: 12/15/2022]
Abstract
Plasmonic nanomaterials, especially Au and Ag nanomaterials, have shown attractive physicochemical properties, such as easy functionalization and tunable optical bands. The development of this active subfield paves the way to the fascinating biosensing platforms. In recent years, plasmonic nanomaterials-based sensors have been extensively investigated because they are useful for genetic diseases, biological processes, devices, and cell imaging. In this account, a brief introduction of the development of optical biosensors based on DNA-functionalized plasmonic nanomaterials is presented. Then the common strategies for the application of the optical sensors are summarized, including colorimetry, fluorescence, localized surface plasmon resonance, and surface-enhanced resonance scattering detection. The focus is on the fundamental aspect of detection methods, and then a few examples of each method are highlighted. Finally, the opportunities and challenges for the plasmonic nanomaterials-based biosensing are discussed with the development of modern technologies.
Collapse
Affiliation(s)
- Yuanyuan Tian
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.,Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Zhang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
38
|
Sang S, Li Y, Guo X, Zhang B, Xue X, Zhuo K, Zhao C, Zhang W, Yuan Z. A Portable Device for Rapid Detection of Human Serum Albumin using an immunoglobulin-coating-based Magnetoelastic Biosensor. Biosens Bioelectron 2019; 141:111399. [DOI: 10.1016/j.bios.2019.111399] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 11/26/2022]
|
39
|
Feng J, Yang F, Wang X, Lyu F, Li Z, Yin Y. Self-Aligned Anisotropic Plasmonic Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900789. [PMID: 30924976 DOI: 10.1002/adma.201900789] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Great opportunities emerge not only in the generation of anisotropic plasmonic nanostructures but also in controlling their orientation relative to incident light. Herein, a stepwise seeded growth method is reported for the synthesis of rod-shaped plasmon nanostructures which are vertically self-aligned with respect to the surface of colloidal substrates. Anisotropic growth of metal nanostructure is achieved by depositing metal seeds onto the surface of colloidal substrates and then selectively passivating the seed surface to induce symmetry breaking in the subsequent seed-mediated growth process. The versatility of this method is demonstrated by producing nanoparticle dimers and linear trimers of Au, Au-Ag, Au-Pd, and Au-Cu2 O. Further, this unique method enables the automatic vertical alignment of the resulting plasmonic nanostructures to the surface of the colloidal substrate, thereby making it possible to design magnetic/plasmonic nanocomposites that allow the dynamic tuning of the plasmon excitation by controlling their orientation using an external magnetic field. The controlled anisotropic growth of colloidal plasmonic nanostructures and their dynamic modulation of plasmon excitation further allow them to be conveniently fixed in a thin polymer film with a well-controlled orientation to display polarization-dependent patterns that may find important applications in information encryption.
Collapse
Affiliation(s)
- Ji Feng
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Fan Yang
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Xiaojing Wang
- Materials Science and Engineering Program, University of California, Riverside, CA, 92521, USA
| | - Fenglei Lyu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhiwei Li
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
- Materials Science and Engineering Program, University of California, Riverside, CA, 92521, USA
| |
Collapse
|