1
|
Sun L, Jiang C, Su F, Cui W, Yang H. Chromosome-level genome assembly of the sea cucumber Apostichopus japonicus. Sci Data 2023; 10:454. [PMID: 37443361 PMCID: PMC10344927 DOI: 10.1038/s41597-023-02368-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Sea cucumber is a morphologically diverse and ecologically important clade of echinoderms. The sea cucumber Apostichopus japonicus is the most economically valuable species of sea cucumber. The initial assembly of the A. japonicus genome was released in 2017. However, this genome assembly is fragmented and lacks relative position information of genes on chromosomes. In this study, we produced a high-quality chromosome-level genome of A. japonicus using Pacbio HiFi long-reads and Hi-C sequencing data. The assembled A. japonicus genome spanned 671.60 Mb with a contig N50 size of 17.20 Mb and scaffold N50 size of 29.65 Mb. A total of 99.9% of the assembly was anchored to 23 chromosomes. In total, 19,828 genes were annotated, and 97.2% of BUSCO genes were fully represented. This high-quality genome of A. japonicus will not only aid in the development of sustainable aquaculture practices, but also lay a foundation for a deeper understanding of their genetic makeup, evolutionary history, and ecological adaptation.
Collapse
Affiliation(s)
- Lina Sun
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chunxi Jiang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Su
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongsheng Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Li Y, Dunn FS, Murdock DJE, Guo J, Rahman IA, Cong P. Cambrian stem-group ambulacrarians and the nature of the ancestral deuterostome. Curr Biol 2023:S0960-9822(23)00530-4. [PMID: 37167976 DOI: 10.1016/j.cub.2023.04.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/17/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
Deuterostomes are characterized by some of the most widely divergent body plans in the animal kingdom. These striking morphological differences have hindered efforts to predict ancestral characters, with the origin and earliest evolution of the group remaining ambiguous. Several iconic Cambrian fossils have been suggested to be early deuterostomes and hence could help elucidate ancestral character states. However, their phylogenetic relationships are controversial. Here, we describe new, exceptionally preserved specimens of the discoidal metazoan Rotadiscus grandis from the early Cambrian Chengjiang biota of China. These reveal a previously unknown double spiral structure, which we interpret as a chordate-like covering to a coelomopore, located adjacent to a horseshoe-shaped tentacle complex. The tentacles differ in key aspects from those seen in lophophorates and are instead more similar to the tentacular systems of extant pterobranchs and echinoderms. Thus, Rotadiscus exhibits a chimeric combination of ambulacrarian and chordate characters. Phylogenetic analyses recover Rotadiscus and closely related fossil taxa as stem ambulacrarians, filling a significant morphological gap in the deuterostome tree of life. These results allow us to reconstruct the ancestral body plans of major clades of deuterostomes, revealing that key traits of extant forms, such as a post-anal region, gill bars, and a U-shaped gut, evolved through convergence.
Collapse
Affiliation(s)
- Yujing Li
- Yunnan Normal University, Kunming 650500, China; Yunnan Key Laboratory for Palaeobiology & MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Institute of Palaeontology, Yunnan University, Kunming 650500, China; State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Frances S Dunn
- Oxford University Museum of Natural History, University of Oxford, Oxford OX1 3PW, UK
| | - Duncan J E Murdock
- Oxford University Museum of Natural History, University of Oxford, Oxford OX1 3PW, UK
| | - Jin Guo
- Yunnan Key Laboratory for Palaeobiology & MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Institute of Palaeontology, Yunnan University, Kunming 650500, China; Management Committee of the Chengjiang Fossil Site World Heritage, Chengjiang 652599, China
| | - Imran A Rahman
- Oxford University Museum of Natural History, University of Oxford, Oxford OX1 3PW, UK; The Natural History Museum, London SW7 5BD, UK.
| | - Peiyun Cong
- Yunnan Key Laboratory for Palaeobiology & MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Institute of Palaeontology, Yunnan University, Kunming 650500, China.
| |
Collapse
|
3
|
Qiang Y, Guo J, Li G, Song Z, Peng J, Sun J, Han J, Zhang Z. Aldanella attleborensis (Mollusca) from Cambrian Stage 2 of the Three Gorges Area and Its Stratigraphic Implications. BIOLOGY 2023; 12:biology12020261. [PMID: 36829538 PMCID: PMC9953005 DOI: 10.3390/biology12020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Some small shelly fossils are important index fossils for global stratigraphic subdivisions and correlations of the Cambrian Terreneuvian. The first appearance datum (FAD) of the cosmopolitan mollusk Aldanella attleborensis has been suggested as one of the potential markers for defining the base of Cambrian Stage 2. Aldanella fossils were uncommon in South China, and if occurring, were often described as Aldanella yanjiaheensis, A. attleborensis, or indeterminate species in the literature, while A. yanjiaheensis was often taken as a junior synonym of A. attleborensis. Nevertheless, a detailed taxonomic revision of A. yanjiaheensis based on material from its type locality awaits to be made. In this study, we systematically re-evaluated A. yanjiaheensis based on the numerous specimens collected from the base of Member 5 of the Yanjiahe Formation in the Three Gorges area, western Hubei Province of South China. Detailed taxonomic comparison further substantiates that A. yanjiaheensis is a junior synonym of A. attleborensis, signifying its strong potential for a global correlation across paleocontinents. Morphological parameter analyses indicate that the length and width of shell tube of A. attleborensis shows allometric growth. The nearly cosmopolitan distribution and characteristic morphology of A. attleborensis indicate that it can play a significant role in the subdivision and correlation of Cambrian Stage 2. The co-occurrence of A. attleborensis and Watsonella crosbyi from the base of Member 5 of the Yanjiahe Formation corroborates that Member 5 belongs to Cambrian Stage 2.
Collapse
Affiliation(s)
- Yaqin Qiang
- Key Laboratory of Western Mineral Resources and Geological Engineering, Ministry of Education, School of Earth Science and Resources, Chang'an University, Xi'an 710054, China
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
| | - Junfeng Guo
- Key Laboratory of Western Mineral Resources and Geological Engineering, Ministry of Education, School of Earth Science and Resources, Chang'an University, Xi'an 710054, China
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
- Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, China
| | - Guoxiang Li
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zuchen Song
- Key Laboratory of Western Mineral Resources and Geological Engineering, Ministry of Education, School of Earth Science and Resources, Chang'an University, Xi'an 710054, China
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jiaxin Peng
- Key Laboratory of Western Mineral Resources and Geological Engineering, Ministry of Education, School of Earth Science and Resources, Chang'an University, Xi'an 710054, China
| | - Jie Sun
- Key Laboratory of Western Mineral Resources and Geological Engineering, Ministry of Education, School of Earth Science and Resources, Chang'an University, Xi'an 710054, China
- Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, China
| | - Jian Han
- Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, China
| | - Zhifei Zhang
- Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xi'an 710069, China
| |
Collapse
|
4
|
Nanglu K, Cole SR, Wright DF, Souto C. Worms and gills, plates and spines: the evolutionary origins and incredible disparity of deuterostomes revealed by fossils, genes, and development. Biol Rev Camb Philos Soc 2023; 98:316-351. [PMID: 36257784 DOI: 10.1111/brv.12908] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 01/12/2023]
Abstract
Deuterostomes are the major division of animal life which includes sea stars, acorn worms, and humans, among a wide variety of ecologically and morphologically disparate taxa. However, their early evolution is poorly understood, due in part to their disparity, which makes identifying commonalities difficult, as well as their relatively poor early fossil record. Here, we review the available morphological, palaeontological, developmental, and molecular data to establish a framework for exploring the origins of this important and enigmatic group. Recent fossil discoveries strongly support a vermiform ancestor to the group Hemichordata, and a fusiform active swimmer as ancestor to Chordata. The diverse and anatomically bewildering variety of forms among the early echinoderms show evidence of both bilateral and radial symmetry. We consider four characteristics most critical for understanding the form and function of the last common ancestor to Deuterostomia: Hox gene expression patterns, larval morphology, the capacity for biomineralization, and the morphology of the pharyngeal region. We posit a deuterostome last common ancestor with a similar antero-posterior gene regulatory system to that found in modern acorn worms and cephalochordates, a simple planktonic larval form, which was later elaborated in the ambulacrarian lineage, the ability to secrete calcium minerals in a limited fashion, and a pharyngeal respiratory region composed of simple pores. This animal was likely to be motile in adult form, as opposed to the sessile origins that have been historically suggested. Recent debates regarding deuterostome monophyly as well as the wide array of deuterostome-affiliated problematica further suggest the possibility that those features were not only present in the last common ancestor of Deuterostomia, but potentially in the ur-bilaterian. The morphology and development of the early deuterostomes, therefore, underpin some of the most significant questions in the study of metazoan evolution.
Collapse
Affiliation(s)
- Karma Nanglu
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Selina R Cole
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Avenue NW, Washington, DC, 20560, USA.,Sam Noble Museum, University of Oklahoma, 2401 Chautauqua Avenue, Norman, OK, 73072, USA.,School of Geosciences, University of Oklahoma, 100 E Boyd Street, Norman, OK, 73019, USA
| | - David F Wright
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Avenue NW, Washington, DC, 20560, USA.,Sam Noble Museum, University of Oklahoma, 2401 Chautauqua Avenue, Norman, OK, 73072, USA.,School of Geosciences, University of Oklahoma, 100 E Boyd Street, Norman, OK, 73019, USA
| | - Camilla Souto
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, 10th & Constitution Avenue NW, Washington, DC, 20560, USA.,School of Natural Sciences & Mathematics, Stockton University, 101 Vera King Farris Dr, Galloway, NJ, 08205, USA
| |
Collapse
|
5
|
Liu Y, Carlisle E, Zhang H, Yang B, Steiner M, Shao T, Duan B, Marone F, Xiao S, Donoghue PCJ. Saccorhytus is an early ecdysozoan and not the earliest deuterostome. Nature 2022; 609:541-546. [PMID: 35978194 DOI: 10.1038/s41586-022-05107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/13/2022] [Indexed: 11/09/2022]
Abstract
The early history of deuterostomes, the group composed of the chordates, echinoderms and hemichordates1, is still controversial, not least because of a paucity of stem representatives of these clades2-5. The early Cambrian microscopic animal Saccorhytus coronarius was interpreted as an early deuterostome on the basis of purported pharyngeal openings, providing evidence for a meiofaunal ancestry6 and an explanation for the temporal mismatch between palaeontological and molecular clock timescales of animal evolution6-8. Here we report new material of S. coronarius, which is reconstructed as a millimetric and ellipsoidal meiobenthic animal with spinose armour and a terminal mouth but no anus. Purported pharyngeal openings in support of the deuterostome hypothesis6 are shown to be taphonomic artefacts. Phylogenetic analyses indicate that S. coronarius belongs to total-group Ecdysozoa, expanding the morphological disparity and ecological diversity of early Cambrian ecdysozoans.
Collapse
Affiliation(s)
- Yunhuan Liu
- School of Earth Science and Resources, Chang'an University, Xi'an, China
| | - Emily Carlisle
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Huaqiao Zhang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China.
| | - Ben Yang
- MNR Key Laboratory of Stratigraphy and Palaeontology, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, China
| | - Michael Steiner
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, China.,Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| | - Tiequan Shao
- School of Earth Science and Resources, Chang'an University, Xi'an, China
| | - Baichuan Duan
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resource, Qingdao, China
| | - Federica Marone
- Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland
| | - Shuhai Xiao
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA.
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
6
|
Martynov AV, Korshunova TA. Renewed perspectives on the sedentary-pelagic last common bilaterian ancestor. CONTRIBUTIONS TO ZOOLOGY 2022. [DOI: 10.1163/18759866-bja10034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Various evaluations of the last common bilaterian ancestor (lcba) currently suggest that it resembled either a microscopic, non-segmented motile adult; or, on the contrary, a complex segmented adult motile urbilaterian. These fundamental inconsistencies remain largely unexplained. A majority of multidisciplinary data regarding sedentary adult ancestral bilaterian organization is overlooked. The sedentary-pelagic model is supported now by a number of novel developmental, paleontological and molecular phylogenetic data: (1) data in support of sedentary sponges, in the adult stage, as sister to all other Metazoa; (2) a similarity of molecular developmental pathways in both adults and larvae across sedentary sponges, cnidarians, and bilaterians; (3) a cnidarian-bilaterian relationship, including a unique sharing of a bona fide Hox-gene cluster, of which the evolutionary appearance does not connect directly to a bilaterian motile organization; (4) the presence of sedentary and tube-dwelling representatives of the main bilaterian clades in the early Cambrian; (5) an absence of definite taxonomic attribution of Ediacaran taxa reconstructed as motile to any true bilaterian phyla; (6) a similarity of tube morphology (and the clear presence of a protoconch-like apical structure of the Ediacaran sedentary Cloudinidae) among shells of the early Cambrian, and later true bilaterians, such as semi-sedentary hyoliths and motile molluscs; (7) recent data that provide growing evidence for a complex urbilaterian, despite a continuous molecular phylogenetic controversy. The present review compares the main existing models and reconciles the sedentary model of an urbilaterian and the model of a larva-like lcba with a unified sedentary(adult)-pelagic(larva) model of the lcba.
Collapse
Affiliation(s)
- Alexander V. Martynov
- Zoological Museum, Moscow State University, Bolshaya Nikitskaya Str. 6, 125009 Moscow, Russia,
| | - Tatiana A. Korshunova
- Koltzov Institute of Developmental Biology RAS, 26 Vavilova Str., 119334 Moscow, Russia
| |
Collapse
|
7
|
Zamora S, Rahman IA, Sumrall CD, Gibson AP, Thompson JR. Cambrian edrioasteroid reveals new mechanism for secondary reduction of the skeleton in echinoderms. Proc Biol Sci 2022; 289:20212733. [PMID: 35232240 PMCID: PMC8889179 DOI: 10.1098/rspb.2021.2733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Echinoderms are characterized by a distinctive high-magnesium calcite endoskeleton as adults, but elements of this have been drastically reduced in some groups. Herein, we describe a new pentaradial echinoderm, Yorkicystis haefneri n. gen. n. sp., which provides, to our knowledge, the oldest evidence of secondary non-mineralization of the echinoderm skeleton. This material was collected from the Cambrian Kinzers Formation in York (Pennsylvania, USA) and is dated as ca 510 Ma. Detailed morphological observations demonstrate that the ambulacra (i.e. axial region) are composed of flooring and cover plates, but the rest of the body (i.e. extraxial region) is preserved as a dark film and lacks any evidence of skeletal plating. Moreover, X-ray fluorescence analysis reveals that the axial region is elevated in iron. Based on our morphological and chemical data and on taphonomic comparisons with other fossils from the Kinzers Formation, we infer that the axial region was originally calcified, while the extraxial region was non-mineralized. Phylogenetic analyses recover Yorkicystis as an edrioasteroid, indicating that this partial absence of skeleton resulted from a secondary reduction. We hypothesize that skeletal reduction resulted from lack of expression of the skeletogenic gene regulatory network in the extraxial body wall during development. Secondary reduction of the skeleton in Yorkicystis might have allowed for greater flexibility of the body wall.
Collapse
Affiliation(s)
- Samuel Zamora
- Instituto Geológico y Minero de España (IGME-CSIC), C/Manuel Lasala, 44, 9°B, 50006 Zaragoza, Spain.,Grupo Aragosaurus-IUCA, Área de Paleontología, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Imran A Rahman
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.,Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK
| | - Colin D Sumrall
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996-1526, USA
| | - Adam P Gibson
- Department of Medical Physics and Biomedical Engineering and Institute for Sustainable Heritage, University College London, Gower Street, London WC1E 6BT, UK
| | - Jeffrey R Thompson
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.,UCL Centre for Life's Origins and Evolution, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
8
|
Abstract
In this review, we consider transformations of axial symmetry in metazoan evolution and development, the genetic basis, and phenotypic expressions of different axial body plans. In addition to the main symmetry types in metazoan body plans, such as rotation (radial symmetry), reflection (mirror and glide reflection symmetry), and translation (metamerism), many biological objects show scale (fractal) symmetry as well as some symmetry-type combinations. Some genetic mechanisms of axial pattern establishment, creating a coordinate system of a metazoan body plan, bilaterian segmentation, and left–right symmetry/asymmetry, are analysed. Data on the crucial contribution of coupled functions of the Wnt, BMP, Notch, and Hedgehog signaling pathways (all pathways are designated according to the abbreviated or full names of genes or their protein products; for details, see below) and the axial Hox-code in the formation and maintenance of metazoan body plans are necessary for an understanding of the evolutionary diversification and phenotypic expression of various types of axial symmetry. The lost body plans of some extinct Ediacaran and early Cambrian metazoans are also considered in comparison with axial body plans and posterior growth in living animals.
Collapse
|
9
|
Ferrario C, Sugni M, Somorjai IML, Ballarin L. Beyond Adult Stem Cells: Dedifferentiation as a Unifying Mechanism Underlying Regeneration in Invertebrate Deuterostomes. Front Cell Dev Biol 2020; 8:587320. [PMID: 33195242 PMCID: PMC7606891 DOI: 10.3389/fcell.2020.587320] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
The diversity of regenerative phenomena seen in adult metazoans, as well as their underlying mechanistic bases, are still far from being comprehensively understood. Reviewing both ultrastructural and molecular data, the present work aims to showcase the increasing relevance of invertebrate deuterostomes, i.e., echinoderms, hemichordates, cephalochordates and tunicates, as invaluable models to study cellular aspects of adult regeneration. Our comparative approach suggests a fundamental contribution of local dedifferentiation -rather than mobilization of resident undifferentiated stem cells- as an important cellular mechanism contributing to regeneration in these groups. Thus, elucidating the cellular origins, recruitment and fate of cells, as well as the molecular signals underpinning tissue regrowth in regeneration-competent deuterostomes, will provide the foundation for future research in tackling the relatively limited regenerative abilities of vertebrates, with clear applications in regenerative medicine.
Collapse
Affiliation(s)
- Cinzia Ferrario
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Milan, Italy
- GAIA 2050 Center, Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Ildiko M. L. Somorjai
- The Willie Russel Laboratories, Biomedical Sciences Research Complex, North Haugh, University of St Andrews, St Andrews, United Kingdom
| | | |
Collapse
|
10
|
Reply to 'Re-evaluating the phylogenetic position of the enigmatic early Cambrian deuterostome Yanjiahella'. Nat Commun 2020; 11:1287. [PMID: 32152290 PMCID: PMC7062690 DOI: 10.1038/s41467-020-14922-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/11/2020] [Indexed: 11/09/2022] Open
|
11
|
Zamora S, Wright DF, Mooi R, Lefebvre B, Guensburg TE, Gorzelak P, David B, Sumrall CD, Cole SR, Hunter AW, Sprinkle J, Thompson JR, Ewin TAM, Fatka O, Nardin E, Reich M, Nohejlová M, Rahman IA. Re-evaluating the phylogenetic position of the enigmatic early Cambrian deuterostome Yanjiahella. Nat Commun 2020; 11:1286. [PMID: 32152310 PMCID: PMC7063041 DOI: 10.1038/s41467-020-14920-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 02/11/2020] [Indexed: 12/01/2022] Open
Affiliation(s)
- Samuel Zamora
- Instituto Geológico y Minero de España (IGME), 50006, Zaragoza, Spain. .,Grupo Aragosaurus-IUCA, Área de Paleontología, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain.
| | - David F Wright
- Division of Paleontology, American Museum of Natural History, New York, NY, 10024, USA.,Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C, 20560, USA
| | - Rich Mooi
- Department of Invertebrate Zoology and Geology, California Academy of Sciences, San Francisco, CA, 94118-4503, USA
| | - Bertrand Lefebvre
- UMR CNRS 5276 LGLTPE, Université Claude-Bernard Lyon 1, Lyon, 69622, France
| | | | - Przemysław Gorzelak
- Institute of Paleobiology, Polish Academy of Sciences, 00-818, Warsaw, Poland
| | - Bruno David
- Muséum national d'Histoire naturelle, 75005, Paris, France
| | - Colin D Sumrall
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, 37996-15256, USA
| | - Selina R Cole
- Division of Paleontology, American Museum of Natural History, New York, NY, 10024, USA.,Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C, 20560, USA
| | - Aaron W Hunter
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, Cambridgeshire, CB2 3EQ, UK.,School of Earth Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - James Sprinkle
- Department of Geological Sciences, Jackson School of Geosciences, University of Texas, Austin, TX, 78712-0254, USA
| | - Jeffrey R Thompson
- University College London, Department of Genetics. Evolution and Environment, London, WC1E 6BT, UK
| | | | - Oldřich Fatka
- Department of Geology and Palaeontology, Faculty of Science, Charles University, Praha, 128 43, Czech Republic
| | - Elise Nardin
- Géosciences Environnement Toulouse, Université de Toulouse, CNRS, Toulouse, France
| | - Mike Reich
- SNSB - Bavarian State Collection of Palaeontology and Geology, 80333, Munich, Germany.,Ludwig-Maximilians-Universität München, Department of Earth and Environmental Sciences, Paleontology and Geobiology, 80333, Munich, Germany.,GeoBio-CenterLMU, 80333, Munich, Germany
| | | | - Imran A Rahman
- Oxford University Museum of Natural History, Oxford, OX1 3PW, UK
| |
Collapse
|
12
|
Affiliation(s)
- Martin R Smith
- Department of Earth Sciences, Durham University, UK
- Reviewer of NSR
| |
Collapse
|
13
|
Martynov A, Lundin K, Picton B, Fletcher K, Malmberg K, Korshunova T. Multiple paedomorphic lineages of soft-substrate burrowing invertebrates: parallels in the origin of Xenocratena and Xenoturbella. PLoS One 2020; 15:e0227173. [PMID: 31940379 PMCID: PMC6961895 DOI: 10.1371/journal.pone.0227173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/12/2019] [Indexed: 01/21/2023] Open
Abstract
Paedomorphosis is an important evolutionary force. It has previously been suggested that a soft-substrate sediment-dwelling (infaunal) environment facilitates paedomorphic evolution in marine invertebrates. However, until recently this proposal was never rigorously tested with robust phylogeny and broad taxon selection. Here, for the first time, we present a molecular phylogeny for a majority of the 21 families of one of the largest nudibranch subgroups (Aeolidacea) and show that the externally highly simplified vermiform nudibranch family, Pseudovermidae, with clearly defined paedomorphic traits and inhabiting a soft-substrata environment, is a sister group to the complex nudibranch family, Cumanotidae. We also report the rediscovery of one of the most enigmatic nudibranchs-Xenocratena suecica-on the Swedish and Norwegian coasts 70 years after it was first found. Xenocratena was described from the same location and environment in the Swedish Gullmar fjord as one of the most enigmatic vermiform organisms, Xenoturbella bocki, which represents either an original simple bilaterian body plan or secondary simplification of a more complex organisation. Our results show that Xenocratena suecica reveals an onset of parallel paedomorphic evolution so we have proposed the new family, Xenocratenidae fam. n., to accommodate the molecular and morphological disparities we discovered. The paedomorphic origin of another aeolidacean family, Embletoniidae, is also demonstrated for the first time. Thus, by presenting three independent lineages from non-closely related aeolidacean families, Xenocratenidae fam. n., Cumanotidae and Embletoniidae, we confirm with phylogenetic data that a soft-substrata burrowing-related environment strongly favours paedomorphic evolution. We suggest criteria to distinguish ancestral and derived characters in the context of modifications of ontogenetic cycles. Applying an evolutionary model of the soft substrate-driven multiple paedomorphic origin of several families of nudibranch molluscs we propose that it is plausible to extend this model to other marine invertebrates and suggest that the ancestral organisation of the enigmatic metazoan, Xenoturbella, might correspond to the larval part of a complex ancestral bilaterian ontogenetic cycle with sedentary/semi-sedentary adult stages and planula-like larval stages.
Collapse
Affiliation(s)
| | - Kennet Lundin
- Gothenburg Natural History Museum, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Bernard Picton
- National Museums Northern Ireland, Holywood, Northern Ireland, United Kingdom
- Queen’s University, Belfast, Northern Ireland, United Kingdom
| | - Karin Fletcher
- Milltech Marine, Port Orchard, Washington, United States of America
| | - Klas Malmberg
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Aquatilis, Gothenburg, Sweden
| | - Tatiana Korshunova
- Zoological Museum, Moscow State University, Moscow, Russia
- Koltzov Institute of Developmental Biology RAS, Moscow, Russia
| |
Collapse
|