1
|
Ryzhakov G, Almuttaqi H, Corbin AL, Berthold DL, Khoyratty T, Eames HL, Bullers S, Pearson C, Ai Z, Zec K, Bonham S, Fischer R, Jostins-Dean L, Travis SPL, Kessler BM, Udalova IA. Defactinib inhibits PYK2 phosphorylation of IRF5 and reduces intestinal inflammation. Nat Commun 2021; 12:6702. [PMID: 34795257 PMCID: PMC8602323 DOI: 10.1038/s41467-021-27038-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Interferon regulating factor 5 (IRF5) is a multifunctional regulator of immune responses, and has a key pathogenic function in gut inflammation, but how IRF5 is modulated is still unclear. Having performed a kinase inhibitor library screening in macrophages, here we identify protein-tyrosine kinase 2-beta (PTK2B/PYK2) as a putative IRF5 kinase. PYK2-deficient macrophages display impaired endogenous IRF5 activation, leading to reduction of inflammatory gene expression. Meanwhile, a PYK2 inhibitor, defactinib, has a similar effect on IRF5 activation in vitro, and induces a transcriptomic signature in macrophages similar to that caused by IRF5 deficiency. Finally, defactinib reduces pro-inflammatory cytokines in human colon biopsies from patients with ulcerative colitis, as well as in a mouse colitis model. Our results thus implicate a function of PYK2 in regulating the inflammatory response in the gut via the IRF5 innate sensing pathway, thereby opening opportunities for related therapeutic interventions for inflammatory bowel diseases and other inflammatory conditions.
Collapse
Affiliation(s)
- Grigory Ryzhakov
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, Basel, Switzerland
| | - Hannah Almuttaqi
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Alastair L Corbin
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Dorothée L Berthold
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Tariq Khoyratty
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Hayley L Eames
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Samuel Bullers
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Claire Pearson
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Zhichao Ai
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Kristina Zec
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Sarah Bonham
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Luke Jostins-Dean
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Simon P L Travis
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, Centre for Medicines Discovery, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Irina A Udalova
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, United Kingdom.
| |
Collapse
|
2
|
Bersch K, DeMeester KE, Zagani R, Chen S, Wodzanowski KA, Liu S, Mashayekh S, Reinecker HC, Grimes CL. Bacterial Peptidoglycan Fragments Differentially Regulate Innate Immune Signaling. ACS CENTRAL SCIENCE 2021; 7:688-696. [PMID: 34056099 PMCID: PMC8155477 DOI: 10.1021/acscentsci.1c00200] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 05/07/2023]
Abstract
The human innate immune system responds to both pathogen and commensal bacteria at the molecular level using bacterial peptidoglycan (PG) recognition elements. Traditionally, synthetic and commercially accessible PG monosaccharide units known as muramyl dipeptide (MDP) and N-glycolyl MDP (ng-MDP) have been used to probe the mechanism of innate immune activation of pattern recognition receptors, such as NOD-like receptors. However, bacterial PG is a dynamic and complex structure, with various chemical modifications and trimming mechanisms that result in the production of disaccharide-containing elements. These molecules pose as attractive targets for immunostimulatory screening; however, studies are limited because of their synthetic accessibility. Inspired by disaccharide-containing compounds produced from the gut microbe Lactobacillus acidophilus, a robust and scalable chemical synthesis of PG-based disaccharide ligands was implemented. Together with a monosaccharide PG library, compounds were screened for their ability to stimulate proinflammatory genes in bone-marrow-derived macrophages. The data reveal distinct gene induction patterns for monosaccharide and disaccharide PG units, suggesting that PG innate immune signaling is more complex than a one activator-one pathway program, as biologically relevant fragments induce transcriptional programs to different degrees. These disaccharide molecules will serve as critical immunostimulatory tools to more precisely define specialized innate immune regulatory mechanisms that distinguish between commensal and pathogenic bacteria residing in the microbiome.
Collapse
Affiliation(s)
- Klare
L. Bersch
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Kristen E. DeMeester
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Rachid Zagani
- Department
of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory
Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Shuyuan Chen
- Department
of Medicine, Division of Digestive and Liver Diseases, and Department
of Immunology, University of Texas Southwestern
Medical Center, 5959 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Kimberly A. Wodzanowski
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Shuzhen Liu
- Department
of Medicine, Division of Digestive and Liver Diseases, and Department
of Immunology, University of Texas Southwestern
Medical Center, 5959 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Siavash Mashayekh
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Hans-Christian Reinecker
- Department
of Medicine, Gastrointestinal Unit and Center for the Study of Inflammatory
Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department
of Medicine, Division of Digestive and Liver Diseases, and Department
of Immunology, University of Texas Southwestern
Medical Center, 5959 Harry Hines Boulevard, Dallas, Texas 75390, United
States
| | - Catherine L. Grimes
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
- Department
of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
3
|
Yousif AS, Ronsard L, Shah P, Omatsu T, Sangesland M, Bracamonte Moreno T, Lam EC, Vrbanac VD, Balazs AB, Reinecker HC, Lingwood D. The persistence of interleukin-6 is regulated by a blood buffer system derived from dendritic cells. Immunity 2020; 54:235-246.e5. [PMID: 33357409 PMCID: PMC7836640 DOI: 10.1016/j.immuni.2020.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/17/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
The interleukin-6 (IL-6) membrane receptor and its circulating soluble form, sIL-6R, can be targeted by antibody therapy to reduce deleterious immune signaling caused by chronic overexpression of the pro-inflammatory cytokine IL-6. This strategy may also hold promise for treating acute hyperinflammation, such as observed in coronavirus disease 2019 (COVID-19), highlighting a need to define regulators of IL-6 homeostasis. We found that conventional dendritic cells (cDCs), defined in mice via expression of the transcription factor Zbtb46, were a major source of circulating sIL-6R and, thus, systemically regulated IL-6 signaling. This was uncovered through identification of a cDC-dependent but T cell-independent modality that naturally adjuvants plasma cell differentiation and antibody responses to protein antigens. This pathway was then revealed as part of a broader biological buffer system in which cDC-derived sIL-6R set the in-solution persistence of IL-6. This control axis may further inform the development of therapeutic agents to modulate pro-inflammatory immune reactions.
Collapse
Affiliation(s)
- Ashraf S Yousif
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Larance Ronsard
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Pankaj Shah
- The Center for the Study of Inflammatory Bowel Disease, Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Tatsushi Omatsu
- The Center for the Study of Inflammatory Bowel Disease, Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Maya Sangesland
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Thalia Bracamonte Moreno
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Evan C Lam
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Vladimir D Vrbanac
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Alejandro B Balazs
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA
| | - Hans-Christian Reinecker
- The Center for the Study of Inflammatory Bowel Disease, Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; The Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Daniel Lingwood
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
Joo E, Olson MF. Regulation and functions of the RhoA regulatory guanine nucleotide exchange factor GEF-H1. Small GTPases 2020; 12:358-371. [PMID: 33126816 PMCID: PMC8583009 DOI: 10.1080/21541248.2020.1840889] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Since the discovery by Madaule and Axel in 1985 of the first Ras homologue (Rho) protein in Aplysia and its human orthologue RhoB, membership in the Rho GTPase family has grown to 20 proteins, with representatives in all eukaryotic species. These GTPases are molecular switches that cycle between active (GTP bound) and inactivate (GDP bound) states. The exchange of GDP for GTP on Rho GTPases is facilitated by guanine exchange factors (GEFs). Approximately 80 Rho GEFs have been identified to date, and only a few GEFs associate with microtubules. The guanine nucleotide exchange factor H1, GEF-H1, is a unique GEF that associates with microtubules and is regulated by the polymerization state of microtubule networks. This review summarizes the regulation and functions of GEF-H1 and discusses the roles of GEF-H1 in human diseases.
Collapse
Affiliation(s)
- Emily Joo
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Michael F Olson
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
5
|
Kashyap AS, Fernandez-Rodriguez L, Zhao Y, Monaco G, Trefny MP, Yoshida N, Martin K, Sharma A, Olieric N, Shah P, Stanczak M, Kirchhammer N, Park SM, Wieckowski S, Laubli H, Zagani R, Kasenda B, Steinmetz MO, Reinecker HC, Zippelius A. GEF-H1 Signaling upon Microtubule Destabilization Is Required for Dendritic Cell Activation and Specific Anti-tumor Responses. Cell Rep 2020; 28:3367-3380.e8. [PMID: 31553907 PMCID: PMC6876861 DOI: 10.1016/j.celrep.2019.08.057] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/06/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022] Open
Abstract
Dendritic cell (DC) activation is a critical step for anti-tumor T cell responses. Certain chemotherapeutics can influence DC function. Here we demonstrate that chemotherapy capable of microtubule destabilization has direct effects on DC function; namely, it induces potent DC maturation and elicits anti-tumor immunity. Guanine nucleotide exchange factor-H1 (GEF-H1) is specifically released upon microtubule destabilization and is required for DC activation. In response to chemotherapy, GEF-H1 drives a distinct cell signaling program in DCs dominated by the c-Jun N-terminal kinase (JNK) pathway and AP-1/ATF transcriptional response for control of innate and adaptive immune responses. Microtubule destabilization, and subsequent GEF-H1 signaling, enhances cross-presentation of tumor antigens to CD8 T cells. In absence of GEF-H1, anti-tumor immunity is hampered. In cancer patients, high expression of the GEF-H1 immune gene signature is associated with prolonged survival. Our study identifies an alternate intracellular axis in DCs induced upon microtubule destabilization in which GEF-H1 promotes protective anti-tumor immunity. Certain chemotherapeutics elicit potent anti-tumor immunity. Kashyap et al. demonstrate that microtubule-destabilizing chemotherapeutics induce maturation of dendritic cells through activation of microtubule-associated protein GEF-H1. This leads to effective priming of CD8 T cells against tumor antigens. GEF-H1 is critical for anti-tumor immunity of microtubule-targeting chemotherapy.
Collapse
Affiliation(s)
- Abhishek S Kashyap
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland; Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Laura Fernandez-Rodriguez
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Yun Zhao
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Gianni Monaco
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Marcel P Trefny
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Naohiro Yoshida
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kea Martin
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Ashwani Sharma
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Pankaj Shah
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Michal Stanczak
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Nicole Kirchhammer
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Sung-Moo Park
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sebastien Wieckowski
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Heinz Laubli
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland; Medical Oncology, University Hospital Basel, 4031 Basel, Switzerland
| | - Rachid Zagani
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Benjamin Kasenda
- Medical Oncology, University Hospital Basel, 4031 Basel, Switzerland
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland; University of Basel, Biozentrum, 4056 Basel, Switzerland
| | - Hans-Christian Reinecker
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Alfred Zippelius
- Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland; Medical Oncology, University Hospital Basel, 4031 Basel, Switzerland.
| |
Collapse
|
6
|
Chen CC, Hsu CY, Lin HY, Zeng HQ, Cheng KH, Wu CW, Tsai EM, Hsieh TH. KRAS K104 modification affects the KRAS G12D-GEF interaction and mediates cell growth and motility. Sci Rep 2020; 10:17447. [PMID: 33060649 PMCID: PMC7567070 DOI: 10.1038/s41598-020-74463-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/24/2020] [Indexed: 11/09/2022] Open
Abstract
Mutant RAS genes play an important role in regulating tumors through lysine residue 104 to impair GEF-induced nucleotide exchange, but the regulatory role of KRAS K104 modification on the KRASG12D mutant remains unclear. Therefore, we simulated the acetylation site on the KRASG12D three-dimensional protein structure, including KRASG12D, KRASG12D/K104A and KRASG12D/K104Q, and determined their trajectories and binding free energy with GEF. KRASG12D/K104Q induced structural changes in the α2- and α3-helices, promoted KRAS instability and hampered GEF binding (ΔΔG = 6.14 kJ/mol). We found decreased binding to the Raf1 RBD by KRASG12D/K104Q and reduced cell growth, invasion and migration. Based on whole-genome cDNA microarray analysis, KRASG12D/K104Q decreased expression of NPIPA2, DUSP1 and IL6 in lung and ovarian cancer cells. This study reports computational and experimental analyses of Lys104 of KRASG12D and GEF, and the findings provide a target for exploration for future treatment.
Collapse
Affiliation(s)
- Chih-Chieh Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.,Rapid Screening Research Center for Toxicology and Biomedicine, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Chia-Yi Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hsiao-Yun Lin
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hong-Qi Zeng
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Kuang-Hung Cheng
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Chia-Wei Wu
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung, 82445, Taiwan
| | - Eing-Mei Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Tsung-Hua Hsieh
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung, 82445, Taiwan.
| |
Collapse
|
7
|
Lai HJ, Hsu YH, Lee GY, Chiang HS. Microtubule-Mediated NLRP3 Inflammasome Activation Is Independent of Microtubule-Associated Innate Immune Factor GEF-H1 in Murine Macrophages. Int J Mol Sci 2020; 21:ijms21041302. [PMID: 32075101 PMCID: PMC7072875 DOI: 10.3390/ijms21041302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 11/16/2022] Open
Abstract
Inflammasomes are intracellular multiple protein complexes that mount innate immune responses to tissue damage and invading pathogens. Their excessive activation is crucial in the development and pathogenesis of inflammatory disorders. Microtubules have been reported to provide the platform for mediating the assembly and activation of NLRP3 inflammasome. Recently, we have identified the microtubule-associated immune molecule guanine nucleotide exchange factor-H1 (GEF-H1) that is crucial in coupling microtubule dynamics to the initiation of microtubule-mediated immune responses. However, whether GEF-H1 also controls the activation of other immune receptors that require microtubules is still undefined. Here we employed GEF-H1-deficient mouse bone marrow-derived macrophages (BMDMs) to interrogate the impact of GEF-H1 on the activation of NLRP3 inflammasome. NLRP3 but not NLRC4 or AIM2 inflammasome-mediated IL-1β production was dependent on dynamic microtubule network in wild-type (WT) BMDMs. However, GEF-H1 deficiency did not affect NLRP3-driven IL-1β maturation and secretion in macrophages. Moreover, α-tubulin acetylation and mitochondria aggregations were comparable between WT and GEF-H1-deficient BMDMs in response to NLRP3 inducers. Further, GEF-H1 was not required for NLRP3-mediated immune defense against Salmonella typhimurium infection. Collectively, these findings suggest that the microtubule-associated immune modulator GEF-H1 is dispensable for microtubule-mediated NLRP3 activation and host defense in mouse macrophages.
Collapse
Affiliation(s)
- Hsuan-Ju Lai
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Hsuan Hsu
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Guan-Ying Lee
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Hao-Sen Chiang
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei 10617, Taiwan
- Correspondence: ; Tel.: +886-2-3366-2454
| |
Collapse
|
8
|
Liu Z, Ma C, Tang X, Tang Q, Lou L, Yu Y, Zheng F, Wu J, Yang XB, Wang W, Hann SS. The Reciprocal Interaction Between LncRNA CCAT1 and miR-375-3p Contribute to the Downregulation of IRF5 Gene Expression by Solasonine in HepG2 Human Hepatocellular Carcinoma Cells. Front Oncol 2019; 9:1081. [PMID: 31681610 PMCID: PMC6813207 DOI: 10.3389/fonc.2019.01081] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/30/2019] [Indexed: 01/17/2023] Open
Abstract
Solasonine (SS), a natural glycoalkaloid component, has been shown to have potent inhibitory activity and cytotoxicity against many cancer types. However, the precise mechanisms underlying this, particularly in hepatocellular carcinoma (HCC) are poorly understood. In this study, we showed that SS inhibited growth of HCC cells. Mechanistically, we observed that SS increased the expression of miR-375-3p, whereas reducing levels of long non-coding RNAs (lncRNAs) CCAT1 was noticed in HepG2 HCC and other cells. In addition, we found that SS repressed transcription factors, SP1 and interferon regulatory factor 5 (IRF5), protein expressions. There was a reciprocal interaction among miR-375-3p, CCAT1, and SP1. Moreover, SS inhibited IRF5 promoter activity, which was not observed in cells transfected with excessive expressed SP1 vectors. Interestingly, exogenously expressed IRF5 was shown to reverse expressions of SS-inhibited CCAT1 and induced-miR-375-3p; and neutralized SS-inhibited growth of HCC cells. Similar results were also found in vivo mouse model. Collectively, our results show that SS inhibits HepG2 HCC growth through the reciprocal regulation between the miR-375-3p and lncRNA CCAT1, and this results in transcription factor SP1-mediated reduction of IRF5 expression. The regulations and interactions among miR-375-3p, CCAT1, SP1, and IRF5 axis unveil a novel molecular mechanism underlying the anti-HCC growth by SS. IRF5 may be a potential target for treatment of HCC.
Collapse
Affiliation(s)
- Zheng Liu
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - ChangJu Ma
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - XiaoJuan Tang
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing Tang
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - LiJie Lou
- Department of Gastrointestinal Surgery, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaya Yu
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fang Zheng
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - JingJing Wu
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Bo Yang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Wang
- Department of Gastrointestinal Surgery, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
9
|
Wu Z, Gatesoupe FJ, Zhang Q, Wang X, Feng Y, Wang S, Feng D, Li A. High-throughput sequencing reveals the gut and lung prokaryotic community profiles of the Chinese giant salamander (Andrias davidianus). Mol Biol Rep 2019; 46:5143-5154. [PMID: 31364018 DOI: 10.1007/s11033-019-04972-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/05/2019] [Indexed: 12/27/2022]
Abstract
Increasing attention has been attracted to host microbiota, due to their vital impact on host health. Little is known about the microbiota of the Chinese giant salamander (Andrias davidianus), in spite of the high economic and scientific value of this endangered species. This study was designed to characterise and compare the gut and lung prokaryotic communities of the Chinese giant salamander by high-throughput sequencing. Our study showed that the giant salamander had a lung prokaryotic community that clustered separately from its intestinal microbiota. Statistical analysis (LEfSe) revealed that the bacterial populations were dominated by Geobacter, Sulfurimonas, and Dechloromonas from Proteobacteria phylum, and Corynebacterium from Actinobacteria phylum in the lung, while Parabacteroides, Bacteroides, and PW3 from Bacteroidetes phylum, and Oscillospira from Firmicutes phylum were predominant in the intestine. A particularly innovative finding was the fairly high abundance of Archaea, especially methanogenic Euryarchaeota. The gut dominant Archaea were Methanocorpusculum and Thermoplasmata vadinCA11, while Methanosaeta and Methanoculleus were the main Archaea in the lung. PICRUSt analysis revealed differentiated functional profiles between the intestinal miacrobiota and the lung microbiota. Specially, some microbial metabolic functions were significantly more active in the intestinal microbiota, while the functional genes involved in infectious diseases were much richer in the lung microbiota. This study characterized the prokaryotic microbial community profiles in the gut and lung of the Chinese giant salamander, providing foundational support for future study seeking to understand microbiota of the giant salamander and the role of its microbiota on infectious diseases.
Collapse
Affiliation(s)
- Zhenbing Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - François-Joël Gatesoupe
- INRA, Nutrition Metabolism and Aquaculture, Center de Bretagne, Ifremer, 29280, Plouzané, France
| | - Qianqian Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiehao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yuqing Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuyi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongyue Feng
- National Fisheries Technical Extension Center, Ministry of Agriculture, Beijing, 100125, China.
| | - Aihua Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. .,Freshwater Aquaculture Collaborative Innovation Centre of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|