1
|
Kandemir B, Kurnaz IA. The Role of Pea3 Transcription Factor Subfamily in the Nervous System. Mol Neurobiol 2024:10.1007/s12035-024-04432-w. [PMID: 39269548 DOI: 10.1007/s12035-024-04432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/08/2024] [Indexed: 09/15/2024]
Abstract
ETS domain transcription factor superfamily is highly conserved throughout metazoa and is involved in many aspects of development and tissue morphogenesis, and as such, the deregulation of ETS proteins is quite common in many diseases, including cancer. The PEA3 subfamily in particular has been extensively studied with respect to tumorigenesis and metastasis; however, they are also involved in the development of many tissues with branching morphogenesis, such as lung or kidney development. In this review, we aim to summarize findings from various studies on the role of Pea3 subfamily members in nervous system development in the embryo, as well as their functions in the adult neurons. We further discuss the different signals that were shown to regulate the function of the Pea3 family and indicate how this signal-dependent regulation of Pea3 proteins can generate neuronal circuit specificity through unique gene regulation. Finally, we discuss how these developmental roles of Pea3 proteins relate to their role in tumorigenesis.
Collapse
Affiliation(s)
- Basak Kandemir
- Department of Molecular Biology and Genetics, Baskent University, 06790, Etimesgut, Ankara, Turkey
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Isil Aksan Kurnaz
- Department of Molecular Biology and Genetics, Molecular Neurobiology Laboratory (AxanLab), Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
2
|
De Vincenti AP, Bonafina A, Ledda F, Paratcha G. Lrig1 regulates cell fate specification of glutamatergic neurons via FGF-driven Jak2/Stat3 signaling in cortical progenitors. Development 2024; 151:dev202879. [PMID: 39250533 DOI: 10.1242/dev.202879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024]
Abstract
The cell-intrinsic mechanisms underlying the decision of a stem/progenitor cell to either proliferate or differentiate remain incompletely understood. Here, we identify the transmembrane protein Lrig1 as a physiological homeostatic regulator of FGF2-driven proliferation and self-renewal of neural progenitors at early-to-mid embryonic stages of cortical development. We show that Lrig1 is expressed in cortical progenitors (CPs), and its ablation caused expansion and increased proliferation of radial/apical progenitors and of neurogenic transit-amplifying Tbr2+ intermediate progenitors. Notably, our findings identify a previously unreported EGF-independent mechanism through which Lrig1 negatively regulates neural progenitor proliferation by modulating the FGF2-induced IL6/Jak2/Stat3 pathway, a molecular cascade that plays a pivotal role in the generation and maintenance of CPs. Consistently, Lrig1 knockout mice showed a significant increase in the density of pyramidal glutamatergic neurons placed in superficial layers 2 and 3 of the postnatal neocortex. Together, these results support a model in which Lrig1 regulates cortical neurogenesis by influencing the cycling activity of a set of progenitors that are temporally specified to produce upper layer glutamatergic neurons.
Collapse
Affiliation(s)
- Ana Paula De Vincenti
- Laboratorio de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina. Universidad de Buenos Aires (UBA), Buenos Aires CP1121, Argentina
| | - Antonela Bonafina
- Laboratorio de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina. Universidad de Buenos Aires (UBA), Buenos Aires CP1121, Argentina
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires C1405 BWE, Argentina
| | - Fernanda Ledda
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires C1405 BWE, Argentina
| | - Gustavo Paratcha
- Laboratorio de Neurociencia Molecular y Celular, Instituto de Biología Celular y Neurociencias (IBCN)-CONICET-UBA, Facultad de Medicina. Universidad de Buenos Aires (UBA), Buenos Aires CP1121, Argentina
| |
Collapse
|
3
|
Mayfield JM, Hitefield NL, Czajewski I, Vanhye L, Holden L, Morava E, van Aalten DMF, Wells L. O-GlcNAc transferase congenital disorder of glycosylation (OGT-CDG): Potential mechanistic targets revealed by evaluating the OGT interactome. J Biol Chem 2024; 300:107599. [PMID: 39059494 PMCID: PMC11381892 DOI: 10.1016/j.jbc.2024.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
O-GlcNAc transferase (OGT) is the sole enzyme responsible for the post-translational modification of O-GlcNAc on thousands of target nucleocytoplasmic proteins. To date, nine variants of OGT that segregate with OGT Congenital Disorder of Glycosylation (OGT-CDG) have been reported and characterized. Numerous additional variants have been associated with OGT-CDG, some of which are currently undergoing investigation. This disorder primarily presents with global developmental delay and intellectual disability (ID), alongside other variable neurological features and subtle facial dysmorphisms in patients. Several hypotheses aim to explain the etiology of OGT-CDG, with a prominent hypothesis attributing the pathophysiology of OGT-CDG to mutations segregating with this disorder disrupting the OGT interactome. The OGT interactome consists of thousands of proteins, including substrates as well as interactors that require noncatalytic functions of OGT. A key aim in the field is to identify which interactors and substrates contribute to the primarily neural-specific phenotype of OGT-CDG. In this review, we will discuss the heterogenous phenotypic features of OGT-CDG seen clinically, the variable biochemical effects of mutations associated with OGT-CDG, and the use of animal models to understand this disorder. Furthermore, we will discuss how previously identified OGT interactors causal for ID provide mechanistic targets for investigation that could explain the dysregulated gene expression seen in OGT-CDG models. Identifying shared or unique altered pathways impacted in OGT-CDG patients will provide a better understanding of the disorder as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Johnathan M Mayfield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Naomi L Hitefield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Lotte Vanhye
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura Holden
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Eva Morava
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
4
|
Sheloukhova L, Watanabe H. Evolution of glial cells: a non-bilaterian perspective. Neural Dev 2024; 19:10. [PMID: 38907299 PMCID: PMC11193209 DOI: 10.1186/s13064-024-00184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/06/2024] [Indexed: 06/23/2024] Open
Abstract
Nervous systems of bilaterian animals generally consist of two cell types: neurons and glial cells. Despite accumulating data about the many important functions glial cells serve in bilaterian nervous systems, the evolutionary origin of this abundant cell type remains unclear. Current hypotheses regarding glial evolution are mostly based on data from model bilaterians. Non-bilaterian animals have been largely overlooked in glial studies and have been subjected only to morphological analysis. Here, we provide a comprehensive overview of conservation of the bilateral gliogenic genetic repertoire of non-bilaterian phyla (Cnidaria, Placozoa, Ctenophora, and Porifera). We overview molecular and functional features of bilaterian glial cell types and discuss their possible evolutionary history. We then examine which glial features are present in non-bilaterians. Of these, cnidarians show the highest degree of gliogenic program conservation and may therefore be crucial to answer questions about glial evolution.
Collapse
Affiliation(s)
- Larisa Sheloukhova
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan.
| |
Collapse
|
5
|
Cowell LM, King M, West H, Broadsmith M, Genever P, Pownall ME, Isaacs HV. Regulation of gene expression downstream of a novel Fgf/Erk pathway during Xenopus development. PLoS One 2023; 18:e0286040. [PMID: 37856433 PMCID: PMC10586617 DOI: 10.1371/journal.pone.0286040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/08/2023] [Indexed: 10/21/2023] Open
Abstract
Activation of Map kinase/Erk signalling downstream of fibroblast growth factor (Fgf) tyrosine kinase receptors regulates gene expression required for mesoderm induction and patterning of the anteroposterior axis during Xenopus development. We have proposed that a subset of Fgf target genes are activated in the embyo in response to inhibition of a transcriptional repressor. Here we investigate the hypothesis that Cic (Capicua), which was originally identified as a transcriptional repressor negatively regulated by receptor tyrosine kinase/Erk signalling in Drosophila, is involved in regulating Fgf target gene expression in Xenopus. We characterise Xenopus Cic and show that it is widely expressed in the embryo. Fgf overexpression or ectodermal wounding, both of which potently activate Erk, reduce Cic protein levels in embryonic cells. In keeping with our hypothesis, we show that Cic knockdown and Fgf overexpression have overlapping effects on embryo development and gene expression. Transcriptomic analysis identifies a cohort of genes that are up-regulated by Fgf overexpression and Cic knockdown. We investigate two of these genes as putative targets of the proposed Fgf/Erk/Cic axis: fos and rasl11b, which encode a leucine zipper transcription factor and a ras family GTPase, respectively. We identify Cic consensus binding sites in a highly conserved region of intron 1 in the fos gene and Cic sites in the upstream regions of several other Fgf/Cic co-regulated genes, including rasl11b. We show that expression of fos and rasl11b is blocked in the early mesoderm when Fgf and Erk signalling is inhibited. In addition, we show that fos and rasl11b expression is associated with the Fgf independent activation of Erk at the site of ectodermal wounding. Our data support a role for a Fgf/Erk/Cic axis in regulating a subset of Fgf target genes during gastrulation and is suggestive that Erk signalling is involved in regulating Cic target genes at the site of ectodermal wounding.
Collapse
Affiliation(s)
- Laura M. Cowell
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Michael King
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Helena West
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Matthew Broadsmith
- Department of Biology, University of York, Heslington, York, United Kingdom
| | - Paul Genever
- Department of Biology, University of York, Heslington, York, United Kingdom
| | | | - Harry V. Isaacs
- Department of Biology, University of York, Heslington, York, United Kingdom
| |
Collapse
|
6
|
Sheloukhova L, Watanabe H. Analysis of cnidarian Gcm suggests a neuronal origin of glial EAAT1 function. Sci Rep 2023; 13:14790. [PMID: 37684386 PMCID: PMC10491807 DOI: 10.1038/s41598-023-42046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023] Open
Abstract
In bilaterian central nervous systems, coordination of neurotransmission by glial cells enables highly sophisticated neural functions. The diversity of transcription factors (TFs) involved in gliogenesis suggests multiple evolutionary origins of various glial cell types of bilaterians. Many of these TFs including the glial cells missing (Gcm) are also present in genomes of Cnidaria, the closest outgroup to Bilateria, but their function remains to be elucidated. In this study, we analyzed the function of Gcm, a multifunctional TF involved in development of glial and non-glial cell types, in the sea anemone, Nematostella vectensis. siRNA-mediated knockdown of Nematostella Gcm altered expression of cell adhesion proteins, glutamate and GABA transporters, ion channels, metabolic enzymes, and zinc finger and Ets-related TFs. NvGcm and mRNAs of downstream genes are expressed in broad neural cell clusters. However, immunostaining of a NvGcm target protein, the glutamate transporter, NvEAAT1, visualized a novel class of cells with flat cell bodies and no clear processes. Together with the finding of unique morphological features of NvEAAT1-functioning cells, these data suggest that extracellular glutamate metabolism, one of major glial functions, is deployed downstream of Gcm in specific neural cell types in Cnidaria.
Collapse
Affiliation(s)
- Larisa Sheloukhova
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan.
| |
Collapse
|
7
|
Shih HY, Chen HY, Huang YC, Yeh TH, Chen YC, Cheng YC. Etv5a Suppresses Neural Progenitor Cell Proliferation by Inhibiting sox2 Transcription. Stem Cells Dev 2023; 32:524-538. [PMID: 37358404 DOI: 10.1089/scd.2023.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Neural progenitor cells are self-renewable, proliferative, and multipotent cell populations that generate diverse types of neurons and glia to build the nervous system. Transcription factors play critical roles in regulating various cellular processes; however, the transcription factors that regulate the development of neural progenitors are yet to be identified. In the present study, we demonstrated that zebrafish etv5a is expressed in the neural progenitor cells of the neuroectoderm. Downregulation of endogenous Etv5a function by etv5a morpholino or an etv5a dominant-negative variant increased the proliferation of sox2-positive neural progenitor cells, accompanied by inhibition of neurogenesis and gliogenesis. These phenotypes in Etv5a-depleted embryos could be rescued by a co-injection with etv5a cRNA. Etv5a overexpression reduced sox2 expression. Direct binding of Etv5a to the regulatory elements of sox2 was affirmed by chromatin immunoprecipitation. These data revealed that Etv5a directly suppressed sox2 expression to reduce the proliferation of neural progenitor cells. In addition, the expression of foxm1, a putative target gene of Etv5a and a direct upstream transcription factor of sox2, was upregulated in Etv5a-deficient embryos. Moreover, the suppression of Foxm1 function by the foxm1 dominant-negative construct nullified the phenotype of upregulated sox2 expression caused by Etv5a deficiency. Overall, our results indicated that Etv5a regulates the expression of sox2 via direct binding to the sox2 promoter and indirect regulation by inhibiting foxm1 expression. Hence, we revealed the role of Etv5a in the transcriptional hierarchy that regulates the proliferation of neural progenitor cells.
Collapse
Affiliation(s)
- Hung-Yu Shih
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Biological Sciences, College of Science, Engineering & Technology, Utah Tech University, St. George, Utah, USA
| | - Hao-Yuan Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yin-Cheng Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tu-Hsueh Yeh
- Department of Neurology, Taipei Medical University Hospital, Taipei, Taiwan
- School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chieh Chen
- Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| |
Collapse
|
8
|
Buijsen RAM, Hu M, Sáez-González M, Notopoulou S, Mina E, Koning W, Gardiner SL, van der Graaf LM, Daoutsali E, Pepers BA, Mei H, van Dis V, Frimat JP, van den Maagdenberg AMJM, Petrakis S, van Roon-Mom WMC. Spinocerebellar Ataxia Type 1 Characteristics in Patient-Derived Fibroblast and iPSC-Derived Neuronal Cultures. Mov Disord 2023; 38:1428-1442. [PMID: 37278528 DOI: 10.1002/mds.29446] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/23/2023] [Accepted: 04/20/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disease caused by a polyglutamine expansion in the ataxin-1 protein resulting in neuropathology including mutant ataxin-1 protein aggregation, aberrant neurodevelopment, and mitochondrial dysfunction. OBJECTIVES Identify SCA1-relevant phenotypes in patient-specific fibroblasts and SCA1 induced pluripotent stem cells (iPSCs) neuronal cultures. METHODS SCA1 iPSCs were generated and differentiated into neuronal cultures. Protein aggregation and neuronal morphology were evaluated using fluorescent microscopy. Mitochondrial respiration was measured using the Seahorse Analyzer. The multi-electrode array (MEA) was used to identify network activity. Finally, gene expression changes were studied using RNA-seq to identify disease-specific mechanisms. RESULTS Bioenergetics deficits in patient-derived fibroblasts and SCA1 neuronal cultures showed altered oxygen consumption rate, suggesting involvement of mitochondrial dysfunction in SCA1. In SCA1 hiPSC-derived neuronal cells, nuclear and cytoplasmic aggregates were identified similar in localization as aggregates in SCA1 postmortem brain tissue. SCA1 hiPSC-derived neuronal cells showed reduced dendrite length and number of branching points while MEA recordings identified delayed development in network activity in SCA1 hiPSC-derived neuronal cells. Transcriptome analysis identified 1050 differentially expressed genes in SCA1 hiPSC-derived neuronal cells associated with synapse organization and neuron projection guidance, where a subgroup of 151 genes was highly associated with SCA1 phenotypes and linked to SCA1 relevant signaling pathways. CONCLUSIONS Patient-derived cells recapitulate key pathological features of SCA1 pathogenesis providing a valuable tool for the identification of novel disease-specific processes. This model can be used for high throughput screenings to identify compounds, which may prevent or rescue neurodegeneration in this devastating disease. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ronald A M Buijsen
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Michel Hu
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Maria Sáez-González
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Sofia Notopoulou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Eleni Mina
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Winette Koning
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Sarah L Gardiner
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Linda M van der Graaf
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Elena Daoutsali
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Barry A Pepers
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Hailiang Mei
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Vera van Dis
- Department of Pathology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
- Department of Pathology, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Jean-Philippe Frimat
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Spyros Petrakis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Willeke M C van Roon-Mom
- Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| |
Collapse
|
9
|
Takemon Y, LeBlanc VG, Song J, Chan SY, Lee SD, Trinh DL, Ahmad ST, Brothers WR, Corbett RD, Gagliardi A, Moradian A, Cairncross JG, Yip S, Aparicio SAJR, Chan JA, Hughes CS, Morin GB, Gorski SM, Chittaranjan S, Marra MA. Multi-Omic Analysis of CIC's Functional Networks Reveals Novel Interaction Partners and a Potential Role in Mitotic Fidelity. Cancers (Basel) 2023; 15:2805. [PMID: 37345142 PMCID: PMC10216487 DOI: 10.3390/cancers15102805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
CIC encodes a transcriptional repressor and MAPK signalling effector that is inactivated by loss-of-function mutations in several cancer types, consistent with a role as a tumour suppressor. Here, we used bioinformatic, genomic, and proteomic approaches to investigate CIC's interaction networks. We observed both previously identified and novel candidate interactions between CIC and SWI/SNF complex members, as well as novel interactions between CIC and cell cycle regulators and RNA processing factors. We found that CIC loss is associated with an increased frequency of mitotic defects in human cell lines and an in vivo mouse model and with dysregulated expression of mitotic regulators. We also observed aberrant splicing in CIC-deficient cell lines, predominantly at 3' and 5' untranslated regions of genes, including genes involved in MAPK signalling, DNA repair, and cell cycle regulation. Our study thus characterises the complexity of CIC's functional network and describes the effect of its loss on cell cycle regulation, mitotic integrity, and transcriptional splicing, thereby expanding our understanding of CIC's potential roles in cancer. In addition, our work exemplifies how multi-omic, network-based analyses can be used to uncover novel insights into the interconnected functions of pleiotropic genes/proteins across cellular contexts.
Collapse
Affiliation(s)
- Yuka Takemon
- Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC V5Z 4S6, Canada;
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Véronique G. LeBlanc
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Jungeun Song
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Susanna Y. Chan
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Stephen Dongsoo Lee
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Diane L. Trinh
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Shiekh Tanveer Ahmad
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - William R. Brothers
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Richard D. Corbett
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Alessia Gagliardi
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Annie Moradian
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - J. Gregory Cairncross
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Stephen Yip
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.Y.); (S.A.J.R.A.); (C.S.H.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Samuel A. J. R. Aparicio
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.Y.); (S.A.J.R.A.); (C.S.H.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Jennifer A. Chan
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Christopher S. Hughes
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (S.Y.); (S.A.J.R.A.); (C.S.H.)
| | - Gregg B. Morin
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Sharon M. Gorski
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Suganthi Chittaranjan
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
| | - Marco A. Marra
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.L.); (A.M.); (S.M.G.)
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| |
Collapse
|
10
|
Wang Y, Huang Z, Sun M, Huang W, Xia L. ETS transcription factors: Multifaceted players from cancer progression to tumor immunity. Biochim Biophys Acta Rev Cancer 2023; 1878:188872. [PMID: 36841365 DOI: 10.1016/j.bbcan.2023.188872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/26/2023]
Abstract
The E26 transformation specific (ETS) family comprises 28 transcription factors, the majority of which are involved in tumor initiation and development. Serving as a group of functionally heterogeneous gene regulators, ETS factors possess a structurally conserved DNA-binding domain. As one of the most prominent families of transcription factors that control diverse cellular functions, ETS activation is modulated by multiple intracellular signaling pathways and post-translational modifications. Disturbances in ETS activity often lead to abnormal changes in oncogenicity, including cancer cell survival, growth, proliferation, metastasis, genetic instability, cell metabolism, and tumor immunity. This review systematically addresses the basics and advances in studying ETS factors, from their tumor relevance to clinical translational utility, with a particular focus on elucidating the role of ETS family in tumor immunity, aiming to decipher the vital role and clinical potential of regulation of ETS factors in the cancer field.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhao Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
11
|
The role and application of transcriptional repressors in cancer treatment. Arch Pharm Res 2023; 46:1-17. [PMID: 36645575 DOI: 10.1007/s12272-023-01427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023]
Abstract
Gene expression is modulated through the integration of many regulatory elements and their associated transcription factors (TFs). TFs bind to specific DNA sequences and either activate or repress transcriptional activity. Through decades of research, it has been established that aberrant expression or functional abnormalities of TFs can lead to uncontrolled cell division and the development of cancer. Initial studies on transcriptional regulation in cancer have focused on TFs as transcriptional activators. However, recent studies have demonstrated several different mechanisms of transcriptional repression in cancer, which could be potential therapeutic targets for the development of specific anti-cancer agents. In the first section of this review, "Emerging roles of transcriptional repressors in cancer development," we summarize the current understanding of transcriptional repressors and their involvement in the molecular processes of cancer progression. In the subsequent section, "Therapeutic applications," we provide an updated overview of the available therapeutic targets for drug discovery and discuss the new frontier of such applications.
Collapse
|
12
|
Park J, Park GY, Lee J, Park J, Kim S, Kim E, Park SY, Yoon JH, Lee Y. ERK phosphorylation disrupts the intramolecular interaction of capicua to promote cytoplasmic translocation of capicua and tumor growth. Front Mol Biosci 2022; 9:1030725. [PMID: 36619173 PMCID: PMC9814488 DOI: 10.3389/fmolb.2022.1030725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Activation of receptor tyrosine kinase signaling inactivates capicua (CIC), a transcriptional repressor that functions as a tumor suppressor, via degradation and/or cytoplasmic translocation. Although CIC is known to be inactivated by phosphorylation, the mechanisms underlying the cytoplasmic translocation of CIC remain poorly understood. Therefore, we aimed to evaluate the roles of extracellular signal-regulated kinase (ERK), p90RSK, and c-SRC in the epidermal growth factor receptor (EGFR) activation-induced cytoplasmic translocation of CIC and further investigated the molecular basis for this process. We found that nuclear ERK induced the cytoplasmic translocation of CIC-S. We identified 12 serine and threonine (S/T) residues within CIC, including S173 and S301 residues that are phosphorylated by p90RSK, which contribute to the cytoplasmic translocation of CIC-S when phosphorylated. The amino-terminal (CIC-S-N) and carboxyl-terminal (CIC-S-C) regions of CIC-S were found to interact with each other to promote their nuclear localization. EGF treatment disrupted the interaction between CIC-S-N and CIC-S-C and induced their cytoplasmic translocation. Alanine substitution for the 12 S/T residues blocked the cytoplasmic translocation of CIC-S and consequently enhanced the tumor suppressor activity of CIC-S. Our study demonstrates that ERK-mediated disruption of intramolecular interaction of CIC is critical for the cytoplasmic translocation of CIC, and suggests that the nuclear retention of CIC may represent a strategy for cancer therapy.
Collapse
Affiliation(s)
- Jongmin Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Guk-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Jongeun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Joonyoung Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Soeun Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Eunjeong Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea
| | - Jong Hyuk Yoon
- Neurodegenerative Diseases Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, South Korea,Institute of Convergence Science, Yonsei University, Seoul, South Korea,*Correspondence: Yoontae Lee,
| |
Collapse
|
13
|
Gupta N, Song H, Wu W, Ponce RK, Lin YK, Kim JW, Small EJ, Feng FY, Huang FW, Okimoto RA. The CIC-ERF co-deletion underlies fusion-independent activation of ETS family member, ETV1, to drive prostate cancer progression. eLife 2022; 11:e77072. [PMID: 36383412 PMCID: PMC9668335 DOI: 10.7554/elife.77072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 10/16/2022] [Indexed: 11/13/2022] Open
Abstract
Human prostate cancer can result from chromosomal rearrangements that lead to aberrant ETS gene expression. The mechanisms that lead to fusion-independent ETS factor upregulation and prostate oncogenesis remain relatively unknown. Here, we show that two neighboring transcription factors, Capicua (CIC) and ETS2 repressor factor (ERF), which are co-deleted in human prostate tumors can drive prostate oncogenesis. Concurrent CIC and ERF loss commonly occur through focal genomic deletions at chromosome 19q13.2. Mechanistically, CIC and ERF co-bind the proximal regulatory element and mutually repress the ETS transcription factor, ETV1. Targeting ETV1 in CIC and ERF-deficient prostate cancer limits tumor growth. Thus, we have uncovered a fusion-independent mode of ETS transcriptional activation defined by concurrent loss of CIC and ERF.
Collapse
Affiliation(s)
- Nehal Gupta
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Hanbing Song
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Wei Wu
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Rovingaile K Ponce
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Yone K Lin
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Ji Won Kim
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
| | - Eric J Small
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
- Helen Diller Family Comprehensive Cancer Center, University of CaliforniaSan FranciscoUnited States
| | - Felix Y Feng
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
- Helen Diller Family Comprehensive Cancer Center, University of CaliforniaSan FranciscoUnited States
- Department of Radiation Oncology, University of CaliforniaSan FranciscoUnited States
| | - Franklin W Huang
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
- Helen Diller Family Comprehensive Cancer Center, University of CaliforniaSan FranciscoUnited States
| | - Ross A Okimoto
- Department of Medicine, University of CaliforniaSan FranciscoUnited States
- Helen Diller Family Comprehensive Cancer Center, University of CaliforniaSan FranciscoUnited States
| |
Collapse
|
14
|
Zhang C, Jin Y, Marchetti M, Lewis MR, Hammouda OT, Edgar BA. EGFR signaling activates intestinal stem cells by promoting mitochondrial biogenesis and β-oxidation. Curr Biol 2022; 32:3704-3719.e7. [PMID: 35896119 PMCID: PMC10117080 DOI: 10.1016/j.cub.2022.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 05/11/2022] [Accepted: 07/04/2022] [Indexed: 10/16/2022]
Abstract
EGFR-RAS-ERK signaling promotes growth and proliferation in many cell types, and genetic hyperactivation of RAS-ERK signaling drives many cancers. Yet, despite intensive study of upstream components in EGFR signal transduction, the identities and functions of downstream effectors in the pathway are poorly understood. In Drosophila intestinal stem cells (ISCs), the transcriptional repressor Capicua (Cic) and its targets, the ETS-type transcriptional activators Pointed (pnt) and Ets21C, are essential downstream effectors of mitogenic EGFR signaling. Here, we show that these factors promote EGFR-dependent metabolic changes that increase ISC mass, mitochondrial growth, and mitochondrial activity. Gene target analysis using RNA and DamID sequencing revealed that Pnt and Ets21C directly upregulate not only DNA replication and cell cycle genes but also genes for oxidative phosphorylation, the TCA cycle, and fatty acid beta-oxidation. Metabolite analysis substantiated these metabolic functions. The mitochondrial transcription factor B2 (mtTFB2), a direct target of Pnt, was required and partially sufficient for EGFR-driven ISC growth, mitochondrial biogenesis, and proliferation. MEK-dependent EGF signaling stimulated mitochondrial biogenesis in human RPE-1 cells, indicating the conservation of these metabolic effects. This work illustrates how EGFR signaling alters metabolism to coordinately activate cell growth and cell division.
Collapse
Affiliation(s)
- Chenge Zhang
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Center for Molecular Biology, Heidelberg University (ZMBH) & German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Yinhua Jin
- Center for Molecular Biology, Heidelberg University (ZMBH) & German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department of Developmental Biology, Howard Hughes Medical Institute, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marco Marchetti
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Center for Molecular Biology, Heidelberg University (ZMBH) & German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mitchell R Lewis
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Omar T Hammouda
- Center for Molecular Biology, Heidelberg University (ZMBH) & German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Centre for Organismal Studies Heidelberg & Heidelberg Biosciences International Graduate School, Heidelberg University, 69120 Heidelberg, Germany
| | - Bruce A Edgar
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Center for Molecular Biology, Heidelberg University (ZMBH) & German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
15
|
Whitfield BT, Huse JT. Classification of adult-type diffuse gliomas: Impact of the World Health Organization 2021 update. Brain Pathol 2022; 32:e13062. [PMID: 35289001 PMCID: PMC9245936 DOI: 10.1111/bpa.13062] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/16/2022] [Indexed: 12/11/2022] Open
Abstract
Over the last decade, developments in molecular profiling have radically altered the diagnosis, classification, and management of numerous cancer types, with primary brain tumors being no exception. Although historically brain tumors have been classified based on their morphological characteristics, recent advances have allowed refinement of tumor classification based on molecular alterations. This shift toward molecular classification of primary brain tumors is reflected in the 2021 5th edition of the WHO classification of central nervous system tumors (WHO 2021). In this review, we will discuss the most recent updates to the classification of adult‐type diffuse gliomas, a group of highly infiltrative and largely incurable CNS malignancies. It is our hope continued that refinement of molecular criteria will improve diagnosis, prognostication, and eventually treatment of these devastating tumors.
Collapse
Affiliation(s)
- Benjamin T Whitfield
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
16
|
Lee SD, Song J, LeBlanc VG, Marra MA. Integrative multi-omic analysis reveals neurodevelopmental gene dysregulation in CIC-knockout and IDH1 mutant cells. J Pathol 2021; 256:297-309. [PMID: 34767259 PMCID: PMC9305137 DOI: 10.1002/path.5835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/22/2021] [Accepted: 11/09/2021] [Indexed: 11/18/2022]
Abstract
Capicua (CIC)'s transcriptional repressor function is implicated in neurodevelopment and in oligodendroglioma (ODG) aetiology. However, CIC's role in these contexts remains obscure, primarily from our currently limited knowledge regarding its biological functions. Moreover, CIC mutations in ODG invariably co‐occur with a neomorphic IDH1/2 mutation, yet the functional relationship between these two genetic events is unknown. Here, we analysed models derived from an E6/E7/hTERT‐immortalized (i.e. p53‐ and RB‐deficient) normal human astrocyte cell line. To examine the consequences of CIC loss, we compared transcriptomic and epigenomic profiles between CIC wild‐type and knockout cell lines, with and without mutant IDH1 expression. Our analyses revealed dysregulation of neurodevelopmental genes in association with CIC loss. CIC ChIP‐seq was also performed to expand upon the currently limited ensemble of known CIC target genes. Among the newly identified direct CIC target genes were EPHA2 and ID1, whose functions are linked to neurodevelopment and the tumourigenicity of in vivo glioma tumour models. NFIA, a known mediator of gliogenesis, was discovered to be uniquely overexpressed in CIC‐knockout cells expressing mutant IDH1‐R132H protein. These results identify neurodevelopment and specific genes within this context as candidate targets through which CIC alterations may contribute to the progression of IDH‐mutant gliomas. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Stephen D Lee
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | - Jungeun Song
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada
| | | | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
17
|
Gupta B, Errington AC, Jimenez-Pascual A, Eftychidis V, Brabletz S, Stemmler MP, Brabletz T, Petrik D, Siebzehnrubl FA. The transcription factor ZEB1 regulates stem cell self-renewal and cell fate in the adult hippocampus. Cell Rep 2021; 36:109588. [PMID: 34433050 PMCID: PMC8411115 DOI: 10.1016/j.celrep.2021.109588] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/27/2021] [Accepted: 07/30/2021] [Indexed: 12/25/2022] Open
Abstract
Radial glia-like (RGL) stem cells persist in the adult mammalian hippocampus, where they generate new neurons and astrocytes throughout life. The process of adult neurogenesis is well documented, but cell-autonomous factors regulating neuronal and astroglial differentiation are incompletely understood. Here, we evaluate the functions of the transcription factor zinc-finger E-box binding homeobox 1 (ZEB1) in adult hippocampal RGL cells using a conditional-inducible mouse model. We find that ZEB1 is necessary for self-renewal of active RGL cells. Genetic deletion of Zeb1 causes a shift toward symmetric cell division that consumes the RGL cell and generates pro-neuronal progenies, resulting in an increase of newborn neurons and a decrease of newly generated astrocytes. We identify ZEB1 as positive regulator of the ets-domain transcription factor ETV5 that is critical for asymmetric division.
Collapse
Affiliation(s)
- Bhavana Gupta
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff CF24 4HQ, UK
| | - Adam C Errington
- Neuroscience and Mental Health Research Institute, Cardiff University School of Biosciences, Cardiff CF24 4HQ, UK
| | - Ana Jimenez-Pascual
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff CF24 4HQ, UK
| | - Vasileios Eftychidis
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff CF24 4HQ, UK
| | - Simone Brabletz
- Department of Experimental Medicine I, Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Marc P Stemmler
- Department of Experimental Medicine I, Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine I, Friedrich Alexander University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - David Petrik
- Cardiff University School of Biosciences, Cardiff CF10 3AX, UK
| | - Florian A Siebzehnrubl
- European Cancer Stem Cell Research Institute, Cardiff University School of Biosciences, Cardiff CF24 4HQ, UK.
| |
Collapse
|
18
|
Hao M, Zhang Z, Liu C, Tian Y, Duan J, He J, Sun Z, Xia H, Zhang S, Wang S, Sang Y, Xing G, Liu H. Hydroxyapatite Nanorods Function as Safe and Effective Growth Factors Regulating Neural Differentiation and Neuron Development. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100895. [PMID: 34247433 DOI: 10.1002/adma.202100895] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/20/2021] [Indexed: 06/13/2023]
Abstract
Neural stem cell (NSC) transplantation is one of the most promising therapeutic strategies for neurodegenerative diseases. However, the slow spontaneous differentiation of NSCs often hampers their application in neural repair. Although some biological growth factors accelerate the differentiation of NSCs, their high cost, short half-life, and unpredictable behavior in vivo, as well as the complexity of the operation, hinder their clinical use. In this study, it is demonstrated that hydroxyapatite (HAp), the main component of bone, in the form of nanorods, can regulate the neural differentiation of NSCs and maturation of the newly differentiated cells. Culturing NSCs with HAp nanorods leads to the differentiation of NSCs into mature neurons that exhibit well-defined electrophysiological behavior within 5 days. The state of these neurons is much better than when culturing the cells without HAp nanorods, which undergo a 2-week differentiation process. Furthermore, RNA-sequencing data reveal that the neuroactive ligand-receptor interaction pathway is dominant in the enriched differentiated neuronal population. Hence, inorganic growth factors like HAp act as a feasible, effective, safe, and practical tool for regulating the differentiation of NSCs and can potentially be used in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Min Hao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Zixian Zhang
- Neuroscience Research Institute, Peking University, Beijing, 100191, P. R. China
| | - Chao Liu
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, 250012, P. R. China
| | - Yue Tian
- Neuroscience Research Institute, Peking University, Beijing, 100191, P. R. China
| | - Jiazhi Duan
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Jianlong He
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Zhaoyang Sun
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, 250012, P. R. China
| | - He Xia
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Shan Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Shuhua Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Advanced Medical Research Institute, Shandong University, Jinan, 250100, P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Advanced Medical Research Institute, Shandong University, Jinan, 250100, P. R. China
| | - Guogang Xing
- Neuroscience Research Institute, Peking University, Beijing, 100191, P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| |
Collapse
|
19
|
Li K, Shao S, Ji T, Liu M, Wang L, Pang Y, Chen M, Xu S, Zhang K, Wang Q, Zhuang Z, Wei L, Zhang Y, Chen Y, Wang Y, Zhang J, Chen K, Lian H, Zhong C. Capicua Regulates Dendritic Morphogenesis Through Ets in Hippocampal Neurons in vitro. Front Neuroanat 2021; 15:669310. [PMID: 34385910 PMCID: PMC8353115 DOI: 10.3389/fnana.2021.669310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/28/2021] [Indexed: 11/25/2022] Open
Abstract
Capicua (Cic), a transcriptional repressor frequently mutated in brain cancer oligodendroglioma, is highly expressed in adult neurons. However, its function in the dendritic growth of neurons in the hippocampus remains poorly understood. Here, we confirmed that Cic was expressed in hippocampal neurons during the main period of dendritogenesis, suggesting that Cic has a function in dendrite growth. Loss-of-function and gain-of function assays indicated that Cic plays a central role in the inhibition of dendritic morphogenesis and dendritic spines in vitro. Further studies showed that overexpression of Cic reduced the expression of Ets in HT22 cells, while in vitro knockdown of Cic in hippocampal neurons significantly elevated the expression of Ets. These results suggest that Cic may negatively control dendrite growth through Ets, which was confirmed by ShRNA knockdown of either Etv4 or Etv5 abolishing the phenotype of Cic knockdown in cultured neurons. Taken together, our results suggest that Cic inhibits dendritic morphogenesis and the growth of dendritic spines through Ets.
Collapse
Affiliation(s)
- Keqin Li
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuai Shao
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tongjie Ji
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Liu
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lufeng Wang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Pang
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mu Chen
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Siyi Xu
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kuiming Zhang
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qi Wang
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongwei Zhuang
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Wei
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanfei Zhang
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanlin Chen
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Wang
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Zhang
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kui Chen
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hao Lian
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Świtońska-Kurkowska K, Krist B, Delimata J, Figiel M. Juvenile Huntington's Disease and Other PolyQ Diseases, Update on Neurodevelopmental Character and Comparative Bioinformatic Review of Transcriptomic and Proteomic Data. Front Cell Dev Biol 2021; 9:642773. [PMID: 34277598 PMCID: PMC8281051 DOI: 10.3389/fcell.2021.642773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/10/2021] [Indexed: 01/18/2023] Open
Abstract
Polyglutamine (PolyQ) diseases are neurodegenerative disorders caused by the CAG repeat expansion mutation in affected genes resulting in toxic proteins containing a long chain of glutamines. There are nine PolyQ diseases: Huntington’s disease (HD), spinocerebellar ataxias (types 1, 2, 3, 6, 7, and 17), dentatorubral-pallidoluysian atrophy (DRPLA), and spinal bulbar muscular atrophy (SBMA). In general, longer CAG expansions and longer glutamine tracts lead to earlier disease presentations in PolyQ patients. Rarely, cases of extremely long expansions are identified for PolyQ diseases, and they consistently lead to juvenile or sometimes very severe infantile-onset polyQ syndromes. In apparent contrast to the very long CAG tracts, shorter CAGs and PolyQs in proteins seems to be the evolutionary factor enhancing human cognition. Therefore, polyQ tracts in proteins can be modifiers of brain development and disease drivers, which contribute neurodevelopmental phenotypes in juvenile- and adult-onset PolyQ diseases. Therefore we performed a bioinformatics review of published RNAseq polyQ expression data resulting from the presence of polyQ genes in search of neurodevelopmental expression patterns and comparison between diseases. The expression data were collected from cell types reflecting stages of development such as iPSC, neuronal stem cell, neurons, but also the adult patients and models for PolyQ disease. In addition, we extended our bioinformatic transcriptomic analysis by proteomics data. We identified a group of 13 commonly downregulated genes and proteins in HD mouse models. Our comparative bioinformatic review highlighted several (neuro)developmental pathways and genes identified within PolyQ diseases and mouse models responsible for neural growth, synaptogenesis, and synaptic plasticity.
Collapse
Affiliation(s)
| | - Bart Krist
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Joanna Delimata
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Maciej Figiel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
21
|
Hourigan B, Balay SD, Yee G, Sharma S, Tan Q. Capicua regulates the development of adult-born neurons in the hippocampus. Sci Rep 2021; 11:11725. [PMID: 34083623 PMCID: PMC8175746 DOI: 10.1038/s41598-021-91168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 05/20/2021] [Indexed: 11/12/2022] Open
Abstract
New neurons continuously arise from neural progenitor cells in the dentate gyrus of the adult hippocampus to support ongoing learning and memory formation. To generate functional adult-born neurons, neural progenitor cells proliferate to expand the precursor cell pool and differentiate into neurons. Newly generated cells then undergo postmitotic maturation to migrate to their final destination and develop elaborate dendritic branching, which allows them to receive input signals. Little is known about factors that regulate neuronal differentiation, migration, and dendrite maturation during adult hippocampal neurogenesis. Here, we show that the transcriptional repressor protein capicua (CIC) exhibits dynamic expression in the adult dentate gyrus. Conditional deletion of Cic from the mouse dentate gyrus compromises the adult neural progenitor cell pool without altering their proliferative potential. We further demonstrate that the loss of Cic impedes neuronal lineage development and disrupts dendritic arborization and migration of adult-born neurons. Our study uncovers a previously unrecognized role of CIC in neurogenesis of the adult dentate gyrus.
Collapse
Affiliation(s)
- Brenna Hourigan
- Department of Cell Biology, University of Alberta, Edmonton, T6J 2H7, Canada
| | - Spencer D Balay
- Department of Cell Biology, University of Alberta, Edmonton, T6J 2H7, Canada.,Research Institute of Molecular Pathology, Vienna Biocenter, Campus-Vienna-Biocenter 1, 1030, Vienna, Austria
| | - Graydon Yee
- Department of Cell Biology, University of Alberta, Edmonton, T6J 2H7, Canada
| | - Saloni Sharma
- Department of Cell Biology, University of Alberta, Edmonton, T6J 2H7, Canada
| | - Qiumin Tan
- Department of Cell Biology, University of Alberta, Edmonton, T6J 2H7, Canada.
| |
Collapse
|
22
|
Balakrishnan A, Belfiore L, Chu TH, Fleming T, Midha R, Biernaskie J, Schuurmans C. Insights Into the Role and Potential of Schwann Cells for Peripheral Nerve Repair From Studies of Development and Injury. Front Mol Neurosci 2021; 13:608442. [PMID: 33568974 PMCID: PMC7868393 DOI: 10.3389/fnmol.2020.608442] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve injuries arising from trauma or disease can lead to sensory and motor deficits and neuropathic pain. Despite the purported ability of the peripheral nerve to self-repair, lifelong disability is common. New molecular and cellular insights have begun to reveal why the peripheral nerve has limited repair capacity. The peripheral nerve is primarily comprised of axons and Schwann cells, the supporting glial cells that produce myelin to facilitate the rapid conduction of electrical impulses. Schwann cells are required for successful nerve regeneration; they partially “de-differentiate” in response to injury, re-initiating the expression of developmental genes that support nerve repair. However, Schwann cell dysfunction, which occurs in chronic nerve injury, disease, and aging, limits their capacity to support endogenous repair, worsening patient outcomes. Cell replacement-based therapeutic approaches using exogenous Schwann cells could be curative, but not all Schwann cells have a “repair” phenotype, defined as the ability to promote axonal growth, maintain a proliferative phenotype, and remyelinate axons. Two cell replacement strategies are being championed for peripheral nerve repair: prospective isolation of “repair” Schwann cells for autologous cell transplants, which is hampered by supply challenges, and directed differentiation of pluripotent stem cells or lineage conversion of accessible somatic cells to induced Schwann cells, with the potential of “unlimited” supply. All approaches require a solid understanding of the molecular mechanisms guiding Schwann cell development and the repair phenotype, which we review herein. Together these studies provide essential context for current efforts to design glial cell-based therapies for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Anjali Balakrishnan
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Lauren Belfiore
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Tak-Ho Chu
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Taylor Fleming
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada
| | - Rajiv Midha
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Miyake Y, Fujii K, Nakamaura T, Ikegaya N, Matsushita Y, Gobayashi Y, Iwashita H, Udaka N, Kumagai J, Murata H, Takemoto Y, Yamanaka S, Ichimura K, Tateishi K, Yamamoto T. IDH-Mutant Astrocytoma With Chromosome 19q13 Deletion Manifesting as an Oligodendroglioma-Like Morphology. J Neuropathol Exp Neurol 2021; 80:247-253. [PMID: 33432322 DOI: 10.1093/jnen/nlaa161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Partial deletions in chromosomes 1p and 19q are found in a subset of astrocytic tumors; however, it remains unclear how these alterations affect their histological features and prognosis. Herein, we present 3 cases of isocitrate dehydrogenase (IDH)-mutant astrocytoma with chromosome 19q13 deletion. In the first case, the primary tumor harbored an IDH1 mutation with chromosome 1p/19q partial deletions, which covered 19q13 and exhibited a durable initial response to radiotherapy and temozolomide (TMZ) treatment. However, the tumor lost the chromosome 1p/19q partial deletions at recurrence and became resistant to TMZ. Histologically, an oligodendroglioma-like feature was found in the primary tumor but not in the recurrent tumor. Capicua transcriptional repressor (CIC), located on 19q13, was less expressed in the primary tumor but was highly expressed in the recurrent tumor. Similar histological findings were observed in 2 other astrocytic tumors with IDH1 or IDH2 mutations. These tumors also had chromosome 19q13 deletion, including the CIC gene, weakly expressed CIC, and oligodendroglioma-like morphology. These tumors recurred at 6 and 32 months, respectively. These findings suggest that IDH-mutant astrocytoma with chromosome 19q13 partial deletion, including the CIC gene, may induce an oligodendroglioma-like phenotype, but the clinical prognosis may not be similar to that of genetically defined oligodendroglioma.
Collapse
Affiliation(s)
- Yohei Miyake
- From the Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Keita Fujii
- From the Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan.,Department of Neurosurgery, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Taishi Nakamaura
- From the Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Naoki Ikegaya
- From the Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yuko Matsushita
- From the Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan.,Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | | | - Hiromichi Iwashita
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Naoko Udaka
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Jiro Kumagai
- Department of Pathology, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Hidetoshi Murata
- From the Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yasunori Takemoto
- Department of Neurosurgery, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Shoji Yamanaka
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Kensuke Tateishi
- From the Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Tetsuya Yamamoto
- From the Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
24
|
Qi T, Qu Q, Li G, Wang J, Zhu H, Yang Z, Sun Y, Lu Q, Qu J. Function and regulation of the PEA3 subfamily of ETS transcription factors in cancer. Am J Cancer Res 2020; 10:3083-3105. [PMID: 33163259 PMCID: PMC7642666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023] Open
Abstract
The PEA3 subfamily is a subgroup of the E26 transformation-specific (ETS) family. Its members, ETV1, ETV4, and ETV5, have been found to be overexpressed in multiple cancers. The deregulation of ETV1, ETV4, and ETV5 induces cell growth, invasion, and migration in various tumor cells, leading to tumor progression, metastasis, and drug resistance. Therefore, exploring drugs or therapeutic targets that target the PEA3 subfamily may contribute to the clinical treatment of tumor patients. In this review, we introduce the structures and functions of the PEA3 subfamily members, systematically review their main roles in various tumor cells, analyze their prognostic and diagnostic value, and, finally, introduce several molecular targets and therapeutic drugs targeting ETV1, ETV4, and ETV5. We conclude that targeting a series of upstream regulators and downstream target genes of the PEA3 subfamily may be an effective strategy for the treatment of ETV1/ETV4/ETV5-overexpressing tumors.
Collapse
Affiliation(s)
- Tingting Qi
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South UniversityChangsha 410007, PR China
| | - Guohua Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Jiaojiao Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Haihong Zhu
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Zhi Yang
- Department of General Surgery, Xiangya Hospital, Central South UniversityChangsha 410007, PR China
| | - Yuesheng Sun
- Department of General Surgery, The Third Clinical College of Wenzhou Medical University, Wenzhou People’s HospitalWenzhou 325000, PR China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| |
Collapse
|
25
|
Capicua in Human Cancer. Trends Cancer 2020; 7:77-86. [PMID: 32978089 DOI: 10.1016/j.trecan.2020.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
Capicua (CIC) is a highly conserved transcriptional repressor that is differentially regulated through mitogen-activated protein kinase (MAPK) signaling or genetic alteration across human cancer. CIC contributes to tumor progression and metastasis through direct transcriptional control of effector target genes. Recent findings indicate that CIC dysregulation is mechanistically linked and restricted to specific cancer subtypes, yet convergence on key downstream transcriptional nodes are critical for CIC-regulated oncogenesis across these cancers. In this review, we focus on how differential regulation of CIC through functional and genetic mechanisms contributes to subtype-specific cancer phenotypes and we propose new therapeutic strategies to effectively target CIC-altered cancers.
Collapse
|
26
|
Liu Y, Zhang Y. ETV5 is Essential for Neuronal Differentiation of Human Neural Progenitor Cells by Repressing NEUROG2 Expression. Stem Cell Rev Rep 2020; 15:703-716. [PMID: 31273540 DOI: 10.1007/s12015-019-09904-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neural progenitor cells (NPCs) are multipotent cells that have the potential to produce neurons and glial cells in the neural system. NPCs undergo identity maintenance or differentiation regulated by different kinds of transcription factors. Here we present evidence that ETV5, which is an ETS transcription factor, promotes the generation of glial cells and drives the neuronal subtype-specific genes in newly differentiated neurons from the human embryonic stem cells-derived NPCs. Next, we find a new role for ETV5 in the repression of NEUROG2 expression in NPCs. ETV5 represses NEUROG2 transcription via NEUROG2 promoter and requires the ETS domain. We identify ETV5 has the binding sites and is implicated in silent chromatin in NEUROG2 promoter by chromatin immunoprecipitation (ChIP) assays. Further, NEUROG2 transcription repression by ETV5 was shown to be dependent on a transcriptional corepressor (CoREST). During NPC differentiation toward neurons, ETV5 represses NEUROG2 expression and blocks the appearance of glutamatergic neurons. This finding suggests that ETV5 negatively regulates NEUROG2 expression and increases the number of GABAergic subtype neurons derived from NPCs. Thus, ETV5 represents a potent new candidate protein with benefits for the generation of GABAergic neurons.
Collapse
Affiliation(s)
- Yang Liu
- School of Medicine, Tongji University, No.1239, Siping Road, Shanghai, 200092, People's Republic of China.
| | - Yuanyuan Zhang
- School of Medicine, Tongji University, No.1239, Siping Road, Shanghai, 200092, People's Republic of China
| |
Collapse
|
27
|
The Emerging Role of Extracellular Vesicles in the Glioma Microenvironment: Biogenesis and Clinical Relevance. Cancers (Basel) 2020; 12:cancers12071964. [PMID: 32707733 PMCID: PMC7409063 DOI: 10.3390/cancers12071964] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Gliomas are a diverse group of brain tumors comprised of malignant cells ('tumor' cells) and non-malignant 'normal' cells, including neural (neurons, glia), inflammatory (microglia, macrophage) and vascular cells. Tumor heterogeneity arises in part because, within the glioma mass, both 'tumor' and 'normal' cells secrete factors that form a unique microenvironment to influence tumor progression. Extracellular vesicles (EVs) are critical mediators of intercellular communication between immediate cellular neighbors and distantly located cells in healthy tissues/organs and in tumors, including gliomas. EVs mediate cell-cell signaling as carriers of nucleic acid, lipid and protein cargo, and their content is unique to cell types and physiological states. EVs secreted by non-malignant neural cells have important physiological roles in the healthy brain, which can be altered or co-opted to promote tumor progression and metastasis, acting in combination with glioma-secreted EVs. The cell-type specificity of EV content means that 'vesiculome' data can potentially be used to trace the cell of origin. EVs may also serve as biomarkers to be exploited for disease diagnosis and to assess therapeutic progress. In this review, we discuss how EVs mediate intercellular communication in glioma, and their potential role as biomarkers and readouts of a therapeutic response.
Collapse
|
28
|
Hwang I, Pan H, Yao J, Elemento O, Zheng H, Paik J. CIC is a critical regulator of neuronal differentiation. JCI Insight 2020; 5:135826. [PMID: 32229723 DOI: 10.1172/jci.insight.135826] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
Capicua (CIC), a member of the high mobility group-box (HMG-box) superfamily of transcriptional repressors, is frequently mutated in human oligodendrogliomas. However, its functions in brain development and tumorigenesis remain poorly understood. Here, we report that brain-specific deletion of Cic compromises developmental transition of neuroblasts to immature neurons in mouse hippocampus and compromises normal neuronal differentiation. Combined gene expression and ChIP-seq analyses identified VGF as an important CIC-repressed transcriptional surrogate involved in neuronal lineage regulation. Aberrant VGF expression promotes neural progenitor cell proliferation by suppressing their differentiation. Mechanistically, we demonstrated that CIC represses VGF expression by tethering SIN3-HDAC to form a transcriptional corepressor complex. Mass spectrometry analysis of CIC-interacting proteins further identified the BRG1-containing mSWI/SNF complex whose function is necessary for transcriptional repression by CIC. Together, this study uncovers a potentially novel regulatory pathway of CIC-dependent neuronal differentiation and may implicate these molecular mechanisms in CIC-dependent brain tumorigenesis.
Collapse
Affiliation(s)
- Inah Hwang
- Department of Pathology and Laboratory Medicine.,Meyer Cancer Center, and
| | - Heng Pan
- Meyer Cancer Center, and.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, New York, New York, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Olivier Elemento
- Meyer Cancer Center, and.,Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York-Presbyterian Hospital, New York, New York, USA
| | - Hongwu Zheng
- Department of Pathology and Laboratory Medicine.,Meyer Cancer Center, and
| | - Jihye Paik
- Department of Pathology and Laboratory Medicine.,Meyer Cancer Center, and
| |
Collapse
|
29
|
Lee Y. Regulation and function of capicua in mammals. Exp Mol Med 2020; 52:531-537. [PMID: 32238859 PMCID: PMC7210929 DOI: 10.1038/s12276-020-0411-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/20/2022] Open
Abstract
Capicua (CIC) is an evolutionarily conserved transcription factor. CIC contains a high-mobility group (HMG) box that recognizes specific DNA sequences to regulate the expression of various target genes. CIC was originally identified in Drosophila melanogaster as a transcriptional repressor that suppresses the receptor tyrosine kinase signaling pathway. This molecule controls normal organ growth and tissue patterning as well as embryogenesis in Drosophila. Recent studies have also demonstrated its extensive functions in mammals. For example, CIC regulates several developmental and physiological processes, including lung development, abdominal wall closure during embryogenesis, brain development and function, neural stem cell homeostasis, T cell differentiation, and enterohepatic circulation of bile acids. CIC is also associated with the progression of various types of cancer and neurodegeneration in spinocerebellar ataxia type-1, systemic autoimmunity, and liver injury. In this review, I provide a broad overview of our current understanding of the regulation and functions of CIC in mammals and discuss future research directions.
Collapse
Affiliation(s)
- Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea.
- Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Wong D, Yip S. Making heads or tails - the emergence of capicua (CIC) as an important multifunctional tumour suppressor. J Pathol 2020; 250:532-540. [PMID: 32073140 DOI: 10.1002/path.5400] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/31/2020] [Accepted: 02/12/2020] [Indexed: 12/24/2022]
Abstract
Capicua, encoded by the gene CIC, is an evolutionarily conserved high-mobility group-box transcription factor downstream of the receptor tyrosine kinase and mitogen-activated protein kinase pathways. It was initially discovered and studied in Drosophila. Recurrent mutations in CIC were first identified in oligodendroglioma, a subtype of low-grade glioma. Subsequent studies have identified CIC aberrations in multiple types of cancer and have established CIC as a potent tumour suppressor involved in regulating pathways related to cell growth and proliferation, invasion and treatment resistance. The most well-known and studied targets of mammalian CIC are the oncogenic E-Twenty Six transcription factors ETV1/4/5, which have been found to be elevated in cancers with CIC aberrations. Here, we review the role of CIC in normal mammalian development, oncogenesis and tumour progression, and the functional interactors that mediate them. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Derek Wong
- Molecular Oncology, British Columbia Cancer Research Center, Vancouver, British Columbia, Canada.,Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen Yip
- Molecular Oncology, British Columbia Cancer Research Center, Vancouver, British Columbia, Canada.,Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|