1
|
Zambrano-Rabanal C, Valderrama B, Tejo F, Elías RG, Nunez AS, Carvalho-Santos VL, Vidal-Silva N. Magnetostatic interaction between Bloch point nanospheres. Sci Rep 2023; 13:7171. [PMID: 37137960 PMCID: PMC10156691 DOI: 10.1038/s41598-023-34167-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023] Open
Abstract
Three-dimensional topological textures have become a topic of intense interest in recent years. This work uses analytical and numerical calculations to determine the magnetostatic field produced by a Bloch point (BP) singularity confined in a magnetic nanosphere. It is observed that BPs hosted in a nanosphere generate magnetic fields with quadrupolar nature. This finding is interesting because it shows the possibility of obtaining quadrupole magnetic fields with just one magnetic particle, unlike other propositions considering arrays of magnetic elements to generate this kind of field. The obtained magnetostatic field allows us to determine the interaction between two BPs as a function of the relative orientation of their polarities and the distance between them. It is shown that depending on the rotation of one BP related to the other, the magnetostatic interaction varies in strength and character, being attractive or repulsive. The obtained results reveal that the BP interaction has a complex behavior beyond topological charge-mediated interaction.
Collapse
Affiliation(s)
| | - Boris Valderrama
- Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile
| | - Felipe Tejo
- Escuela de Ingeniería, Universidad Central de Chile, Avda. Santa Isabel 1186, 8330601, Santiago, Chile
| | - Ricardo Gabriel Elías
- Departamento de Física, Universidad de Santiago de Chile (USACH), Avda. Víctor Jara 3493, Santiago, Chile
| | - Alvaro S Nunez
- Departamento de Física, FCFM, Universidad de Chile, Santiago, Chile
- Centro de nanociencia y nanotecnología CEDENNA, Avda. Ecuador 3493, Santiago, Chile
| | | | - Nicolás Vidal-Silva
- Departamento de Ciencias Físicas, Universidad de La Frontera, Casilla 54-D, Temuco, Chile.
| |
Collapse
|
2
|
Honda A, Yamane K, Iwasa K, Oka K, Toda Y, Morita R. Ultrafast beam pattern modulation by superposition of chirped optical vortex pulses. Sci Rep 2022; 12:14991. [PMID: 36056048 PMCID: PMC9440229 DOI: 10.1038/s41598-022-18145-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
As an extension of pulse shaping techniques using the space–time coupling of ultrashort pulses or chirped pulses, we demonstrated the ultrafast beam pattern modulation by the superposition of chirped optical vortex pulses with orthogonal spatial modes. The stable and robust modulations with a modulation frequency of sub-THz were carried out by using the precise phase control technique of the constituent pulses in both the spatial and time/frequency domains. The performed modulations were ultrafast ring-shaped optical lattice modulation with 2, 4 and 6 petals, and beam pattern modulations in the radial direction. The simple linear fringe modulation was also demonstrated with chirped spatially Gaussian pulses. While the input pulse energy of the pulses to be modulated was 360 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu $$\end{document}μJ, the output pulse energy of the modulated pulses was 115 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu $$\end{document}μJ with the conversion efficiency of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sim $$\end{document}∼ 32%. Demonstrating the superposition of orthogonal spatial modes in several ways, this ultrafast beam pattern modulation technique with high intensity can be applicable to the spatially coherent excitation of quasi-particles or collective excitation of charge and spin with dynamic degrees of freedom. Furthermore, we analyzed the Poynting vector and OAM of the composed chirped OV pulses. Although the ring-shaped optical lattice composed of OV pulse with topological charges of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pm \, \ell $$\end{document}±ℓ is rotated in a sub-THz frequency, the net orbital angular momentum (OAM) averaged over one optical period is found to be negligible. Hence, it is necessary to require careful attention to the application of the OAM transfer interaction with matter by employing such rotating ring-shaped optical lattices.
Collapse
Affiliation(s)
- Asami Honda
- Department of Applied Physics, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, 060-8628, Japan
| | - Keisaku Yamane
- Department of Applied Physics, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, 060-8628, Japan.
| | - Kohei Iwasa
- Department of Applied Physics, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, 060-8628, Japan
| | - Kazuhiko Oka
- Faculty of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, 036-8561, Japan
| | - Yasunori Toda
- Department of Applied Physics, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, 060-8628, Japan
| | - Ryuji Morita
- Department of Applied Physics, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, 060-8628, Japan.
| |
Collapse
|
3
|
Wang Z, Yuan HY, Cao Y, Yan P. Twisted Magnon Frequency Comb and Penrose Superradiance. PHYSICAL REVIEW LETTERS 2022; 129:107203. [PMID: 36112451 DOI: 10.1103/physrevlett.129.107203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Quantization effects of the nonlinear magnon-vortex interaction in ferromagnetic nanodisks are studied. We show that the circular geometry twists the spin-wave fields with spiral phase dislocations carrying quantized orbital angular momentum (OAM). Meanwhile, the confluence and splitting scattering of twisted magnons off the gyrating vortex core (VC) generates a frequency comb consisting of discrete and equally spaced spectral lines, dubbed as twisted magnon frequency comb (TMFC). It is found that the mode spacing of the TMFC is equal to the gyration frequency of the VC and the OAM quantum numbers between adjacent spectral lines differ by one. By applying a magnetic field perpendicular to the plane of a thick nanodisk, we observe a magnonic Penrose superradiance inside the cone vortex state, which mimics the amplification of particles scattered from a rotating black hole. It is demonstrated that the higher-order modes of TMFC are significantly amplified while the lower-order ones are trapped within the VC gyrating orbit which manifests as the ergoregion. These results suggest a promising way to generate twisted magnons with large OAM and to drastically improve the flatness of the magnon comb.
Collapse
Affiliation(s)
- Zhenyu Wang
- School of Electronic Science and Engineering and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - H Y Yuan
- Institute for Theoretical Physics, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Yunshan Cao
- School of Electronic Science and Engineering and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Peng Yan
- School of Electronic Science and Engineering and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
4
|
Rózsa L, Weißenhofer M, Nowak U. Spin waves in skyrmionic structures with various topological charges. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 33:054001. [PMID: 33091880 DOI: 10.1088/1361-648x/abc404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Equilibrium properties and localized magnon excitations are investigated in topologically distinct skyrmionic textures. The observed shape of the structures and their orientation on the lattice is explained based on their vorticities and the symmetry of the crystal. The transformation between different textures and their annihilation as a function of magnetic field is understood based on the energy differences between them. The angular momentum spin-wave eigenmodes characteristic of cylindrically symmetric structures are combined in the distorted spin configurations, leading to avoided crossings in the magnon spectrum. The susceptibility of the skyrmionic textures to homogeneous external fields is calculated, revealing that a high number of modes become detectable due to the hybridization between the angular momentum eigenmodes. These findings should contribute to the observation of spin waves in distorted skyrmionic structures via experiments and numerical simulations, widening the range of their possible applications in magnonic devices.
Collapse
Affiliation(s)
- Levente Rózsa
- Department of Physics, University of Konstanz, D-78457 Konstanz, Germany
| | - Markus Weißenhofer
- Department of Physics, University of Konstanz, D-78457 Konstanz, Germany
| | - Ulrich Nowak
- Department of Physics, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|