1
|
Spahr D, Bayarjargal L, Bykova E, Bykov M, Brüning L, Kovalev V, Milman V, Wright J, Winkler B. 6-Fold-Coordinated Beryllium in Calcite-Type Be[CO 3]. Inorg Chem 2024; 63:19513-19517. [PMID: 39383049 DOI: 10.1021/acs.inorgchem.4c03681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
The anhydrous beryllium carbonate Be[CO3] with calcite-type crystal structure was obtained by a reaction of BeO with CO2 in a laser-heated diamond anvil cell at pressures between 30 GPa and 80 GPa and elevated temperatures. Its calcite-type crystal structure (R3̅c with Z = 6) is characterized by 6-fold-coordinated beryllium atoms forming [BeO6] octahedra and by trigonal-planar [CO3]2- groups. The crystal structure was determined by synchrotron-based single-crystal X-ray diffraction and confirmed by density-functional-theory-based calculations in combination with experimental Raman spectroscopy. Calcite-type Be[CO3] was synthesized at significantly lower pressures than the other very few compounds hosting 6-fold-coordinated beryllium, and it is the first beryllium carbonate with this coordination.
Collapse
Affiliation(s)
- Dominik Spahr
- Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt, Germany
| | - Lkhamsuren Bayarjargal
- Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt, Germany
| | - Elena Bykova
- Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt, Germany
| | - Maxim Bykov
- Institute of Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt, Germany
| | - Lukas Brüning
- Institute of Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438 Frankfurt, Germany
| | - Valentin Kovalev
- Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt, Germany
| | - Victor Milman
- Dassault Systèmes BIOVIA, 22 Cambridge Science Park, Cambridge CB4 0FJ, United Kingdom
| | - Jonathan Wright
- European Synchrotron Radiation Facility ESRF, 71 avenue des Martyrs, CS40220, 38043 Grenoble, Cedex 9, France
| | - Björn Winkler
- Institute of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, 60438 Frankfurt, Germany
| |
Collapse
|
2
|
Glazyrin K, Aslandukov A, Aslandukova A, Fedotenko T, Khandarkhaeva S, Laniel D, Bykov M, Dubrovinsky L. High-pressure reactions between the pnictogens: the rediscovery of BiN. Front Chem 2023; 11:1257942. [PMID: 37901158 PMCID: PMC10602720 DOI: 10.3389/fchem.2023.1257942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
We explore chemical reactions within pnictogens with an example of bismuth and nitrogen under extreme conditions. Understanding chemical reactions between Bi and N, elements representing the first and the last stable elements of the nitrogen group, and the physical properties of their compounds under ambient and high pressure is far from being complete. Here, we report the high-pressure high-temperature synthesis of orthorhombic Pbcn BiN (S.G. #60) from Bi and N2 precursors at pressures above 40 GPa. Using synchrotron single-crystal X-ray diffraction on the polycrystalline sample, we solved and refined the compound's structure and studied its behavior and compressibility on decompression to ambient pressure. We confirm the stability of Pbcn BiN to pressures as low as 12.5(4) GPa. Below that pressure value, a group-subgroup phase transformation occurs, resulting in the formation of a non-centrosymmetric BiN solid with a space group Pca21 (S.G. #29). We use ab initio calculations to characterize the polymorphs of BiN. They also provide support and explanation for our experimental observations, in particular those corresponding to peculiar Bi-N bond evolution under pressure, resulting in a change in the coordination numbers of Bi and N as a function of pressure within the explored stability field of Pbcn BiN.
Collapse
Affiliation(s)
- K. Glazyrin
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - A. Aslandukov
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, Bayreuth, Germany
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany
| | - A. Aslandukova
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany
| | - T. Fedotenko
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - S. Khandarkhaeva
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany
| | - D. Laniel
- Centre for Science at Extreme Conditions, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - M. Bykov
- Institute of Inorganic Chemistry, University of Cologne, Cologne, Germany
| | - L. Dubrovinsky
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
3
|
Parambath S, Narayanan S J J, Parameswaran P. Five-membered N-heterocyclic beryllium(I) compounds: fluctuating electronic structures with ambiphilic reactivity. Dalton Trans 2023; 52:3378-3385. [PMID: 36810658 DOI: 10.1039/d2dt03263e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The structure, bonding, and reactivity of the five-membered N-heterocyclic beryllium compounds (NHBe), BeN2C2H4 (1) and BeN2(CH3)2C2H2 (2) were studied at the M06/def2-TZVPP//BP86/def2-TZVPP level of theory. The molecular orbital analysis indicates that NHBe is an aromatic 6π-electron system with an unoccupied σ-type spn-hybrid orbital on Be. Energy decomposition analysis combined with natural orbitals for chemical valence has been carried out with Be and L (L = N2C2H4 (1), N2(CH3)2C2H2 (2)) in their different electronic states as fragments at the BP86/TZ2P level of theory. The results indicate that the best bonding representation can be considered as an interaction between Be+ having the 2s02px12py02pz0 electronic configuration and L-. Accordingly, L- forms two donor-acceptor σ-bonds and one electron sharing π-bond with Be+. Compounds 1 and 2 show high proton and hydride affinity at beryllium, indicating its ambiphilic reactivity. The protonated structure results from adding a proton on the lone pair of electrons in the doubly excited state. On the other hand, the hydride adduct is formed by donating electrons from the hydride to an unoccupied σ-type spn-hybrid orbital on Be. These compounds show very high exothermic reaction energy for adduct formation with two electron donor ligands such as cAAC, CO, NHC, and PMe3.
Collapse
Affiliation(s)
- Sneha Parambath
- Department of Chemistry, National Institute of Technology, Calicut, Kerala, India.
| | - Jishnu Narayanan S J
- Department of Chemistry, National Institute of Technology, Calicut, Kerala, India.
| | | |
Collapse
|
4
|
Gorelova L, Pakhomova A, Aprilis G, Yin Y, Laniel D, Winkler B, Krivovichev S, Pekov I, Dubrovinskaia N, Dubrovinsky L. Edge-sharing BO 4 tetrahedra and penta-coordinated silicon in the high-pressure modification of NaBSi 3O 8. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00101b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-pressure modification of NaBSi3O8 results in the first example of a borosilicate compound containing edge-sharing BO4 tetrahedra and SiO5 polyhedra.
Collapse
Affiliation(s)
- Liudmila Gorelova
- Crystallography Department, Institute of Earth Science, Saint Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia
| | - Anna Pakhomova
- Deutsches Elektronen-Synchrotron (DESY), Petra III, Notkestraße 85, 22607 Hamburg, Germany
- European Synchrotron Radiation Facility, 71 Av. des Martyrs, 38000 Grenoble, France
| | - Georgios Aprilis
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440, Bayreuth, Germany
| | - Yuqing Yin
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440, Bayreuth, Germany
| | - Dominique Laniel
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440, Bayreuth, Germany
| | - Bjoern Winkler
- Institute für Geowissenschaften, Frankfurt University, Altenhöferallee 1, DE-60438 Frankfurt am Main, Germany
| | - Sergey Krivovichev
- Crystallography Department, Institute of Earth Science, Saint Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia
- Kola Science Centre, Russian Academy of Sciences, Fersman str. 14, 184209 Apatity, Russia
| | - Igor Pekov
- Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
| | - Natalia Dubrovinskaia
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440, Bayreuth, Germany
- Department of Physics, Chemistry and Biology (IFM), Linkoeping University, SE-581 83, Linkoeping, Sweden
| | - Leonid Dubrovinsky
- Bayerisches Geoinstitut, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
5
|
Bafekry A, Faraji M, Fadlallah MM, Hoat DM, Khatibani AB, Sarsari IA, Ghergherehchi M. Effect of adsorption and substitutional B doping at different concentrations on the electronic and magnetic properties of a BeO monolayer: a first-principles study. Phys Chem Chem Phys 2021; 23:24922-24931. [PMID: 34726216 DOI: 10.1039/d1cp03196a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 2D form of the BeO sheet has been successfully prepared (Hui Zhang et al., ACS Nano, 2021, 15, 2497). Motivated by these exciting experimental results on the 2D layered BeO structure, we studied the effect of the adsorption of B atoms on BeO (B@BeO) and substitutional B atoms (B-BeO) at the Be site at different B concentrations. We investigated the structural stability and the mechanical, electronic, magnetic, and optical properties of the mentioned structures using first-principles calculations. We found out that hexagonal BeO monolayers with adsorbed and dopant B atoms have different mechanical stabilities at different concentrations. B@BeO and B-BeO monolayers are brittle structures, and B@BeO structures are more rigid than B-BeO monolayers (at the same B concentration). The adsorption and the formation energy per B atom decrease as the B concentration increases. In comparison, the work function increases when increasing the B concentration. The work function of B@BeO is higher than the corresponding value of B-BeO (at the same B concentration). The magnetic moment linearly increases as the B concentration increases. BeO is a semiconductor with an indirect bandgap of 5.3 eV. The B@BeO and B-BeO structures are semiconductors, except for 3B-BeO (14.2% doped concentration), which is a metal. The bandgap is 1.25 eV for most of the adsorbed atom concentrations. For B-BeO, the bandgap decreases to zero at a concentration of 14.2%. The bandgap of the B-BeO monolayer at different B concentrations is smaller than the corresponding values of the B@BeO monolayer, which indicates that B substitutional doping has a greater effect on the electronic structure of the BeO monolayer than B adsorption doping. We investigated the optical properties, including the dielectric function and absorption coefficient. The results indicate good optical absorption in the range of infrared and ultraviolet energies for the B adsorbed and doped BeO monolayer.
Collapse
Affiliation(s)
- A Bafekry
- Department of Radiation Application, Shahid Beheshti University, Tehran, 19839 69411, Iran.
| | - M Faraji
- TOBB University of Economics and Technology, Sogutozu Caddesi No 43 Sogutozu, 06560, Ankara, Turkey
| | - M M Fadlallah
- Department of Physics, Faculty of Science, Benha University, Benha, 13518, Egypt
| | - D M Hoat
- Institute of Theoretical and Applied Research, Duy Tan University, Hanoi, 100000, Vietnam.,Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam
| | | | | | - M Ghergherehchi
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
6
|
Bykov M, Fedotenko T, Chariton S, Laniel D, Glazyrin K, Hanfland M, Smith JS, Prakapenka VB, Mahmood MF, Goncharov AF, Ponomareva AV, Tasnádi F, Abrikosov AI, Bin Masood T, Hotz I, Rudenko AN, Katsnelson MI, Dubrovinskaia N, Dubrovinsky L, Abrikosov IA. High-Pressure Synthesis of Dirac Materials: Layered van der Waals Bonded BeN_{4} Polymorph. PHYSICAL REVIEW LETTERS 2021; 126:175501. [PMID: 33988447 DOI: 10.1103/physrevlett.126.175501] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/16/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
High-pressure chemistry is known to inspire the creation of unexpected new classes of compounds with exceptional properties. Here, we employ the laser-heated diamond anvil cell technique for synthesis of a Dirac material BeN_{4}. A triclinic phase of beryllium tetranitride tr-BeN_{4} was synthesized from elements at ∼85 GPa. Upon decompression to ambient conditions, it transforms into a compound with atomic-thick BeN_{4} layers interconnected via weak van der Waals bonds and consisting of polyacetylene-like nitrogen chains with conjugated π systems and Be atoms in square-planar coordination. Theoretical calculations for a single BeN_{4} layer show that its electronic lattice is described by a slightly distorted honeycomb structure reminiscent of the graphene lattice and the presence of Dirac points in the electronic band structure at the Fermi level. The BeN_{4} layer, i.e., beryllonitrene, represents a qualitatively new class of 2D materials that can be built of a metal atom and polymeric nitrogen chains and host anisotropic Dirac fermions.
Collapse
Affiliation(s)
- Maxim Bykov
- The Earth and Planets Laboratory, Carnegie Institution for Science, Washington, D.C. 20015, USA
- College of Arts and Science, Howard University, Washington, D.C. 20059, USA
| | - Timofey Fedotenko
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany
| | - Stella Chariton
- Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637, USA
| | - Dominique Laniel
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany
| | - Konstantin Glazyrin
- Photon Sciences, Deutsches Electronen Synchrotron (DESY), D-22607 Hamburg, Germany
| | - Michael Hanfland
- European Synchrotron Radiation Facility, 38043 Grenoble Cedex 9, France
| | - Jesse S Smith
- HPCAT, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Vitali B Prakapenka
- Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637, USA
| | - Mohammad F Mahmood
- College of Arts and Science, Howard University, Washington, D.C. 20059, USA
| | - Alexander F Goncharov
- The Earth and Planets Laboratory, Carnegie Institution for Science, Washington, D.C. 20015, USA
| | - Alena V Ponomareva
- Materials Modeling and Development Laboratory, National University of Science and Technology "MISIS," 119049 Moscow, Russia
| | - Ferenc Tasnádi
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping, Sweden
| | - Alexei I Abrikosov
- Department of Science and Technology (ITN), Linköping University, SE-60174 Norrköping, Sweden
| | - Talha Bin Masood
- Department of Science and Technology (ITN), Linköping University, SE-60174 Norrköping, Sweden
| | - Ingrid Hotz
- Department of Science and Technology (ITN), Linköping University, SE-60174 Norrköping, Sweden
| | - Alexander N Rudenko
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Radboud University, Institute for Molecules and Materials, 6525AJ Nijmegen, The Netherlands
- Department of Theoretical Physics and Applied Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia
| | - Mikhail I Katsnelson
- Radboud University, Institute for Molecules and Materials, 6525AJ Nijmegen, The Netherlands
- Department of Theoretical Physics and Applied Mathematics, Ural Federal University, 620002 Ekaterinburg, Russia
| | - Natalia Dubrovinskaia
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, 95440 Bayreuth, Germany
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping, Sweden
| | - Leonid Dubrovinsky
- Bayerisches Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany
| | - Igor A Abrikosov
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping, Sweden
| |
Collapse
|
7
|
Pakhomova A, Fuchs B, Dubrovinsky LS, Dubrovinskaia N, Huppertz H. Polymorphs of the Gadolinite-Type Borates ZrB 2 O 5 and HfB 2 O 5 Under Extreme Pressure. Chemistry 2021; 27:6007-6014. [PMID: 33544397 PMCID: PMC8049040 DOI: 10.1002/chem.202005244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Indexed: 11/20/2022]
Abstract
Based on the results from previous high‐pressure experiments on the gadolinite‐type mineral datolite, CaBSiO4(OH), the behavior of the isostructural borates β‐HfB2O5 and β‐ZrB2O5 have been studied by synchrotron‐based in situ high‐pressure single‐crystal X‐ray diffraction experiments. On compression to 120 GPa, both borate layer‐structures are preserved. Additionally, at ≈114 GPa, the formation of a second phase can be observed in both compounds. The new high‐pressure modification γ‐ZrB2O5 features a rearrangement of the corner‐sharing BO4 tetrahedra, while still maintaining the four‐ and eight‐membered rings. The new phase γ‐HfB2O5 contains ten‐membered rings including the rare structural motif of edge‐sharing BO4 tetrahedra with exceptionally short B−O and B⋅⋅⋅B distances. For both structures, unusually high coordination numbers are found for the transition metal cations, with ninefold coordinated Hf4+, and tenfold coordinated Zr4+, respectively. These findings remarkably show the potential of cold compression as a low‐energy pathway to discover metastable structures that exhibit new coordinations and structural motifs.
Collapse
Affiliation(s)
- Anna Pakhomova
- Deutsches Elektronen-Synchrotron (DESY), Petra III, Notkestraße 85, 22607, Hamburg, Germany
| | - Birgit Fuchs
- Institut für Allgemeine, Anorganische und Theoretische Chemie, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Leonid S Dubrovinsky
- Bayerisches Geoinstitut, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Natalia Dubrovinskaia
- Material Physics and Technology at Extreme Conditions, University of Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany.,Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83, Linköping, Sweden
| | - Hubert Huppertz
- Institut für Allgemeine, Anorganische und Theoretische Chemie, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| |
Collapse
|
8
|
Abstract
Feldspars are rock-forming minerals that make up most of the Earth’s crust. Along the mantle geotherm, feldspars are stable at pressures up to 3 GPa and may persist metastably at higher pressures under cold conditions. Previous structural studies of feldspars are limited to ~10 GPa, and have shown that the dominant mechanism of pressure-induced deformation is the tilting of AlO4 and SiO4 tetrahedra in a tetrahedral framework. Herein, based on results of in situ single-crystal X-ray diffraction studies up to 27 GPa, we report the discovery of new high-pressure polymorphs of the feldspars anorthite (CaSi2Al2O8), albite (NaAlSi3O8), and microcline (KAlSi3O8). The phase transitions are induced by severe tetrahedral distortions, resulting in an increase in the Al and/or Si coordination number. High-pressure phases derived from feldspars could persist at depths corresponding to the Earth upper mantle and could possibly influence the dynamics and fate of cold subducting slabs. Feldspars are stable at pressures up to 3 GPa along the mantle geotherm, but they can persist metastably at higher pressures at colder conditions. Here, above 10 GPa the authors find new high-pressure polymorphs of feldspars that could persist at depths corresponding to the Earth’s upper mantle, potentially influencing the dynamics and fate of cold subducting slabs.
Collapse
|
9
|
Gorelova LA, Pakhomova AS, Krivovichev SV, Dubrovinsky LS, Kasatkin AV. High pressure phase transitions of paracelsian BaAl 2Si 2O 8. Sci Rep 2019; 9:12652. [PMID: 31477776 PMCID: PMC6718520 DOI: 10.1038/s41598-019-49112-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/19/2019] [Indexed: 11/24/2022] Open
Abstract
Three new polymorphs of aluminosilicate paracelsian, BaAl2Si2O8, have been discovered using synchrotron-based in situ high-pressure single crystal X-ray diffraction. The first isosymmetric phase transition (from paracelsian-I to paracelsian-II) occurs between 3 and 6 GPa. The phase transition is associated with the formation of pentacoordinated Al3+ and Si4+ ions, which occurs in a stepwise fashion by sequential formation of Al-O and Si-O bonds additional to those in AlO4 and SiO4 tetrahedra, respectively. The next phase transition occurs between 25 and 28 GPa and is accompanied by the symmetry change from monoclinic (P21/c) to orthorhombic (Pna21). The structure of paracelsian-III consists of SiO6 octahedra, AlO6 octahedra and distorted AlO4 tetrahedra, i.e. the transition is reconstructive and associated with the changes of Si4+ and Al3+ coordination, which show rather complex behaviour with the general tendency towards increasing coordination numbers. The third phase transition is observed between 28 and 32 GPa and results in the symmetry decreasing from Pna21 to Pn. The transition has a displacive character. In the course of the phase transformation pathway up to 32 GPa, the structure of polymorphs becomes denser: paracelsian-II is based upon elements of cubic and hexagonal close-packing arrangements of large O2− and Ba2+ ions, whereas, in the crystal structure of paracelsian-III and IV, this arrangement corresponds to 9-layer closest-packing with the layer sequence ABACACBCB.
Collapse
Affiliation(s)
- Liudmila A Gorelova
- Department of Crystallography, Institute of Earth Sciences, St. Petersburg State University, University Emb. 7/9, 199034, Saint Petersburg, Russia.
| | - Anna S Pakhomova
- Deutsches Elektronen-Synchrotron (DESY), Petra III, Notkestraße 85, 22607, Hamburg, Germany
| | - Sergey V Krivovichev
- Department of Crystallography, Institute of Earth Sciences, St. Petersburg State University, University Emb. 7/9, 199034, Saint Petersburg, Russia.,Kola Science Centre, Russian Academy of Sciences, Fersman str. 14, 184209, Apatity, Russia
| | - Leonid S Dubrovinsky
- Bayerisches Geoinstitut, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Anatoly V Kasatkin
- Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninskiy pr. 18, 2, 119071, Moscow, Russia
| |
Collapse
|